APPLICATION NOTE LD16-06

LD8000 MultiGas online gas analysis solution for high purity compressed Helium used in cryogenic installations.

Cryogenics is the branch of physics that deals with the production and effects of very low temperatures. Helium was a natural choice of coolant as its properties allow components to be kept cool over long distances. Super fluid helium has remarkable properties, including very high thermal conductivity; it is an efficient heat conductor. These qualities make helium an excellent refrigerant for cooling and stabilising the LHC's large-scale superconducting systems. The Large Hadron Collider (LHC) at institutions like the CERN in Switzerland is the largest cryogenic system in the world and one of the coldest places on Earth. It is one of the examples where the use of cryogenic Helium is essential for good working of the system.

The difference from conventional industries is that repairing a cryogenic system and reaching the process nominal conditions is a time-consuming action due to the thermodynamic constraints. For this reason, fault diagnostic functions, capable to detect and identify faults before their degeneration into failures, become more and more important. In cryogenic installations, the most critical class of equipment consists of rotating machinery, such as pump, turbines and compressors. Beside the problems related to failures of compressors, turbines, etc... The limitation of plant runtime and failures are also due to impurity loads to the cold box. Mostly smaller sources of water and air contamination are found just before the beginning of appearance of the Breox oil in the vacuum screw compressors that leads to a high load of the cold box with water, formaldehyde and other organic components. This fault situation must absolutely be detected at the beginning to minimize the impact of failure.

This is why it is required to have an impurity monitoring instrument for the cold box feed gas that measures the ratios of air, water, hydrocarbons and oil in the gas running from the recycle compressor to the cold box. This way, the maintenance and actions can be taken at the right moment. The analytical instrument must monitor trace N2-O2-water and hydrocarbons in high purity Helium.

LDETEK SOLUTION:

LDetek offers its online LD8000 MultiGas based on plasma emission technology (PlasmaDetek2) to trace the 02-N2-CnHM and water impurities in cryogenic Helium. Using a single detection technique based on plasma emission, the trace impurities can be measured with an online mode. The required range for this type of application is usually 0-100ppm for O2 and N2, 0-25ppm for moisture and 0-10ppm for CnHM. Other ranges can be configured on request. The system monitors in continue the Helium purity without the use of Chromatography columns. The response analysis time for each gas can be done within 30 seconds. Better response time can be achieved depending on the purge flow rate that is adjustable on the LD8000. Since the Helium cost is an important factor, LDetek has designed its unit to ensure low sample flow consumption and this with consideration to ensure keeping a quick response time.

On top of that, the design is based on independent micro plasmas to ensure the protection of the system from oil contamination on long-term operation. A first plasma is isolated for measuring O2 and N2 together, having their own selective mode. A second plasma is used for measuring independently the H2O concentration alone having its own flow path specifically designed for moisture analysis. And a third plasma combining a plasma converter system is used for measuring the trace CnHM. This third plasma system is designed to ensure that the optic used for measuring the CnHM isn't submitted to carbon deposit contamination.

FEATURES:

The instrument comes with a touchscreen interface and a keypad that facilitate the navigation through the different menus. It has one 4-20mA analog output per impurity. Each impurity has 2 ranges of operation and an individual ID range contact. It also has 2 configurable alarm contacts and one status contact. The unit has an automatic proportional valve for controlling the sample flow rate and a manual valve for adjusting the sample bypass flow rate.

Based on dual plasma operation, a safe mode has been implemented if the oil level goes over a certain concentration. It protects the alternative plasmas to be contaminated with carbons to guarantee a long-term operation in presence of dirty Helium gas containing high level of oil.

CONCLUSION:

The LD8000 MultiGas uses a parallel plasma system configuration that is individually selective to each measured gas to avoid the interferences from other impurities. Using this technique, the LD8000 becomes the right online instrument to be used for Helium purity for monitoring multiple impurities in a single unit on cryogenic installation.

271 St-Alphonse Sud, Thetford Mines, (Qc), Canada, G6G 3V7 Phone: 418 755-1319 • Fax: 418 755-1329 • info@ldetek.com