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Comprehensive two-dimensional LC (LC! LC) is a powerful tool for analysis of complex
biological samples. With its multidimensional separation power and increased peak
capacity, LC! LC generates information-rich, but complex, chromatograms, which
require advanced data analysis to produce useful information. An important analytical
challenge is to classify samples on the basis of chromatographic features, e.g., to extract
and utilize biomarkers indicative of health conditions, such as disease or response to
therapy. This study presents a new approach to extract comprehensive non-target chro-
matographic features from a set of LC! LC chromatograms for sample classification.
Experimental results with urine samples indicate that the chromatographic features
generated by this approach can be used to effectively classify samples. Based on the
extracted features, a support vector machine successfully classified urine samples by
individual, before/after procedure, and concentration with leave-one-out and replicate K-
fold cross-validation. The new method for comprehensive chromatographic feature
analysis of LC! LC separations provides a potentially powerful tool for classifying
complex biological samples.
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1 Introduction

Biochemical characteristics or biomarkers, such as metabo-
lites in tissue, blood, urine, and other fluids, that are
indicative of disease, environmental exposure, response to
treatment, or other health-related conditions, have tremen-
dous potential for improving public health [1]. For example,
biochemical characteristics of urine may reflect the majority
of pathological changes in human organs and urine can be
collected non-invasively in large quantity [2], hence compre-
hensive separation and analysis of urine could provide an
accessible wealth of information for healthcare. However,
comprehensive separation and analysis of biological
samples is a difficult challenge because of the presence of
thousands of constituent compounds with highly variable
concentrations and ranges and diverse physicochemical
properties and detectability [3].

Advanced instruments for biological separations are
opening unprecedented vistas for biochemical analyses to
discover and use biomarkers. In particular,
comprehensive two-dimensional LC (LC ! LC) [4] offers multidimensional
separation power and increased peak
capacity over one-dimensional HPLC [5]. Compared with
data from one-dimensional HPLC, LC ! LC provides more data points, an
order-of-magnitude greater peak capacity,
and added data dimensionality. LC ! LC is a powerful tool for the separation
of biological samples, but transforming

the large and complex data generated by LC ! LC into useful information is
challenging. In a recent survey of fast
LC ! LC, Stoll et al. concluded that ‘‘[T]he paucity of effi-cient, convenient
and sufficiently powerful data analysis
tools [is] the greatest impediment to wide application of 2DLC’’ [6].

An especially important analytical challenge is classifi-
cation of samples on the basis of non-target chromato-
graphic features, e.g., to extract and utilize biomarkers indicative of 
health conditions such as disease or response
to therapy. Highly effective LC ! LC separations are espe-cially well suited
for this challenge because ‘‘combinations
of biomarkers promise improved diagnostic performance over single
markers, which may be lacking in sensitivity
and/or specificity’’ [7]. However, the development of bioinformatic methods
that use pattern-based approaches
to simultaneously analyze the
many chemical constituents of
complex samples is a
critical unsolved need for

Abbreviations: k-NN, k nearest neighbors; LC! LC,
comprehensive two-dimensional LC; PCA, principal
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total intensity count
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metabolomics, metabonomics, proteomics, and other
biological research [8–12].

Classification of samples requires corresponding
‘‘features’’ (such as peaks) across samples. If chromato-
graphic peaks in different samples are determined to result
from the same compound, then the measured responses or
amounts for those peaks can be statistically characterized,
compared, and used for the classification. A comprehensive
feature set includes all sample-induced features of every
sample – even those for unknown compounds and
compounds present in some samples and not present in
others. (Some chromatographic artifacts, such as column
bleed, are not related to the sample and can be excluded
from a comprehensive feature set.) The process of deter-
mining that features in different samples correspond, e.g.,
are the result of the same compound, is feature matching.
Automated feature matching of well-separated, well-formed
peaks is relatively straightforward, but comprehensive
feature matching of chemically complex samples is an
extremely challenging problem.

A few research efforts have been made to develop
chemometric methods and multivariate analysis techniques,
aimed at determining features of two-dimensional chro-
matograms to quantitatively compare and classify complex
homogenous samples. Johnson and Synovec [13] utilized
analysis-of-variance-based feature selection to identify
chromatographic features and principal component analysis
(PCA) to classify jet fuel mixtures. The features were
generated by point-by-point analysis of variance calculations,
which provided an f-ratio for each data point. The data
points with an f-ratio greater than a selected threshold were
used as features. However, point-by-point feature analysis
requires precise chromatographic alignment, which is
difficult over large sample sets. Mispelaar et al. [14] used
GC!GC peaks as features with principal component
discriminant analysis to discriminate crude oils from
different reservoirs, but reported that the results using all
the peaks were highly unsatisfactory. Noting that the peak
integration and matching errors were problematic, they
used the average relative standard deviation between dupli-
cate measurements to eliminate 90% of the peaks. However,
doing so results in a non-comprehensive analysis that could
miss useful information in the discarded peaks. (Using LC-
MS data to classify urine samples, Kemperman et al. [2]
similarly found that using PCA with all detected peaks was
unsuccessful and hence used a nearest shrunken centroid
algorithm to select a small number of peaks as features.)
Aligning two-dimensional chromatograms for multivariate
data or peak analysis is challenging [15–18].

This study presents a new approach for extracting
comprehensive non-target chromatographic features for a
set of two-dimensional chromatograms. The approach is to
find enough peaks shared between chromatograms to form
a pattern or template. Then, features are defined relative to
the pattern. Each feature is the chromatographic region of a
single peak or of multiple peaks, if the peaks in the region
are difficult to unmix (or deconvolve). This approach does

not require precise alignment because the features are
defined relative to the pattern of peaks detected in each
chromatogram and is less susceptible to peak integration
and matching errors because peak unmixing is not required.
In experiments with urine samples, the approach was used
to extract features from a set of LC! LC chromatograms for
several classification problems. Section 2 describes the data
acquisition, processing, feature analysis, and classification
of the urine samples. Section 3 presents the results and
discussion of the classification experiments, including the
different classification schemes, classification algorithms
employed, and the evaluation methods. Section 4 contains
concluding remarks, including consideration of the applic-
ability of this approach to other types of detectors and other
types of multidimensional chemical separations.

2 Data acquisition, processing and
analysis

2.1 Acquisition

The urine data set analyzed in this study was acquired at the
University of Minnesota in a series of 65 LC! LC analyses:
(i) seven analyses of a standards mixture with potassium
nitrate, tryptophan, hydroxytryptophan, indole-3-acetic acid,
indole-3-propionic acid, indole-3-ACN, and tyrosine, inter-
spersed in the series; (ii) 14 analyses of a control urine
sample, interspersed in the series; (iii) four analyses of
water, near the end of the series; and (iv) 40 analyses of
experimental urine samples, of which four failed. For the
urine analyses, a 460 mL aliquot of each urine sample was
transferred to a HPLC vial. To each vial, 40 mL of 70%
perchloric acid was added to precipitate proteins and this
solution was allowed to stand for 10 min, followed by
filtration with a small 0.2-mm PTFE syringe filter. The
filtrate was collected in a new vial to which 55 mL of 10 M
potassium hydroxide was added. This solution was centri-
fuged for 5 min to pellet the solid potassium perchlorate.
The resulting solution was diluted to 9:10, 1:4, and 1:16
using 20 mM sodium phosphate, 0.1 mM EDTA, pH 6.

Experimental urine samples were provided by Dr. Todd
Kellogg at the University of Minnesota. The 36 valid analy-
ses of these samples included nine analyses each for
persons A and B before a bariatric surgery and nine analyses
each for persons A and B after the procedure. Each set of
nine analyses included three analyses each diluted to 9:10,
1:4, and 1:16. For the control urine sample, the solution was
diluted only to 9:10. Then, the urine samples were injected
without further treatment.

In the dual gradient-elution system developed by Stoll
et al., shown in Fig. 1, the first column was a conventional
gradient-elution HPLC system with reversed-phase LC
column [5]. The effluent from the first column was captured
alternately in loop 1 or loop 2 of the ten-port valve shown in
the center of the figure. The stored effluent was injected into
the second column (the second dimension of the separation)

1366 S. E. Reichenbach et al.
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and subjected to gradient elution by the dual gradient
pumping system (pumps IIA and IIB). The rapid second
separation used a short narrow column with high
temperature (41001C) and high flow rate (3 cc/min) to
achieve very high linear velocity, allowing these separations
to complete within 21 s. This is extraordinarily fast for LC
and the resulting peaks are very narrow (o0.5 s half-height
width). The two independent pumps and valve allowed
switching between the two systems to minimize the effect of
gradient dwell volumes. Otherwise, the chromatography
would be slowed substantially and the retention-time
reproducibility in the second dimension would be greatly
compromised.

Although gradient elution in the second dimension is
not as simple as isocratic elution, it is essential for three
reasons. First, gradient elution gives higher peak capacity
than isocratic elution. Secondly, a strong final eluent
ensures that everything elutes before the next separation
starts. Thirdly, gradient elution allows the diluted sample
from the first dimension to be focused at the start of the
second column, thereby improving the second dimension
peak width when the first dimension system is delivering
the analytes in strong eluent.

In these analyses, the gradient in the first column ran
from 0 to 23 min, returned to the initial composition at
23.01 min, and was held until the end of the cycle
(29.75 min). The first-column dead time was 1.0 min. The
gradient in the second column ran from 0 to 18 s, returned
to the initial composition at 18.6 s, and was held until the
end of the cycle (21 s). The second-column dead time was
1.3 s.

The data were collected with a PhotoDiode array detec-
tor over the wavelength range 200–700 nm sampled in 4 nm
intervals at 40 Hz for 29.75 min and written to a file by
Agilent ChemStation software. The data for each analysis
contains 71 400 data points, each with 126 spectral inten-
sities, for a total of nearly 9 million intensities per analysis.
As described in the following sections, the data for each
analysis was read from the ChemStation UV file, restruc-

tured as a series of 65 secondary chromatograms, each 21 s
long, and processed for baseline correction, peak detection,
and chromatographic feature construction with GC Images

LC! LC software (http://www.gcimage.com) [19].

2.2 Visualization and processing

2.2.1 Visualization

The output of each LC! LC analysis can be displayed as a
two-dimensional image (the LC! LC chromatogram).
Figure 2 illustrates an image of one of seven analyses of
the standards mixture. The x-axis (left-to-right) represents
the retention time in minutes for the first column
separation. The y-axis (bottom-to-top) represents the reten-
tion time in seconds for the second column separation. In
Fig. 2, the pixels are pseudocolorized automatically with
gradient-based value mapping to a cold–hot color scale
commonly used for topographic mapping [20, 21]. The color
of each pixel in Fig. 2 is determined by the value of the total
intensity count (TIC) of the UV spectral absorbance at the
indicated first and second dimension retention times. The
UV TIC is the sum of the responses, measured in milli-
absorbance units, in all spectral channels (just as the total
ion count is the sum of the intensities for MS).
Alternatively, the selected intensity count could be
computed for a subrange of the spectrum and used for
pseudocolorization.

2.2.2 Baseline correction

Each individual chemical compound forms a two-dimen-
sional cluster of pixels (i.e., a peak) with values larger than
the background values (i.e., the data values in which no
chemical peak is present). Figure 2 shows that the

Figure 1. Instrumentation for comprehensive LC!LC [5].
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background values vary greatly across the second column
separations and to a lesser extent across the first column
separation. The dynamic range of the background obscures
peaks, hence the baseline values (i.e., the slowly varying
mean background level) must be removed for accurate peak
detection (described next) and possibly quantification (not
performed with this UV data).

Baseline correction is performed with the LC! LC
baseline correction algorithm developed by Reichenbach
et al. [21, 22]. The approach estimates the baseline values
across the chromatogram based on structural and statistical
properties of data and then subtracts the baseline estimate
from the data at each point. First, background regions are
located. Then, background statistics are computed in each
background region in every spectral interval. Next, local
filters are applied to the estimated statistics to reject outliers.
Then, the baseline values across all data points at each
spectral interval are interpolated from the filtered, local
background statistics. Finally, at each data point and each
spectral interval, the estimated baseline value is subtracted
from the data. Figure 3 illustrates the image after baseline
correction. The resulting background values across the
center of the LC! LC chromatogram are near zero and the
chemical peaks are clearer against the more uniform back-
ground.

2.2.3 Peak detection

The chemical peaks are detected in two dimensions using
the drain algorithm [22], a modified and inverted version of
the watershed algorithm [23], on the LC! LC TIC. The
drain algorithm detects peaks from the top, down to the
surrounding valleys, in two dimensions, with user-defined
minimum thresholds on the chromatographic footprint (i.e.,
the temporal area, which is the two-dimensional analog of

peak width), apex value (the largest TIC in the peak), and
total TIC (summed intensities for all data points in the
peak). Figure 3 illustrates the chemical peaks detected in the
standards mixture. The footprint regions of the detected
peaks are outlined. The peaks of interest are outlined in
black. Other peaks caused by artifacts and which are not in
the region of analytical interest are outlined in gray.
Figure 4 illustrates a three-dimensional perspective view
of the detected chemical peaks in the center of the image.
The detected peaks rise clearly above the background.

2.2.4 Chromatographic feature construction

The goal of the new method is to determine a set of well-
defined LC! LC features that (i) account for all the sample-
induced aspects of every chromatogram in the data set and
(ii) provide corresponding measurements across all
samples. Then, the set of feature values computed for each
chromatogram provides a representation of that chromato-
gram which can be used for classification analysis
(described in the next section).

In a single chromatogram, the detected peaks can
account for all aspects of the sample, but making corre-
spondences between all the peaks across many samples is
fraught with problems. For example, slightly different
chromatographic data may be detected as one peak in one
chromatogram and as multiple peaks in another. Then, it
often is difficult to correctly determine whether one chro-
matogram lacks compound(s) present in the other or
whether peak detection fails to unmix co-eluted peaks in one
of the chromatograms and succeeds in the other. Incorrect
correspondences for features in different chromatograms
can obscure true comparisons and lead to incorrect classi-
fications. Manual processing may be able to correct some
such errors, but is tedious for even a few chromatograms
and is impractical for large sample sets.

The solution embodied in the method described here is
to segment chromatograms into features for which more
reliable automated correspondences can be made. In this
approach, aspects of the data that cannot be disambiguated

Figure 3. After baseline correction, the resulting background
values across the center of the image are near zero and the
chemical peaks are clearer against the more uniform back-
ground.

Figure 4. A three-dimensional perspective view of the detected
peaks in the center of the LC!LC chromatogram.
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reliably are treated as single features. The approach can be
successful because the multidimensional separation power
of LC! LC typically provides a rich source of reliable char-
acteristics.

The steps for constructing a comprehensive set of reli-
able chromatographic features for a set of chromatograms
are:

(i) Consensus peaks template. Identify consensus peaks,
which are corresponding peaks present in all (or most)
chromatograms. The set of consensus peaks need not
be comprehensive, but should include peaks across the
retention-time plane. Create a template that records the
average retention time of each consensus peak along
with (optionally) a rule to help distinguish that peak
from other peaks. GC Image software includes a tool
for building templates with such rules [19]. For these
experiments, peaks identified by visual inspection were
used as the consensus peaks [21]. The 98 consensus
peaks in the template for the urine samples are
illustrated in Fig. 5, overlaid on one of the chromato-
grams (shown with a different color scale).

(ii) Cumulative chromatogram. Match the template of consen-
sus peaks (from step i) to the detected peaks in each
chromatogram. Template matching [24] is based on the
presumption that the chromatographic peaks form a
pattern (template) that can be recognized from one
chromatogram to the next even if not all the peaks in the
pattern are detected in each chromatogram. In template
matching, the peaks in the template are matched to

(paired with) detected peaks in the chromatogram. Then,
use the matching to align each chromatogram to the
template. The alignment is performed by the global
affine transformation that minimizes the residual
squared distance from the template peaks to the matched
detected peaks, followed by nearest-neighbor interpola-
tion. Sum the aligned chromatograms to form a
cumulative chromatogram. Figure 6 illustrates the cumu-
lative chromatogram of the experimental urine sample
analyses. Note that alignment need not be perfect – the
cumulative chromatogram is intended to account for
chromatographic variability relative to the consensus
peaks pattern.

(iii) Feature template. Perform peak detection for the
cumulative chromatogram TIC. For each detected
peak, use its footprint in the retention-time plane to
define a feature for the analysis. The retention-time
footprint is the two-dimensional analog of a retention-
time window and hence the feature object is an
irregularly shaped region (or retention-time area)
rather than a one-dimensional retention-time range.
Then, add these feature objects (regions) to the
consensus peak template to form a feature template.
Figure 7 illustrates the feature template with consen-
sus peaks and 98 feature objects for the urine samples
overlaid on the cumulative chromatogram.

(iv) Feature computations. Match the peaks in the feature
template to the detected peaks in each chromatogram.
Then, for each chromatogram, align the template to
the chromatogram using the global affine transforma-

Figure 5. The template with consensus peaks overlaid on one of
the LC!LC chromatograms of the urine samples.

Figure 6. The cumulative chromatogram for the urine samples.
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tion that minimizes the residual squared distance
from the template peaks to the matched detected
peaks. Unlike step (ii), this step transforms the
template (rather than the chromatogram). This align-
ment of the feature template geometrically transforms
the features to fit the pattern of peaks (and leaves the
chromatographic data unchanged). For each chroma-
togram, with each transformed feature, compute the
feature value as the total TIC within the feature region.
Then, normalize the feature values for each chroma-
togram (e.g., relative to an internal standard if one is
available). For these urine samples, no internal
standard was used, hence the feature values are
normalized by dividing by the sum of all the feature
values in the chromatogram so that each feature is a
fractional response. Figure 8 illustrates a matching of
the feature template to a urine sample chromatogram.
Matched detected peaks are shown by filled circles and
the transformed positions of the feature regions
relative to the detected peaks are shown graphically.

2.3 Classification

2.3.1 Experimental data sets

The urine sample chromatograms are organized in two
different experimental sets to accommodate different
classification experiments. The first experimental set has
36 urine sample chromatograms including nine sample

analyses each for persons A and B before bariatric surgery
(the procedure), and nine sample analyses each for persons
A and B after the procedure. The second experimental set
has the 36 chromatograms in the first experimental set plus
three chromatograms for the control urine samples.

2.3.2 Class descriptions

The first experimental set is analyzed by three different
classification schemes: (i) two classes by individual, (ii) two
classes by before/after procedure, and (iii) four classes by
individual and before/after procedure. In Scheme 1, the first
class includes 18 chromatograms for person A and the
second class includes 18 chromatograms for person B. This
scheme is illustrated in Fig. 9. In Scheme 2, the first class
includes 18 chromatograms for before the procedure and
the second class includes 18 chromatograms for after the
procedure. This scheme is illustrated in Fig. 10. In
Scheme 3, the first class includes nine chromatograms for
person A before the procedure, the second class includes
nine chromatograms for person B before the procedure, the
third class includes nine chromatograms for person A after
the procedure, and the fourth class includes nine chromato-
grams for person B after the procedure. This scheme is
illustrated in Fig. 11.

The second experimental set is analyzed by two different
classification schemes: (i) three classes by concentration and
(ii) thirteen classes by individual, before/after procedure, and
concentration. In Scheme 1, the first class includes 15 chro-

Figure 7. The feature template with consensus peaks and
feature objects overlaid on the cumulative chromatogram for
the urine samples.

Figure 8. Matching of the feature template to one of the LC!LC
chromatograms of the urine samples.
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matograms for samples diluted 9:10, the second class 12
chromatograms for samples diluted 1:4, and the third class 12
chromatograms for samples diluted 1:16. This scheme is
illustrated in Fig. 12. In Scheme 2, each class includes three
chromatograms: Classes 1–3 contain chromatograms for
person A before the procedure with samples diluted 9:10, 1:4,
and 1:16, respectively; Classes 4–6 contain chromatograms for
person B before the procedure with samples diluted 9:10, 1:4,
and 1:16, respectively; Classes 7–9 contain chromatograms for
person A after the procedure with samples diluted 9:10, 1:4,
and 1:16, respectively; Classes 10–12 contain chromatograms
for person B after the procedure with samples diluted 9:10,
1:4, and 1:16, respectively; and Class 13 contains chromato-
grams for the control sample (diluted to 9:10). This scheme is
illustrated in Fig. 13.

2.3.3 Classification algorithms

Support vector machines (SVMs) and k-nearest neighbors
(k-NN) are the classification algorithms used in the
classification analysis.

SVMs are learning systems that use a hypothesis space
of linear functions in a high-dimensional feature space,
trained with a learning algorithm from optimization theory
that implements a learning bias derived from statistical
learning theory [25]. SVMs have empirically good perfor-
mance and have successful applications in many fields
(bioinformatics, text recognition, image recognition, etc.).
The sequential minimal optimization algorithm [26] from
the WEKA data mining system [27] is employed to build an
SVM with a degree-one polynomial kernel.

The k-NN algorithm [28] retrieves a set of k training
samples closest to a query sample (the k nearest neighbors),
and classifies the query sample according to a majority vote
of the neighbor class labels. It has been used in applications
of data mining, statistical pattern recognition, image
processing, and many other fields. Some successful appli-
cations include recognition of handwriting, satellite images,
and electrocardiogram patterns. The nearest-neighbor algo-
rithm (k-NN with k5 1) from the WEKA data mining
system [27] is employed to build a k-NN classifier with
normalized Euclidean distance.

Figure 9. Experimental Set 1, Classification Scheme 1: two
classes by individual.

Figure 10. Experimental Set 1, Classification Scheme 2: two
classes by before/after procedure.

Figure 11. Experimental Set 1, Classification Scheme 3: four
classes by individual and before/after procedure.

Figure 12. Experimental Set 2, Classification Scheme 1: three
classes by concentration.

Figure 13. Exprimental Set 2, Classi-
fication Scheme 2: 13 classes by
individual, before/after procedure,
and concentration.
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2.3.4 Evaluation

Leave-one-out cross-validation and replicate K-fold cross-
validation are used for testing. In leave-one-out cross-
validation, one urine sample analysis from the data set is
used as the validation data and the remaining sample
analyses are used as the training data. This is repeated such
that each sample analysis in the data set is used once as the
validation data. In replicate K-fold cross-validation, the data
set is divided into K partitions, here one partition for each
set of replicates. Of the K partitions, a single partition is
retained as the validation data and the remaining K-1
partitions are used as training data. This cross-validation
process is then repeated K times (the folds), with each of the
K partitions used exactly once as the validation data.

Overall classification accuracy is used to quantitatively
measure the performance of the classification. Overall
classification accuracy is defined as:

Accuracy ¼ ] of sample analyses classified correctly

] of sample analyses in the data set
ð1Þ

3 Results

The two experimental sets are classified by SVM and k-NN
for each of the different classification schemes.

Table 1 illustrates the overall classification accuracy and
the confusion matrices of the two classifiers with leave-one-
out cross-validation. For the first experimental set (without
the control urine samples), SVM and k-NN classify with
100% accuracy by: (i) individual, (ii) before/after procedure,
and (iii) individual and before/after procedure. For the
second experimental set (with control urine samples), k-NN
classifies with 100% accuracy by: (i) concentration and (ii)
individual, before/after procedure, and concentration. For
both classification schemes for the second experimental set,
SVM misclassified one chromatogram, slightly lower accu-
racy but comparable with k-NN and the difference is not
statistically significant. Each type of urine sample has three
replicate analyses and leave-one-out cross-validation
includes two replicate analyses of the validation sample in
the training set, hence the classification success is not
surprising, especially for k-NN. Replicate K-fold cross-vali-
dation is used to address this issue.

Table 2 illustrates the overall classification accuracy and
the confusion matrices of the two classifiers with replicate
K-fold cross-validation. The classifications for the first
experimental set use 12-fold cross-validation. Each of the 12
folds includes three replicate analyses of a urine sample for
a specific individual, before/after procedure, and concen-
tration. The classifications for the second experimental set
use 13-fold cross-validation, with the 12 folds in the first
experimental set plus a fold for the replicate analysis of the

Table 1. Classification performance for leave-one-out cross-validation

SVM k-NN

Accuracy (%) Confusion matrix Accuracy (%) Confusion matrix

Set 1, Scheme 1 100.0 18 0 100.0 18 0
0 18 0 18

Set 1, Scheme 2 100.0 18 0 100.0 18 0
0 18 0 18

Set 1, Scheme 3 100.0 999 0 100.0 99 09
000 9 000 9
00 00 000 0
000 0 000 0

Set 2, Scheme 1 97.44 15 0 0 100.0 15 0 0
0 11 1 0 12 0
0 0 12 0 0 12

Set 2, Scheme 2 97.44 0333 00000 0000 0 100.0 33 03 0 0000 0 0000
00 20 0000 0 00000 3000 0 00000 000 0
00 00 0000 0 0000 0 000 0 0 00000 0 000
000 0 00000 00 000 000 0 0 00000 000 0
000 0 333 03 0000 0 000 0 3 000 00 000 0
00 00 000 30 00000 00 00 0 333 03 0000
000 0 000 00 0000 0 000 0 0 0000 3 00 00

0000 0000 0 0000 0 00 00 0 0000 0 0000
00 00 00000 00000 0000 0 0000 0 00 00

0000 0 0000 333 03 00 00 0 000 00 0000
00 00 00000 0 3000 0 000 0 0000 0 33 03
000 0 0000 0 00 000 0000 0 0000 0 000 3

0000 000 00 00000 000 0 0 00000 000 0
000 0 000 00 000 00 00 00 0 000 00 0000
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control urine sample (with 9:10 concentration). Scheme 2
(by individual, before/after procedure, and sample concen-
tration) for the second experimental set (with the control
urine sample) cannot be evaluated because all members of a
class would be excluded with a fold, thereby rendering
training impossible.

As shown in Table 2, for the replicate K-fold cross-
validation experiments, SVM outperforms k-NN. Although
k-NN has 94.44% accuracy for Set 1, Scheme 2 (by before/
after procedure), the performance of k-NN for the other
classification schemes is much lower. For example, for
Scheme 1 (by individual) for the first experimental set, the
accuracy for k-NN was only 61.11%, which is not statistically
significant (at 95% confidence level) relative to the null
hypothesis of random guessing, whereas the accuracy for
SVM was 88.89%, which is statistically significant (at
99.999999% confidence level) relative to the null hypothesis
of random guessing. The differences for Set 1 (without
control urine sample), Scheme 2 (by before/after procedure)
are not statistically significant, but the differences between
SVM and k-NN for the other classification schemes are
statistically significant. The accuracy for k-NN classification
suffers without available replicate training analyses for the
validation data, whereas SVM is successful for all the clas-
sification schemes for both the experimental sets.

The utility of comprehensive feature sets for these
experiments is supported by results for PCA with SVM for
this feature set. For Set 1 (without control urine samples),

Scheme 1 (by individual), and replicate K-fold cross-valida-
tion, the accuracy of SVM with the first three principal
components is only 50.00% compared with 88.89% with all
the features. With the first ten principal components,
accuracy of SVM is 86.11%. For Set 2 (with control urine
samples), Scheme 1, the accuracy of SVM with the first
three principal components is 17.95% and with the first ten
principal components is only 23.08%, compared with
87.18% with all the features. Results of SVM with PCA for
the replicate K-fold cross-validation experiments are shown
in Table 3.

4 Concluding remarks

This study develops a new method to extract comprehensive
non-target chromatographic features from a set
of two-dimensional chromatograms for sample classifica-
tion. The method defines a set of chromatographic regions
relative to a pattern of peaks and hence is relatively robust
with respect to compositional differences among samples,
chromatographic variations, and co-eluted peaks. The
method was demonstrated on a set of LC! LC chromato-
grams for urine samples. After the features were extracted,
two different classification methods, SVMs and k-NN, were
evaluated for several different classification scenarios using
leave-one-out and replicate K-fold cross-validation. Experi-
mental results suggest that the method produces not only

Table 2. Classification performance for K-fold cross-validation

SVM k-NN

Accuracy (%) Confusion matrix Accuracy (%) Confusion matrix

Set 1, Scheme 1 88.89 17 1
3 15

61.11 9 9
5 13

Set 1, Scheme 2 97.22 17 1
0 18

94.44 16 2
0 18

Set 1, Scheme 3 97.22 999 0
9000

000 0
000 0

58.33 999 0
000 8
000 0

0000
Set 2, Scheme 1 87.18 15 0 0

00 9
0 2 10

41.03 4 11 0
4 54
0 50

Table 3. Classification performance of SVM with PCA for K-fold cross-validation

Accuracy (%) for SVM

3 principal components 10 principal components All features

Set 1, Scheme 1 50.00 86.11 88.89
Set 1, Scheme 2 100.00 97.22 97.22
Set 1, Scheme 3 50.00 83.33 97.22
Set 2, Scheme 1 17.95 23.08 87.18
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feature sets that can be used successfully for classification,
but also indicate that performance varies for different
classifiers. Performance of SVM classification with PCA
suggests that comprehensive feature sets provide more
complete information for classification. The experiments
involved only a few dozen chromatograms, hence more
definitive conclusions require additional research and
development. Ongoing research involves classification of
cancerous tissue samples analyzed by GC!GC and
incorporation of spectral information, including MS. A
significant need for such work is the generation of two-
dimensional chromatograms for large sets of clinically
relevant samples.
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