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1.. Introducti

Comprehensive two-dimensional liquid chromatography 
(LC × LC) provides an order-of-magnitude increase in peak 
separation capacity over one-dimensional high-performance 
liquid chromatography (HPLC) [1]. With its greater separation 
power, LC × LC reduces co-elutions, which reveals otherwise 
unseen chemical complexity and allows improved quantita-
tion, and exposes multidimensional structure–retention rela-
tionships, which can be exploited for improved chemical iden-
tification and classification. Since early work on LC × LC [2, 
3], research and development have significantly improved and 
refined LC × LC technologies [4–6]. The future for LC × LC is 
especially promising for important but challenging biochem-
ical applications [7], including proteomics [8, 9] and metabo-
lomics [10, 11], which typically contain thousands of constit-
uents with widely varying concentrations within the same 
sample.

Although LC × LC holds great promise, the lack of soft-
ware for data processing and automated analysis is a ma-
jor obstacle to its effective widespread application. In a recent 
survey of fast LC × LC, Stoll et al. concluded that “the paucity 
of efficient, convenient and sufficiently powerful data analy-
sis tools” is “the greatest impediment to wide application of 

2DLC.” [5, p. 39] Guiochon et al. write: “More sophisticated 
problems need to be solved. They deal with how to help ana-
lysts in making sense of these large data arrays, in using these 
painfully acquired data to solve important analytical prob-
lems, in how actually to handle these data and turn them into 
relevant numbers.”[6, p. 159]

The need for more rapid and effective analytical software is 
especially critical for biological separations:

• “The need for computational methods is evident in order to
find peaks that correlate with phenotypes and, equally im-
portantly, in order to assess their statistical significance.” 
[12, p. 2]

• “The lack of effective generic procedures for routinely de-
tecting differences in global protein patterns across many 
different samples hinders the discovery of new biomark-
ers.” [12, p. 984]

• “Improvements/development of bioinformatics packages
are urgently needed for the conduction of all steps of pro-
teomic studies.” [14, p. 17]

• “[T]he primary bottleneck in high throughput proteomic
production ‘pipelines’ is in many cases no longer the rate 
at which the instrument can generate data, but rather it is 
in quality analysis and interpretation of the results to gen-
erate confident protein assignments.” [15, p. 497]
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Abstract
Comprehensive two-dimensional liquid chromatography (LC × LC) generates information-rich but complex peak patterns 
that require automated processing for rapid chemical identification and classification. This paper describes a powerful ap-
proach and specific methods for peak pattern matching to identify and classify constituent peaks in data from LC × LC and 
other multidimensional chemical separations. The approach records a prototypical pattern of peaks with retention times and 
associated metadata, such as chemical identities and classes, in a template. Then, the template pattern is matched to the de-
tected peaks in subsequent data and the metadata are copied from the template to identify and classify the matched peaks. 
Smart Templates employ rule-based constraints (e.g., multispectral matching) to increase matching accuracy. Experimental re-
sults demonstrate Smart Templates, with the combination of retention-time pattern matching and multispectral constraints, 
are accurate and robust with respect to changes in peak patterns associated with variable chromatographic conditions.
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Because of the size and complexity of LC × LC data, the lack 
of software is even more acute than for some other analytical 
technologies and is one of the most significant impediments to 
the adoption of LC × LC. This problem is evident in many re-
cent publications of researchers pioneering LC × LC. As Dixon 
et al. note in reviewing LC × LC for biomedical and pharma-
ceutical analysis, data processing and analysis for biological 
separations is already difficult but will be even more so now 
that “n-dimensional data acquisition is a reality” [16, p. 526].

LC × LC offers increased information capacity for complex 
chemical separations, but with its greatly increased perfor-
mance, LC × LC generates data in significantly larger quantity 
and with significantly greater complexity than one-dimen-
sional HPLC. Compared to data from one-dimensional HPLC, 
LC × LC data has many times more data points, an order-of-
magnitude greater peak capacity, and added data dimension-
ality. Analysis of LC × LC data is challenging and requires 
computer automation and assistance. LC × LC transforms 
chemical samples into raw data; information technologies are 
required to transform LC × LC data into useful information.

This paper addresses the problem of automatically identi-
fying and classifying the peaks of interest in chromatograms 
of similar mixtures with possibly variable chromatographic 
conditions. A popular method for peak identification in one-
dimensional chromatography is to define retention-time win-
dows for the peaks of target compounds. Under repeatable, 
reproducible, and tightly controlled chromatographic condi-
tions, the peaks for target compounds will fall reliably within 
fixed retention-time windows. However, narrow windows 
may be required for peaks with nearby neighboring peaks (to 
avoid false identifications) and, with narrow windows, even 
slightly different chromatographic conditions may cause a 
peak to drift outside its window. Here, “drift” is used to char-
acterize a local variation which may be related to more com-
plex systemic variations as might be caused by stationary 
phase aging due to instability or build-up of contaminants, 
instrument aging, lack of sufficient temperature control, and 
variations in pumping system performance. The problems re-
lated to retention-time drift in peak identification for LC × LC 
are more complex than for one-dimensional HPLC.

This paper describes a powerful approach and specific meth-
ods for peak pattern matching to identify and classify constit-
uent peaks in data from LC × LC and other multidimensional 
chemical separations. The approach records a prototypical pat-
tern of peaks with retention times and associated metadata, 
such as chemical identities and classes, in a template. Then, the 
template pattern is matched to the detected peaks in subsequent 
chromatograms and the metadata are copied from the template 
to identify and classify the matched peaks. Smart Templates em-
ploy rule-based constraints (e.g., multispectral matching) to in-
crease matching accuracy. For example, the Smart Template 
may record the expected spectrum of a target compound and 
then require that a matched chromatographic peak have a suf-
ficiently similar spectrum. The constraints in Smart Templates 
may be written by hand, based on expert knowledge, or con-
structed automatically. Experimental results demonstrate that 
the method is accurate and robust with respect to changes in 
peak patterns due to variations in chromatographic conditions.

Section 2 outlines the chromatographic acquisition of the 
experimental data on which the methods are demonstrated. 
Section 3 develops an algorithm for two-dimensional gradient 
background detection, modeling, and removal. Background 
removal is a much more serious issue for LC × LC than com-
prehensive two-dimensional gas chromatography (GC × GC) 
due to the large signals generated by changes in eluent com-
position during gradient elution. The algorithm modifies a 
method developed for GC × GC to account for the dynamic re-

sponse in the second-column gradient separation of LC × LC, 
thereby allowing accurate peak detection and quantification. 
Section 4 presents simple methods for two-dimensional peak 
detection and multispectral matching for chemical identifica-
tion. Section 5 details the use of templates and template match-
ing for recognizing patterns of peaks in LC × LC data. Section 
6 describes how Smart Templates with rule-based constraints 
can significantly improve template matching accuracy and de-
scribes how constraint rules can be constructed automatically. 
Section 7 contains concluding remarks about the applicability 
of the approach to other types of detectors and other types of 
multidimensional chemical separations.

2.. Data acquisiti
The example data analyzed in this paper were acquired at 

the University of Minnesota in a series of 64 injections of: (a) 
water (four injections near the end of the series); (b) a stan-
dards mixture with potassium nitrate, tryptophan, hydroxy-
tryptophan, indole-3-acetic acid, indole-3-propionic acid, in-
dole-3-acetonitrile, and tyrosine (6 injections interspersed 
in the series); (c) a control urine sample (14 injections inter-
spersed in the series); and (d) experimental urine samples 
(40 injections, four of which failed). For the urine analyses, a 
460 μL aliquot of each urine sample was transferred to a HPLC 
vial. To each vial, 40 μL of 70% perchloric acid was added to 
precipitate proteins and this solution was allowed to stand for 
10 min, followed by filtration with a small 0.2 μm PTFE sy-
ringe filter. The filtrate was collected in a new HPLC vial to 
which 55 μL of 10 M potassium hydroxide was added. This so-
lution was centrifuged for 5 min to pellet the solid potassium 
perchlorate. For the experimental samples, the resulting solu-
tion was either diluted 9:10, 1:4, or 1:16 using 20 mM sodium 
phosphate, 0.1 mM EDTA, pH 6. Then, the samples were in-
jected without further treatment.

In the dual gradient-elution system developed by Stoll et al., 
pictured in Figure 1, the first column is comprised of a conven-
tional gradient-elution HPLC system and reversed-phase LC 
column [17]. The effluent from the first column is captured al-
ternately in Loop 1 or Loop 2 (denoted L1 and L2 in Figure 1) of 
the 10-port valve shown in the center of the figure. The stored 
effluent is injected into Column 2, the second dimension of the 
separation, and subjected to gradient elution by the dual gradi-
ent pumping system (Pumps B and C). The very rapid second 
separation uses a very short narrow column with high temper-
ature (> 100°C) and high flow rate (3 cc/min) to achieve very 

 Figure 1. Instrumentation for 
comprehensive two-
dimensional liquid  
chromatography (LC × LC) 
[17].
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 high linear velocity, allowing these separations to complete 
within 21 s. This is extraordinarily fast for liquid chromatogra-
phy and the resulting peaks are very narrow (<0.5 s half-height 
width). The two independent pumps and valve allow switch-
ing between the two systems to minimize the effect of gradi-
ent dwell volumes. Otherwise, the chromatography would be 
slowed substantially and the retention-time reproducibility in 
the second dimension would be greatly compromised.

Although gradient elution in the second dimension is not 
as simple as isocratic elution, it is essential for three reasons. 
First, gradient elution gives higher peak capacity than isocratic 
elution. Second, a strong final eluent insures that everything 
elutes before the next separation starts. Third, gradient elution 
allows the diluted sample from the first dimension to be fo-
cused at the top of the second column, thereby improving the 
second dimension peak width when the first dimension sys-
tem is delivering the analytes in strong eluent.

In these runs, the gradient in the first column runs from 0 
to 23 min, returns to the initial composition at 23.01 min, and 
is held there until the end of the cycle (29.75 min). The first-
column dead-time is 1.0 min. The gradient in the second col-
umn runs from 0 to 18 s, returns to the initial composition at 
18.6 s, and is held there until the the end of the cycle (21 s). The 
second-column dead-time is 1.3 s.

The data was collected with a PhotoDiode Array Detec-
tor (DAD) over the wavelength range 200–700 nm sampled 
in 4 nm intervals at 40 Hz for 29.75 min and written to a file 
by Agilent ChemStation software. The data for each run con-
tained 71,400 data points, each with 126 spectral intensities, 
for a total of nearly 9 million intensities per run. As described 
in the following sections, the data was read from the Chem-
Station UV file, restructured as a series of 85 secondary chro-
matograms, each 21 s long, and processed for background 
removal, peak detection, and peak identification with GC 
Image®LC × LC Software.

3.. Preprocessi

Figure 2 a shows a pseudocolor image of one of six LC × LC 
chromatograms acquired for the standards mixture. The value 
of each pixel of the image is the total intensity count (TIC) of 
the ultraviolet (UV) spectral absorbance at the indicated first 

and second dimension retention times (respectively, the ab-scissa 
from left-to-right in minutes and the ordinate from bot-tom-to-top in 
seconds). (The UV TIC is computed as the sum of the responses, 
measured in milli-absorbance units (mAU), in all spectral channels, 
just as the total ion count is summed intensities for mass 
spectrometry.) The pixels are automati-cally pseudocolorized with 
Gradient-Based Value Mapping (GBVM) [19], which effectively uses 
the color scale to empha-size local differences in the data, even for 
variable data with a large dynamic range. (A small region 
containing the gradi-ent front in the lower-right of the image are 
excluded from the GBVM computation.) The color map and the 
value map function are shown in Figure 3. For this data, the coloriza-
tion shows each of the seven chemical peaks (discussed later) and 
the significant variations in the background values (dis-cussed here). 
The background values, which can be seen di-rectly wherever there 
is no chemical peak, vary greatly across the second column 
separations (bottom to top) and to a lesser  

Figure 2. (a) An image of LC × LC data for the standards mixture. Before background correction, the dynamic range of the background obscures 
peaks. (This and other data visualizations were rendered with GC Image®software for comprehensive two-dimensional chromatography [18].) (b) 
After correction, the background values in the broad center of the image are near zero. The detected peaks are much clearer and the peaks of inter-
est are outlined in black with black labels.

 Figure 3. Color map and 
Gradient-Based Value Mapping 
(GBVM) function [19]. The 
function maps intensity values 
along the horizontal  axis to a 
pseudocolor on the vertical axis.
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extent across the first column separations (left to right). Note 
the increase in the middle of the second-column chromato-
grams between 7.5 and 13 s — from bottom-to-top, the color 
changes from blue to green — nearly obscures the peaks. The 
background values must be removed for accurate peak detec-
tion and quantification.

Background correction is performed with a new algo-
rithm based on a method developed by Reichenbach et al. [20] 
for GC × GC. The GC × GC background correction method 
builds statistical models of the background values (by track-
ing neighborhoods around the smallest values as a function of 
time) and the noise (by parameterizing a Gaussian distribution 
for those neighborhoods) and then subtracts the background 
model from the data. That approach was modified in two im-
portant respects for LC × LC. First, because variations in the 
gradient separation background may be positive or negative, 
the LC × LC background correction algorithm must track the 
“middle” values (rather than the smallest values) by disregard-
ing periods in which there are rapid changes or extreme values. 
Second, the background values vary greatly along the second-
ary separations, so the LC × LC background correction algo-
rithm must model the background in both dimensions. With 
these important modifications, the LC × LC background correc-
tion algorithm is applied in each of the spectral channels.

The LC × LC background correction algorithm success-
fully corrects the background values in the regions of the chro-
matogram in which chemical analysis is performed. Figure 4 
a graphs the values both before and after correction along the 
first dimension at a single row of data values (at 7.725 s of the 
second-column separations, left-to-right in Figure 2a). This 
row of data values was selected because no peak in any sec-
ond-column separation is resolved at that time, so the values 
reflect only the baseline and noise. Before correction, the val-
ues decrease slightly from about −0.8 to −0.9 mAU (average-
per-channel over all wavelengths) through the first half of the 
separation and then increase slightly to about −0.8 mAU at the 
end. (The spike at the initial sample falls outside the chromato-
graphic range for chemical analysis and so is irrelevant.) After 
correction, the background values fall in a small range around 
zero (approximately −0.03 to 0.03 mAU), as desired. The local 
fluctuations related to noise remain, but the corrected baseline 
is very close to zero.

Figure 4 b graphs the background values along the second 
dimension (at 10.850 min of the first-column separation, bot-

tom-to-top in Figure 2a). Before correction, the background val-ues 
fluctuate significantly, especially at the beginning and end of each 
secondary separation (the bottom and top in Figure 2a). Some of the 
variations, such as those across the broad middle of the secondary 
separations are consistent across the image (left-to-right). Others, such 
as those at the top of the image are vari-able. In some regions outside 
the chromatographic range where chemical analysis is performed, the 
values change rapidly and inconsistently (e.g., the blotchy region at 
the top of the image) and are not fit by the smooth background model 
used by the al-gorithm. However, across the broad middle of the 
second col-umn separations, the region in which chemical analysis is 
per-formed, the LC × LC background correction algorithm flattens the 
background values to near zero, as desired.

The resulting image of the data after background correc-tion is 
shown in Figure 2 b. The background values across the center of the 
chromatogram are near zero and the chemical peaks (whose 
detection is described next) are clearer against the more uniform 
background. It is worth noting again that the colorization 
emphasizes the small variations in the back-ground much more than 
would linear value mapping.
4.. Peak detection and spectral identi icati

The chromatographic peaks are detected in two dimen-sions using 
the drain algorithm [21], a modified and inverted version of the 
watershed algorithm [22], on the LC × LC TIC. Multivariate 
chemometric methods for peak detection that aim to unmix or 
deconvolve co-eluted peaks based on differ-ences in multispectral 
signatures (e.g., [23]) could detect more peaks, but those methods 
often are not robust enough for au-tomation. Multivariate peak 
detection algorithms are an area of active research to address 
issues such as delineating re-gions for analysis (because many 
methods are not computa-tional efficient enough to apply to all the 
data) and nonlinear-ity (e.g., peak shape changes related to column 
loading). Here, the drain algorithm works well enough for 
demonstrating the utility and power of Smart Templates for peak 
identification and classification.

The drain algorithm detects peaks from the top, down to the 
surrounding valleys, in two dimensions. With thresholds on the 
chromatographic footprint (i.e., the temporal area, which is the 2D 
analog of peak width) and apex value (the largest TIC among data 
points in the peak), 
the algorithm detects peaks  

Figure 4. (a) Background values before (solid line) and after (dashed line) correction along a single row in the first dimension. A row with no an-
alyte peaks was selected so that the values reflect only the baseline and noise. After correction, the values fluctuate in a small range centered very 
close to zero. (b) Background values before (solid line) and after (dashed line) correction along a single column in the second dimension. This sec-
ondary chromatogram with analyte no peaks was selected so that the values reflect only the baseline and noise. After correction, the values in the 
region of analysis are very close to zero.
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for each of the compounds in the standards mixture. In Fig-
ure 2 b, the footprints of the detected peaks are outlined, with 
the peaks of interest outlined in black. Other detected peaks, 
caused by artifacts and which are not in the region of analyt-
ical interest, are outlined in gray. The region with the five in-
doles in the mixture, which appear in the center of the image, is 
shown in three-dimensional perspective view in Figure 5. The 
linear vertical scale shows the extent to which the pseudocolor 
value mapping emphasizes the small variations in the back-
ground (while also clearly showing the peaks).

The spectra of the indole peaks in the image were compared 
to a database with the UV absorbance spectra of 26 indoles [24] 
using seven metrics (listed with the rate of correct identifica-
tion for the five peaks in each of six images): Euclidean distance 
(70%), correlation (63%), first-derivative correlation (73%), abso-
lute value difference(63%), first-derivative absolute value differ-
ence(67%), least squares (67%), and first-derivative least squares 
(73%). The database spectra were acquired with a different sys-
tem at a different time and so tested the impact of reproducibil-
ity on multispectral identification. Each of the spectral matching 
metrics performed similarly well (63–73%).

For this sample mixture, chemical identification of the 
peaks by spectral matching is feasible: there are few peaks 
and the compounds in the mixture are known, so incorrect 
matches can be dealt with by a process of elimination from the 
list. In this example, ambiguous identifications for some peaks 
were established in this way. The rates of correct matches for 
each constituent compound across all metrics (seven metrics 
in each of six images) were: indole-3-acetonitrile (100%), in-
dole-3-propionic acid (95%), hydroxytryptophan (67%), tryp-
tophan (45%), and indole-3-acetic acid (33%).

In a complex mixture with many unknown compounds, 
UV detectors typically are not selective and sensitive enough 
for automatically identifying compounds with high confi-
dence. Moreover, the multispectral matching typically re-
quires human interaction to correct and validate the iden-
tifications, which is tedious and time-consuming for many 
chromatograms with many peaks. Smart Templates, described 
next, combine multispectral matching with chromatographic 
pattern recognition for more robust chemical identification, re-
quiring far less human interaction to validate results and al-
lowing full automation in some applications.

5.. Templates and template matchi

Template matching is based on the observation that the peaks 
in the two-dimensional retention-time plane form a pattern (or 
template) that can be recognized from one chromatogram to the 
next. Of course, this approach works only if the chemical compo-
sitions of the mixtures are similar so that the chromatograms ex-
hibit many similar peaks. First, one or more chromatograms are 
carefully analyzed to identify peaks of interest and the pattern of 
those peaks, with their analyses, is recorded in a template. The 
analytical metadata (i.e., information about the peaks of inter-
est, not including the intensity data itself) may include chemical 
identifications for some peaks, groupings of peaks (e.g., all peaks 
of a chemically related class), or even just the presence of a peak 
in the data (e.g., for comparisons between chromatograms to 
identify condition-related biomarkers). Next, given a new chro-
matogram, the unknown peaks can be identified by template 
matching. In template matching, the peaks in the template are 
matched to (paired with) detected peaks in the new chromato-

 Figure 5. A three-dimensional perspective view of the center of the 

 LC × LC image, with peaks for the five indoles in the standards mix-
ture rising above the noise after background correction.

Figure 6. (a) The template from the first of six chromatograms of the standards mixture (with expected 
peak locations indicated with black open circles and labels) overlaid on the third of those 
chromatograms (with detected peaks outlined in gray). The alignment of the expected peak pat-tern to 
the detected peaks is close, but not perfect. (b) The matching of the template peaks to the detected 
peaks. The matched peaks are shown with filled circles with a connecting line to the corresponding 
template peak.
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gram. Then, the analytical metadata (including peak identifica-
tions) are copied from peaks in the template into corresponding 
peaks in the new dataset.

This section begins with a simple example of a standards 
mixture with few peaks in order to illustrate templates and 
how template matching works and then proceeds to consider 
a more complex analysis. An example template and template 
matching are shown in Figure 6. Figure 6a shows the template 
peak pattern and metadata, with open black circles and la-
bels, recorded from the first of the six chromatograms of the 
standards mixture (the chromatogram in Figure 2b), overlaid 
on an image of the third chromatogram of the standards mix-
ture, with the detected peaks outlined in gray. As can be seen, 
the alignment of the template from the first standards chro-
matogram to the peaks of the third standards chromatogram 
is not perfect, but the template pattern matches the pattern of 
detected peaks well enough (i.e., within small retention-time 
windows) that correspondences can be established. Figure 6b 
shows the matches established for the example, with a filled 
black circle for each matched peak and a connecting line to 
the template peak with which it is matched. Then, the analyt-
ical metadata (here, the chemical identities of each peak) are 
copied from the template into the new dataset, thereby auto-
matically identifying the peaks in the new chromatogram. In 
this way, peaks in the new chromatogram are identified by the 
metadata of their matching template peaks.

An important issue for template matching is retention-time 
“drift”. Over the course of a long sequence of chromatographic 
runs, the pattern of the peaks may change, reflecting changes in 
the chromatographic conditions, such changes in the retentive 
properties of a column(s). Ni et al. [25] showed that GC × GC 
peak pattern variations over widely differing chromatographic 
conditions, such as temperature programming and pressure, 
can be modeled well by affine transformations. (Affine transfor-
mations are linear, geometric transformations, e.g., a sequence 
involving rotation, scaling, and translation/shifting.) Applying 
a geometric transformation (e.g., shifting/translating and scal-
ing) to the template can bring its peak pattern into better align-
ment with the peaks of the new data so that peaks are matched 
more accurately. The template matching algorithm searches its 
transformation space for the model parameters that provide 
the best match—defined as allowing the most matches between 
template peaks and chromatographic peaks (within the allowed 
retention-time windows) [26]. The template matching algorithm 
used here [27] has a transformation model with translation and 
scaling in each of the two dimensions (parameterized by min-
imum and maximum translation and minimum and maxi-
mum scaling in each dimension) and a retention-time window 
(parameterized by width and height) within which the trans-
formed template peaks may be matched to detected peaks af-
ter the template transformation. The approach allows for other 
transformation models, but this model has been validated for 
wide-ranging chromatographic variations [25] and has worked 
well in practice (e.g., in the examples shown here).

In the example of Figure 6 b, the matching algorithm finds 
a transformation with translation (−0.25 min, −0.17 s) and scal-

ing (0.99, 0.99). With that transformation of the template, ev-ery 
matched chromatographic peak is within the specified re-tention-
time window of the corresponding template peak. Other 
template components such as text labels, graphical ob-jects such as 
polygons to delimit peak sets, and chemical sym-bols are 
geometrically transformed with the transformation es-tablished for 
the peak pattern.

Retention-time drift can be seen in the sequence of six chro-
matograms for the standards mixture, which were acquired 
within a longer sequence of 64 chromatograms. As shown in Table 
1, the first of the standards runs was the first of the 64 runs, the 
second was the 2nd, the third was the 20th, and so on. (The first 
standards run was not the target of matching.) Table 1 presents the 
transformations for the matching of the peaks in the second 
standards run with the template from the first, for the matching of 
the peaks in the third standards run with the template from the 
second, and so on.

The table shows several notable trends. First, for the runs 
adjacent in the full sequence, standards runs one and two 
(runs one and two in the full sequence, the first row in Table 
1) and standards runs 5 and 6 (runs 63 and 64 in the full se-
quence, the fifth row in Table 1), the matching transforma-tion is 
very close to the identity transformation of translation (0,0) and 
scaling (1,1). Second, through the sequence, there is 

Table 1.  Transformations for matching standards mixture templates and peak patterns
Template sequence # Target sequence #      Translation (1) Translation (2)                 Scaling (1)                 Scaling (2)

1 2 0.0000 −0.0711 1.0000 1.0119
2 20 −0.2493 −0.1014 0.9924 0.9788

20 38 −0.1069 0.0278 0.9990 1.0032
38 63 −0.2007 0.1883 0.9851 1.0286
63 64 0.0000 −0.0458 1.0000 1.0042
1 64 −0.5480 −0.0036 0.9771 1.0273

Translation units are the inter-sample times (21 s in the first dimension and 0.025 s in the second dimension). Scaling has no units of measure.

 Figure 7. Template matching for a control urine sample chromato-
 gram. Arrow 1: peak error, peak not detected cannot be matched. 
 Arrow 2: peak error, merged peak not detected cannot be matched. 

 Arrow 3: peak error, merged peak not detected cannot be matched. 
Arrow 4: peak error, merged peak not detected cannot be matched. 
Arrow 5: match error, peak too distant not matched. Arrow 6: match 
error, merged peak causes incorrect peak match. Arrow 7: match er-
 ror, merged peak causes incorrect peak match.



i n s p i r a t i o n m e e t s i n n o v a t i o n !


Your supplier of GCXGC and LCXLC software

a monotonic non-increasing trend in the first-dimension trans-
lation and scaling (but not in the second dimension transfor-
mations). That trend makes the template smaller and shifts it 
to the left as the sequence progresses. This drift can be seen in 
Figure 6: the peaks in the third standards chromatogram are 
left of the locations recorded in the template for the first stan-
dards run. The cumulative effect of this retention-time drift is 
illustrated in the last row of Table 1, which shows the trans-
formation for matching the peaks of the sixth standards chro-
matogram (the last of the 64 runs) with the template from the 
first standards chromatogram (the first of the 64 runs).

Template matching can deal with retention-time drift in sev-
eral ways. One way is to update the template throughout the se-
quence of runs as each new sequence is acquired. This approach 
yields excellent results, as suggested by Table 1, in which the 
transformation between any adjacent pair is relatively small. A 
consensus template can be built from the average of several re-
cent datasets and updated to provide a “moving average” tem-
plate. If there is substantial drift and no intermediate results with 
which to update the template, it may be necessary to increase the 
limits on the transformation space. Affine transformations have 
been shown to be adequate for modeling chromatographic drift 
over a large range of chromatographic conditions [25], but large 
nonlinear retention-time deformations may require more com-
plex template transformations for peak matching.

Of course, the pattern matching problem in Figure 6 is sim-
ple: there are not many peaks, every peak in the template is de-
tected in the chromatogram, and there are few other peaks in the 
chromatogram which might interfere with pattern recognition. In 
general, template matching works better and is more robust with 
more peaks because the matching is based on more data and is 
less susceptible to a few missing peaks or extra peaks. Of course, 
matching also is better if there is good separation of peaks—ide-
ally, only one peak in each retention-time window. As peaks be-
come less well-separated, template matching is more challenging, 
but as long as the pattern is maintained (i.e., peaks are detected in 
the same positions relative to each other, subject to the transfor-
mation) template matching is robust. Even overlapping peaks are 
not a problem as long as the pattern of detected peaks is main-
tained. However, template matching, like any identification 
method based on retention time, is subject to errors if new (un-
expected) peaks that change the pattern are detected within the 
retention-time windows of peaks in the pattern, especially if the 
target peaks are not present. For these more difficult problems, 
template matching on only the chromatographic pattern (i.e., 
peak retention times) may not be sufficient to correctly identify 
all peaks of interest. The last example of this section presents data 
for which there are template matching errors, setting the stage for 
Smart Templates that augment templates with multispectral con-
straints (as described in the next section).

A more challenging problem is presented in Figure 7, 
which shows a LC × LC chromatogram of human urine, one of 
14 control samples interspersed in the sequence of 64 samples. 
(A different color map is used to illustrate this example.) By 
visual examination of the chromatographic peaks detected in 
the control sample data, a set of 66 peaks was selected. Then, 
the template from each chromatogram was composed of the 
peaks from that set which were detected in the chromatogram. 
For example, peak detection for the chromatogram of the first 
control sample yielded 64 of the 66 peaks in the peak set, so 
the template generated from it contained those 64 peaks. As 
was done for the standards samples, the template from each 
control sample was matched to the peaks detected in the chro-
matogram of the next control sample. For example, when the 
template from the first control sample was matched to the 
chromatogram from the second control sample, 62 of the 64 
peaks in the template were matched correctly.

The results for template matching with the control sam-ples are 
summarized in Table 2. (The example in Figure 7 is in the third 
row.) A few explanations are required. First, if a peak was split 
during detection (i.e., incorrectly detected as two or more peaks) 
and if the template matched one of the parts of the split peak, the 
match was considered correct (with the logic that the match was to 
the correct peak). The example of Figure 7 was selected because it 
shows both types of Peak Errors and both types of Match Errors. 
Two types of problems were recorded as Peak Errors: (1) if no peak 
was detected, then the template could not match that peak, and (2) if 
two peaks were merged in detection, then the template matching 
could not match both peaks. The first type of peak error is noted by 
Arrow 1 in Figure 7 and the second type of peak error is in-
dicated by Arrows 2, 3, and 4. Two types of errors were re-corded as 
Match Errors: (1) if the peak was detected, but template matching 
did not match, and (2) if a peak was not detected (e.g., merged with 
another peak), but the template matched an incorrect peak. The 
first type of match error is in-dicated by Arrow 5 and the second 
type of match error is indi-cated by Arrows 6 and 7.

The success rate for template matching was high—97% overall. In 
that sense, Figure 7 is somewhat misleading be-cause, among the 
13 matched chromatograms, it accounted for 4 of the 19 peak errors 
and 3 of the 6 matching errors. Over-all, 778 of the 803 peaks in 
the 13 templates were matched correctly in the next 
chromatogram. Of the 25 matching fail-ures, 19 were peak errors, for 
which matching cannot succeed. There were only six match errors, 
an error rate of less than 1%.

The template matching parameters can be changed to elim-inate 
some matching errors. For example, the matching error indicated 
by Arrow 5 can be eliminated by increasing the re-tention-time 
window within which peaks may be matched. Sim-ilarly, the matching 
errors indicated by Arrows 6 and 7 can be eliminated by reducing the 
retention-time window within which peaks may be matched. However, 
the tension between these two actions is problematic: which windows 
should be made smaller and which windows should be made bigger? 
The answer de-pends on the detected peaks, which are not known 
when the template is created. A better solution is to use additional 
logic in the templates, i.e., Smart Templates, as described next.

6.. Smart Template

Smart Templates use peak-specific constraints, such as mul-
tispectral matching, to reduce or eliminate template pattern-
matching errors. The constraints are expressed in the Computer 
Language for Identifying Chemicals (CLIC) [28], augmented with the 
seven multispectral matching metrics introduced in Section 4. 
(CLIC is described more fully in Reference [28].) Each peak in a Smart 
Template can have a constraint rule, involv-ing the spectrum of the 
peak (either at the apex or integrated over all data points in the 
peak), statistics about the peak (e.g., its fractional response as a part 
of the whole sample), and/or its retention time, combined with 
arithmetic, relational, and logi-cal operators. For example, if the 
chemical identity of a peak is known and its expected spectrum is 
cataloged in a library, then matching for that peak can be restricted to 
peaks with suffi-ciently high multispectral match factor (or sufficiently 
low mul-tispectral difference). In the example of this section, the 
rules constrain the Euclidean distance between the expected spectra in 
the Smart Template and the observed spectra in the data.

The constraints can provide greater selectivity during tem-plate 
matching, allowing two types of improvements. First, peaks 
which are within the retention-time window but which are not 
correct matches can be rejected. 
This improvement can 
eliminate the matching 
errors indicated by 
Arrows 6 and 7 in 
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Figure 7 because the spectra of those peaks do not match the 
template spectra. Second, pursuant to the first improvement, 
the size of the retention-time matching window may be in-
creased to allow more distant matches without increasing the 
number of incorrect matches allowed by the larger window 
if the constraint in the Smart Template rejects those incorrect 
matches. This improvement can eliminate the matching error 
indicated by Arrow 7 in Figure 7.

Some care is required in writing constraints for Smart Tem-
plates. For example, consider a constraint which requires 
that the Euclidean distance between the expected UV absor-
bance spectrum recorded in a template and the spectrum of 
a matched peak in the chromatogram be less than a specific 
value, expressed in CLIC as:

Euclidean Distance(“<ms>”) < 0.22 (1)

where “<ms>” refers to the expected multispectrum of the tem-
plate peak (a mass spectrum or in this case a UV absorbance 
spectrum, which is recorded from the chromatogram(s) from 
which the template is created) and the spectrum of the peak 
considered for matching is implicit in the expression. (Both 
spectra are range normalized before computing the Euclidean  

distance.) With this rule, in the example of Figure 7, the match-ing 
errors indicated for Arrows 6 and 7 are eliminated (as is a similar 
error in the matching of the template for the thirteenth control 
sample to the chromatogram of the 14th). Those chro-matographic 
peaks could be matched to the peak pattern based on the retention-
time pattern, but their spectra are not similar enough to the target 
spectra recorded in the template.

Note that such constraints might be so restrictive that other, 
correct matches are disallowed. For this chromato-gram, 
Constraint (1) does not prevent correct matches of those three peaks 
in any of the 13 matchings. However, if used for all peaks in all 
matchings, that constraint will prevent correct matches in one or 
more matchings for the four top-rightmost peaks and one of the 
bottom-rightmost peaks, all of which are faint and so have lower 
signal-to-noise ratios. For those peaks, a different constraint 
threshold value is required. So, different values in the constraint 
(i.e., the threshold for multispectral difference) should be used for 
different peaks.

Automated constraint-building uses evaluations of the 
multispectral variability within the set of peaks for the same 
compound in one or more chromatograms and the multispec-tral 
differences with the set of peaks for other compounds. So, for 
example, if the spectral difference measured by Euclidean distance 
for peaks of the same compound is at most 0.1 and the spectral 
difference for peaks of other compounds is always greater than 0.3, 
then the automatically generated spectral rule requires a spectral 
difference of no more than the mid-point between the distances, 0.2 
for this example. If only one chro-matogram is used to construct 
the constraint, the maximum distance between peaks of the same 
compound is 0. The al-gorithm also is configurable to set a minimum 
and maximum distance used in the rule, so if the computed value 
is outside the user-defined range, it is thresholded. In cases that the 
spec-tral distance between two peaks for the same compound in 
two different chromatograms is larger than the spectral dis-tance 
with a peak of another compound, the automated tem-plate 
building algorithm constructs the rule to always match correct 
compounds (even if some incorrect matches are al-lowed). So, for 
example, if the spectral distances for peaks of the same compound 
are as large as 0.1, then the value for the constraint would not be 
less than 0.1, even if the spectral distance for peaks of some other 
compounds is less than 0.1. (However, again this value is subject to 
a user-defined mini-mum and maximum value.) With this 
approach, all template peaks can be assigned constraints on 
Euclidean distance (or one of the other multispectral metrics) 
automatically.

These multispectral constraints eliminate all matching er-rors to 
incorrect peaks with the 
data presented in Figure 7 
and with the other control 
sample chromatograms. As 
outlined above, the 
matching errors for peaks 
outside the retention- 

Table 2.  Results for template matching with the control urine samples

Template       Target           Template   Number     Success     Peak detection   Peak detection   Match    Match error    Smart match  Smart match 
sequence #    error rate (%)     errors     rate (%)sequence #    seqsequence #    sequence #    sequence #     size           correct        rate (%)    errors

3 7 64 62 97 2 3.1 0 0.0 0 0.0
7 11 62 60 97 2 3.2 0 0.0 0 0.0
11 15 61 54 89 4 6.6 3 4.9 0 0.0
15 19 58 57 98 1 1.7 0 0.0 0 0.0
19 21 58 57 98 0 0.0 1 1.7 0 0.0
21 25 62 62 100 0 0.0 0 0.0 0 0.0
25 29 64 62 97 1 1.6 1 1.6 0 0.0
29 33 64 61 95 3 4.7 0 0.0 0 0.0
33 37 62 62 100 0 0.0 0 0.0 0 0.0
37 39 63 62 98 1 1.6 0 0.0 0 0.0
39 43 62 60 97 2 3.2 0 0.0 0 0.0
43 47 62 61 98 1 1.6 0 0.0 0 0.0
47 63 61 58 95 2 3.3 1 1.6 0 0.0

Total 803 778 97 19 2.4 6 0.7 0 0.0

 Figure 8. Smart Template matching for the fourth control sample with 
 the template from the third control sample (same pair as Figure 7).
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time matching window can be eliminated by increasing the 
size of the window for the secondary separation. With the 
multispectral constraints on the template peaks, increasing the 
window size does not cause any incorrect matches. So, with 
Smart Templates, constructed automatically, the matching er-
ror rate for the chromatograms of the control samples is re-
duced to zero, as shown in the last two columns of Table 2.

Figure 8 shows the results of Smart Template matching for 
the example chromatogram of Figure 7, with all matching er-
rors (but not peak errors) eliminated. Figure 9 shows Smart 
Template matching of the template from the first of the control 
sample to the chromatographic peaks of the fourteenth control 
sample. As can be seen, the retention drift and template trans-
formation for this example are greater. For template matching 
without constraints, 56 of 64 peaks were matched, with four 
peak errors and four matching errors. A Smart Template with 
constraints eliminates all matching errors.

7. Conclusion

With improved chromatographic performance, LC × LC is 
emerging as a powerful technology for complex separations, 
e.g., biochemical assays for proteomics and metabolomics [1]. 
Recent surveys of LC × LC research and development cite the 
lack of efficient and effective software as a significant imped-
iment to fully realizing the benefits of these technological im-
provements [5, 6]. LC × LC transforms chemical samples into 
raw data; but advances in information technologies are required 
to transform complex LC × LC data into useful information.

This paper addresses the important problem of automat-
ically identifying and classifying peaks, even with variable 
chromatographic conditions. Smart Templates record a peak 
pattern in a template with analytical metadata and constraints 
on peak identification. The template pattern is matched to find 
the similar pattern of peaks in target chromatograms, subject 
to the constraints and user-defined parameters. Then, the ana-
lytical metadata is copied onto the new data, thereby identify-
ing and classifying peaks. With a transformation model flexible 
enough to account for chromatographic variations and selec-

tively discriminating constraints, the approach is highly robust. 
In experiments analyzing 13 urine samples with 803 target an-
alyte peaks, template matching on retention time only resulted 
six identification errors (0.7% error rate) and Smart Templates 
resulted in zero identification errors (0.0% error rate).

This powerful approach is demonstrated for a series of 
LC × LC separations of human urine with a UV detector, but 
the method is applicable to other multidimensional chemical 
separations such as GC × GC, HPLC with capillary electro-
phoresis (LC–CE), etc., and to other detectors, including mass 
spectrometers (which provide better sensitivity and selectiv-
ity for even more reliable peak matching). Smart Templates 
can be used to quickly and accurately match large numbers of 
peaks in complex patterns and so provide a powerful tool for 
LC × LC analyses.

 Figure 9. Smart Template matching for the template from the first con-
trol sample to the peaks of the 14th control sample. All matching er-
rors are eliminated.
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