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Abstract

A highly accurate statistical model has been developed to determine the exact type
of chamomile used in the production of commercial herbal products. The model was
developed from accurate GC/MS data obtained with an Agilent 7890 GC and Agilent
5975 GC/MSD. Quality control of the samples was performed by Principal
Component Analysis (PCA) and a sample class prediction model based on Partial
Least Squares Discriminant Analysis (PLS-DA) was constructed. The model demon-
strated 100% accuracy for both recognition and prediction abilities. In addition,

35 commercial products and 11 essential oils purported to contain chamomile were

subsequently predicted by the model based on PLS-DA.

Agilent Technologies



Introduction

As one of the most widely used medicinal plants in the world,
chamomile has been reported to be beneficial for relief of
sleeping disorders, diarrhea, colic, wounds, mucositis, and
eczema [1,2]. Additional medicinal properties have been
attributed to chamomile, including anti-allergic, antibacterial,
anti-inflammatory, and antispasmodic attributes [3]. There
have, however, been some reports of allergic reactions,
including skin rashes, throat swelling, shortness of breath,
and anaphylaxis.

Unfortunately, there is no universally accepted characteriza-
tion of chamomile, making it difficult to determine and control
the quality, safety, and efficacy of herbal medicines containing
such a poorly defined natural product. In fact, one of the most
serious obstacles to the promotion of herbal chamomile
products is adulteration.

This application note describes a recently published study [4]
of the chemical composition of the three most common types
of chamomile found in commercial products: German
chamomile (Matricaria chamomilla L. syn: M. recutita L.);
Roman chamomile (Chamaemelum nobile (L). All. syn:
Anthemis nobilis L.) and Juhua (Chrysanthemum morifolium
Ramat.). A gas chromatography/mass spectrometry (GC/MS)
method was developed and applied for the nontargeted,
volatile, apolar compound analysis of a collection of
chamomile samples that included authenticated plants,
commercial products, and essential oils.

The method used an Agilent 7890 GC and an Agilent 5975
GC/MSD to generate the data. Control of input variety, align-
ment of retention time, and data reduction was accomplished
using an automatic data processing procedure and data filters
employing various criteria. PLS-DA was used to construct a
model that classifies and discriminates samples of interest.
The model was used to assess commercial samples that
claimed to contain chamomile. Identification of the major
marker compounds correlated with each type of chamomile
was also achieved.

Experimental

Samples

The investigated samples included 27 authenticated plants,
35 solid commercial products, and 11 essential oils.
Specimens of all samples are deposited at the botanical
repository of the National Center for Natural Products
Research (NCNPR), University of Mississippi (documented
with NCNPR accession code) [4].

Reagents and standards

Chemicals and standards were obtained and used as

described [4].

Instruments

This study was performed on an Agilent 7890 GC equipped
with an Agilent 7693A Automatic Liquid Sampler and coupled
to an Agilent 5975 GC/MSD system. The instrument
conditions are listed in Table 1.

Table 1.
GC conditions

GC and Mass Spectrometer Conditions

Precolumn

Analytical column

Injection temperature
Injection mode

Oven program

Column flow
Carrier gas
Transfer line temperature

GC run time

MS conditions

None

Agilent J&W HP-5MS 30 m x 0.25 mm, 0.25 ym
5% phenyl methyl silicone (p/n 19091S-133)

250 °C
Split ratio set to 25:1

2 minutes at 45 °C
1.5 °C/min to 100 °C
2 °C/min to 200 °C

1 mL/min constant flow
Helium
280 °C

90 minutes

lonization mode
lon source temperature
Solvent delay time

Acquisition mode

Electron impact at 70 eV
230 °C

5 minutes

Scan (40-550 amu)



Sample preparation

Solid samples were ground and homogenized to obtain a uni-
form matrix. Approximately 1 g of the fine powder was accu-
rately weighed, dispersed in 4 mL of n-hexane, and sonicated
for 1 hour. The supernatant was filtered with a Millex GV
(0.22 pm) filter prior to GC/MS analysis. For the essential oils,
10 pL samples were diluted in 1 mL of n-hexane. The selected
internal standard tridecane (n-C,5H,g) was added to each
sample solution to a final concentration of 90 pg/mL.

Data processing and statistical analysis

Agilent MSD Productivity ChemStation software (E.02.02) was
used to acquire the GC/MS data. NIST Automated Mass
Spectral Deconvolution and Identification Software (AMDIS)
was used to extract the GC/MS data. Entities were identified
as ions with identical elution profile and similar spectral data,
and characterized by retention time (tg), peak intensity, and
m/z.

The ELU file for each sample (created by AMDIS) was
imported into Mass Profiler Professional (MPP) software,
which included several Sample Class Prediction (SCP) algo-
rithms. A minimum abundance setting of 5,000 counts was
used to select entities for further analysis in a 5 to 90-minute
retention time window. A tolerance retention time window of
0.15 minutes and similarity of spectral pattern were used to
align entities across the entire sample set. Normalization of
the peak intensity, using the internal standard, was performed
to account for the difference in the abundances of each
compound.

Stepwise reduction of entity dimensionality was performed
based on their presence across samples and parameter
values (filter by flags), frequency of occurrence (filter by fre-
quency), abundance of the respective entities in classes (filter
by sample variability), and results of one-way analysis of vari-
ance (ANOVA). PCA was used for quality control of the
sample data, and a sample class prediction model based on
PLS-DA was constructed.

A cross-validation procedure was carried out to validate the
model, using a series of 12 samples that included authenti-
cated plant samples used in the previous model training as
well as commercial samples with known labels that were not
included in the model training.

Results and Discussion

Data acquisition

Since no specific group of target analytes had been defined

a priori, nontargeted analysis in the scan mode was per-
formed to maximize the information gained. A large number of
compounds were detected in the GC/MS analysis of the
authenticated chamomile plant samples. There were some
slight variations in the concentrations of components in the
plant samples of a given type of chamomile, but the chro-
matographic patterns from the same type of chamomile were
consistent. Different types of chamomile showed distinct
differences in their chemical profiles (Figure 1).

Time (min)

Figure 1. Typical chromatograms of German chamomile (top panel), Roman
Chamomile (middle panel), and Juhua (lower panel). Major
compounds identified in different types of chamomile were:

(1) Farnesene; (2) Bisabolol oxide B; (3) a-Bisabolol;

(4) Bisabolol oxide A; (5) cis-Enyne-dicycloether; (6) a-Pinene;

(7) 2-Butenoic acid, 3-methyl-, butyl ester; (8) 2-Butenoic acid,
3-methyl-, 3-methylbutyl ester; (9) 2-Butenoic acid, 3-methyl-,
hexadecyl ester; (10) Eucalyptol; (11) Trimethylcyclohexane
aldehyde, (12) Borneol; (13) Pinene acetate; (14) Lanceol.



Data mining

Using an intensity threshold of 5,000 counts, a total of 2,560
entities were obtained by the MPP software. A stepwise fil-
tering procedure was used to identify the most characteristic
marker compounds representing different types of chamomile,
and to reduce the dimensionality of the data prior to PCA and
PLS-DA. The first step in this process was to ““filter by flags".
Flags are attributes that denote the quality of entities within a
sample and indicate whether the entities were detected in
each sample as ‘present’ or ‘marginal’. The entities present in
all samples were removed from further analysis, and only
those entities unique to each sample were retained.

In the second filter, a “filter by frequency’’ step, entities that
were not present in at least 100% of the samples in at least
one sample group (for example, all of the Roman chamomile
samples) were removed. The third filter was a ““filter by
sample variability”” step, in which entities were filtered based
on a Coefficient of Variation (CV) in their abundance level of
less than 25%.

The final filter step selected the most reproducible data based
on p-values calculated for each entity using one-way ANOVA.
A p-value cut-off of 0.05 was used to ensure that only entities
that differed in the respective varieties with 95% statistical
significance were passed.

Although the initial number of entities before the filtering pro-
cedure was applied was 2,560, this number was reduced to 50
after stepwise filtering. This filtering process assured that
only the most discriminant entities were used to construct
the prediction model.

Chemometric analysis

PCA is a mathematical method that enables data dimension-
ality reduction while retaining the discriminating power in the
data. It uses an unsupervised approach (without using the
conditions or groups) to find differences between samples,
determine group associations, and weigh the relative contri-
butions of compounds to the separation of the groups. After
PCA was applied, 74% of the variability in the data was
explained by Principal Component 1 (PC1), providing good
separation of Roman, German, and Juhua types of chamomile
(Figure 2A). An additional 22% of the variation was found in
PC2, and further separated Juhua from German. The Juhua
samples vary significantly across PC3, but that principal
component only accounted for 1.5% of the total variation.

Thus, PCA was used to provide a visual representation of how
the data clusters and to identify outliers, as a quality control
tool. This set of data that was processed by filtering and PCA
quality control analysis was then used to create the sample
prediction model.

Figure 2.

Scores plots of (W) German Chamomile, (@) Roman Chamomile,
and (A ) Juhua. (A) PCA. (B) PLS-DA.



Class prediction models

Several techniques have been developed to construct sample
prediction models. Five algorithms are provided by the MIPP
software for building sample prediction models: PLS-DA,
Support Vector Machines (SVM), Naive Bayes (NB), Decision
Tree (DT), and Neutral Network (NN). PLS-DA is a well-estab-
lished regression-based method especially adapted to situa-
tions involving fewer samples than measured variables. It is
often used to sharpen the partition between groups of obser-
vations and maximize the separation among classes. In this
study, it was found to be the best algorithm for constructing a
statistical model for chamomile classification and
differentiation.

The first step in building the prediction model was to train it
with the spectral data from authenticated plant samples,
including 15 German, eight Juhua, and four Roman
chamomile samples. Six authenticated samples used for the
model training and six commercial samples not included in
the construction of the model were used for validation. This is
a legitimate statistical procedure (k-fold cross validation), in
spite of the fact that it is redundant [5].

The results of sample classification using this model are
summarized in Table 2. The percentages of the samples
correctly classified during model training and validation are
represented by the recognition and prediction abilities,
respectively. The validation procedure is used to select the
most appropriate model generated from the five algorithms,
and a difference between training and validation results can
indicate overfitting. Our results indicated that no samples
were misclassified during model training and validation. The
three types of chamomile were well separated.

Table 2. Chamomile Classification Model Training and Validation Results

German Roman  Juhua Accuracy (%)

Model training

German 15 0 0 100.0

Roman 0 4 0 100.0

Juhua 0 0 8 100.0
Recognition ability (%) — - - 100.0

Model validation

German 4 0 0 100.0

Roman 0 4 0 100.0

Juhua 0 0 4 100.0

Prediction ability (%) - - - 100.0

The PLS-DA t-score plot, shown in Figure 2B, is supervised,
unlike PCA, and it uses the conditions to ‘fit" the model to the
data. The t-scores plot gives a visual representation of how
well the samples in each group were separated. Although the
scores plot of both PCA and PLS-DA look similar, PCA reveals
the structure of the data and PLS-DA shows how the model
fits the data. Figure 2B shows excellent separation (even
Juhua is grouped tightly together) and suggests that the
model can predict the three types of chamomile, if the model
is not overfit.

Classification of chamomile samples

Thirty-five solid samples and 11 chamomile essential oils
were classified and differentiated using the validated PLS-DA
model. The solid samples included chamomile flowers,
extracts, teas, flower and leaf, dietary supplements containing
herbal chamomile, and fruit teas. The prediction results were
expressed in the form of a ‘confidence measure’ (Table 3).
Confidence measures in the range > 0.7 indicate a high
degree of certainty that the samples belong to the indicated
chamomile type, while confidence measures of 0.5-0.7 indi-
cate problematic sample classifications. Confidence mea-
sures < 0.5 suggest probable misclassification, mishandling,
adulteration, or impurity of the samples. All samples with

< 0.6 confidence measures were chosen for further investiga-
tion. Several of the essential oils samples were classified as
deriving from Roman chamomile, but surprisingly, none of the
commercial solid samples were classified by the model as
containing Roman chamomile.

The model prediction results were consistent with the labels,
except for four outliers, samples 2061, 3998, 9384, and 9425.
The results suggested that German chamomile is the major
type of chamomile used in the U.S. market, because all the
unknown labeled chamomile teas or extracts from the U.S.
were identified as German chamomile. In contrast, all the
chamomile samples purchased from China were identified as
Juhua chamomile. In spite of the fact that the essential oils
were obtained by steam distillation whereas the solid sam-
ples were extracted with hexane, the PLS-DA model showed
good prediction results for all the chamomile essential oil
samples (Table 3).



Table 3.

Chamomile Type Prediction Results from the PLS-DA Sample Class Prediction Model for Commercial Products and Essential Oils

NCPR
accession Confidence

No. code Product information from the label Predicted measure
Commercial samples in solid form purchased from food markets, retail pharmacies and online

1 2061 Roman chamomile German 0.47
2 3670 Chamomile flower German 0.92
3 3998 Chamomile extracts German 0.53
4 4903 Chamomile powder German 0.90
5 5770 Chamomile powder German 0.93
6 7359 Chamomile powder German 0.81
7 9357 Chamomile flowers German 0.82
8 9359 Chamomile flowers German 0.84
9 9361 Chamomile Flower and Leaf Dietary Supplement German 0.76
10 9362 Chamomile flowers German 0.84
1 9364 Chamomile flowers German 0.92
12 9365 Bulk Chamomile Flowers, German German 0.65
13 9367 Chamomile Flowers, Herbal Dietary Supplement German 0.68
14 9382 Chamomile Organic Tea (Leaves and flowers) German 0.94
15 9383 Herbal Chamomile & Fruit Tea (Rosehips, chamomile, orange peel, lemon peel & lemon myrtle) ~ German 0.72
16 9384 Chamomile Herb Tea German 0.58
17 9385 Organic Tea German 0.81
18 9386 Chamomile Tea German 0.75
19 9387 Chamomile Herbal Tea German 0.91
20 9388 Chamomile Herb Dietary Supplement German 0.89
21 9389 Chamomile Herbal Tea German 0.61
22 9390 Chamomile Herbal Tea German 0.92
23 9391 Chamomile Herbal Tea German 0.77
24 9393 Whole German Chamomile Flowers German 0.87
25 9422 Chamomile Herbal Dietary Supplement Juhua 0.80
26 9423 Chamomile Herbal Dietary Supplement Juhua 0.83
27 9424 Chamomile Herbal Dietary Supplement Juhua 0.84
28 9425 Chamomile Herbal Dietary Supplement Juhua 0.60
29 9426 Chamomile Herbal Dietary Supplement Juhua 0.86
30 9427 Chamomile Herbal Dietary Supplement Juhua 0.78
31 9428 Chamomile Herbal Dietary Supplement Juhua 0.82
32 9429 Chamomile Herbal Dietary Supplement Juhua 0.81
33 9430 Chamomile Herbal Dietary Supplement Juhua 0.77
34 9431 Chamomile Herbal Dietary Supplement Juhua 0.72
35 9432 Chamomile Herbal Dietary Supplement Juhua 0.99

Continued next page



Table 3. Chamomile Type Prediction Results from the PLS-DA Sample Class Prediction Model for Commercial Products and Essential Qils (contuinued)

NCPR
accession Confidence
No. code Product information from the label Predicted  measure
Chamomile essential oils obtained by steam distillation from plant samples or purchased from difference commercial sources
1 9254E Chamomile Oil (Anthemis nobilis), Steam Distillation from Plant (9254) Roman 0.72
2 9359E Chamomile Oil (Matricaria recutita), Steam Distillation from Plant (9359) German 0.76
3 9362E Chamomile Oil (Matricaria recutita), Steam Distillation from Plant (9362) German 0.71
4 11577E Chamomile Oil (Anthemis nobilis), Steam Distillation from Plant (11577) Roman 0.70
5 11680E Chamomile Oil (Matricaria recutita), Steam Distillation from Plant (11680) German 0.77
6 11681E Chamomile Qil (Matricaria recutita), Steam Distillation from Plant (11681) German 0.89
7 9368 Chamomile Essential Oil (Anthemis nobilis) Roman 0.70
8 9369 Chamomile Oil, German German 0.91
9 9370 Chamomile Essential Qil (Anthemis nobilis) Roman 0.76
10 9380 Chamomile Essential Oil (Chamaemelum nobilis) Roman 0.69
1" 9381 Roman Chamomile Essential Qil Roman 0.73

The model used three groups of entities that were primarily
specific to each of the three types of chamomile. The Venn
diagram illustrating these three groups and the minimal over-
lap between them is shown in Figure 3. The major compounds
corresponding to these entities in each type of chamomile
were identified and are given in Table 4. These compounds
were consistent with those previously reported in the
literature as components of chamomile.

Since this type of model enables assignment of new samples
into previously determined groups in an unbiased fashion, it
would be very useful for the quality control of many natural
products and dietary supplements. The batch samples can be
automatically acquired, processed, and class predicted.

Figure 3.

Entity List 1: German only
filter by frequency with
cutoff percentage: 100.0
22 entities

Entity List 3: Juhua only
filter by frequency with
cutoff percentage: 100.0
11 entities

Venn diagram of chamomile samples.

Entity List 2: Roman only
filter by frequency with

cutoff percentage: 100.0
41 entities




Table 4. The Major Marker Compounds Tentatively Identified in the Construction of the Class Prediction Model for Chamomile

Entities m/z tg (min) Tentative compound identification * Molecular weight  CAS number
Roman chamomile

1 7.0 15.10 Isobutyric acid, isobutyl ester 2 144 97-85-8

2 93.0 16.43 1R-a-Pinene &b 136 7785-70-8
3 7.0 2342 Isobutyric acid, 2-methylbutyl ester 2 158 2445-69-4
4 55.0,83.0 26.64 2-Butenoic acid, 3-methyl-, butyl ester @ 156 54056-51-8
5 70.0 34.33 Trans-(—)-Pinocarveol 2 1562 547-61-5

6 55.0,83.0,100.0  36.01 2-Butenoic acid, 3-methyl-, 3-methylbutyl ester @ 170 56922-73-7
7 81.0 36.58 Pinocarvone 150 30460-92-5
8 83.0 39.75 3-Methyl-2-butenoic acid, 3-methylbut-2-enyl ester 168 299309

9 100.0 44.75 2-Butenoic acid, 3-methyl-, hexadecyl ester 324 60129-26-2
German chamomile

1 205.0 66.94 Spathuleno P 220 77171-55-2
2 143.0 71.43 a-Bisabolol oxide B @b 238 26184-88-3
3 93.0,141.0 73.04 a-Bisabolol &b 222 515-69-5

4 176.0 75.07 Coumarin, 7-methoxy- 176 531-59-9

5 143.0 76.07 Bisabolol oxide A @b 238 22567-36-8
6 143.0 81.36 a-Bisabolol oxide A derivative ©

7 143.0 82.30 a-Bisabolol oxide A derivative ©

8 128.0 83.70 E-1,6-Dioxaspiro[4.4]non-3-ene, 2-(2.4-hexadiynylidene)- © 200 50257-98-2
9 200.0 84.10 Z-1,6-Dioxaspiro[4.4]non-3-ene, 2-(2,4-hexadiynylidene)- P 200 4575-53-5
Juhua

1 95.0 36.82 Borneol ® 154 10385-78-1
2 132.0 61.06 a-Curcumene @ 202 644-30-4

3 91.0 67.27 Caryophyllene oxide 2 220 1139-30-6
4 105.0,121.0 69.75 Alloaromadendrene oxide @ 220 156128

5 204.0 71.69 Eudesm-7(11)-en-4-ol @ 222 473-04-1

6 69.0 79.61 Isoaromadendrene epoxide 220 159366

7 109.0 85.38 Cyclopropanemethanol, a,2-dimethyl-2-(4-methyl-3-pentenyl)- [1a(R’).2a]- ¢ 182 121959-70-4

* ldentified by data base search.

a |dentified by comparison of relative retention index to literature.

b |dentified by reference standards.

¢ Identified with low database match probability.



Conclusion

Untargeted GC/MS analysis using the Agilent 7890 GC and
Agilent 5975C GC/MSD can provide the information-rich data
required to classify and differentiate natural products such as
chamomile. Agilent MSD Productivity ChemStation and

Agilent Mass Profiler Professional software enabled the auto-

matic mining and processing of the data to find the most

characteristic marker compounds and construct a highly accu-

rate model for predicting which of the three major types of
chamomile was the source for a commercial product. This
tool can provide clear definition of chamomile-derived
products, thus improving their quality, safety, and efficacy, as
well as detecting adulteration and substitutions.
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For More Information

These data represent typical results. For more information on
our products and services, visit our Web site at
www.agilent.com/chem.



www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change
without notice.

© Agilent Technologies, Inc., 2014
Printed in the USA

February 17, 2014

5991-3969EN

Agilent Technologies



