Translating Proteomics Methods from Discovery to MRM-based Quantitation

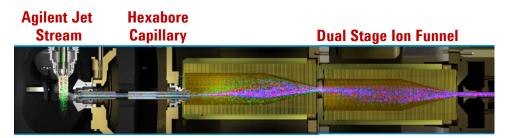
Yanan Yang, Caroline Chu and Christine A. Miller; Agilent Technologies, Inc., Santa Clara, CA, USA

Introduction

Peptide quantitation using multiple reaction monitoring (MRM) has emerged as an important methodology for biomarker verification. Such assays are typically multiplexed, multiple reaction monitoring (MRM) analyses which can provide the high-throughput required. To maximize the effectiveness of MRM analysis, retention time scheduling allows acquisition of the peptide transitions only when the peptide is eluting from the LC. This reduces the number of concurrent MRM channels and improves peak symmetry and sensitivity. However, developing these methods can be time-consuming as discovery data is often obtained on a high resolution mass spectrometer using nanoflow LC. In this study, we have explored rapid translation from discovery to routine LC/MS analysis using a simple retention-time marker approach.

Experimental

Sample preparation


An E. coli lysate (2.7 mg, BioRad) was reduced, alkylated (carbamidomethyl) and digested with trypsin using a 2,2,2trifluoroethanol based protocol.

Instruments

The HPLC-Chip/MS system consisted of 1200 Series nanoflow and capillary HPLC pumps, microdegassers, micro wellplate autosampler with thermostat, HPLC-Chip/MS interface, and a 6550 Q-TOF mass spectrometer. The standard flow system consisted of a 1290 Infinity Series UHPLC coupled to a 6490 QQQ using the JetStream source. MassHunter Acquisition B.05.00 was used for instrument control.

Both the 6550 Q-TOF and 6490 QQQ incorporate iFunnel technology which is a combination of three fundamental innovations:

- Agilent Jet Stream technology ESI with thermal gradient ion focusing confinement
- Hexabore sampling capillary with 6 parallel bores to enable sampling a much larger fraction of the ions
- Dual-stage ion funnel for efficient removal of large gas volumes and ion transfer to Q1 optics

Experimental

Protein Database Search

Protein/peptide identifications were done via database searching against an *E. coli* subset of the SwissProt data base using Spectrum Mill MS Proteomics Workbench B.04.00. Spectral matches were autovalidated using a peptide and protein global false discovery rate of 1%.

Workflow

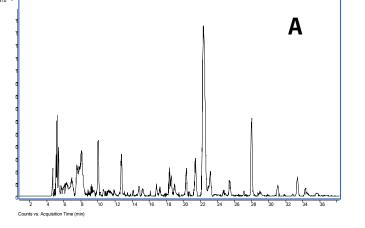
Translating from discovery to targeted methods can be a bottleneck as a transitions must be determined for peptides from each protein of interest. As shown in the workflow below, we have used a set of software tools to facilitate this process. In addition to automatically creating MRM methods based on data-dependent data, an algorithm in the QQQ MassHunter acquisition software will automatically adjust retention times (RTs) based on user selected RT standard transitions. When changing LC conditions, a single MRM analysis of these RT standards allows the algorithm to adjust RTs in any number of designated dynamic MRM (retention-time scheduled MRM) methods.

	 Discovery Data 6550 iFunnel Q-TOF with HPLC-Chip Data-dependent LC/MS of <i>E. coli</i> digest
	Protein IdentificationSpectrum Mill for database searchValidated matches with 1% FDR
	 Export MRMs & select RT peptides MRM Selector in Spectrum Mill for export of DMRM method Select 17 peptides as RT standards
(i	 MRM analysis on RT peptides 6490 iFunnel QQQ with 1290 UHPLC Use MRM results to automatically create DMRM method for RT peptides
	DMRM method for RT peptides
	 Adjust RT on entire set of peptides Use DMRM method for RT peptides to update full method Check RT drift to verify adjustment

Compare RTs

Conditions Tested for RT Correction

Six different experiments were done to test the applicability of this approach across different column phases, inner diameters, column lengths and gradient conditions. Table 1 (below) summarizes the experiments

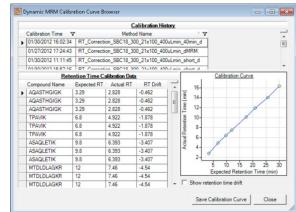

	А	В	C	D	E	F	G	
LC	Chip LC	UHPLC #1	UHPLC #2	UHPLC #2	UHPLC #2	UHPLC #2	UHPLC #2	RT Correction
Column type	Zorbax 300SB C18, 5 µm	Zorbax 300SB C18, 1.8 μm	Zorbax 300SB C18, 1.8 μm	Poroshell EC C18, 2.7 µm	BEH C18 1.7 μm	Zorbax 300SB C18, 1.8 μm	BEH C18, 1.7 μm	1. $A \rightarrow B$ 2. $B \rightarrow C$
Column length	150 mm	100 mm	100 mm	150 mm	50 mm	50 mm	50 mm	$\begin{array}{c} 2. \mathbf{D} \rightarrow \mathbf{C} \\ 3. \mathbf{C} \rightarrow \mathbf{D} \end{array}$
Column ID	75 µm	2.1 mm	2.1 mm	2.1 mm	2.1 mm	2.1 mm	2.1 mm	4. $D \rightarrow E$
Gradient time	60 min	40 min	25 min	25 min	15 min	15 min	15 min	5. $E \rightarrow F$
Flow rate	300 nL/min	400 uL/min	400 uL/min	400 uL/min	400 uL/min	400 uL/min	400 uL/min	6. F → G
Solvent	ACN	ACN	ACN	ACN	ACN	ACN	MeOH	

Translating From Discovery to Targeted

Mining discovery data for targeted analysis. Export from discovery data:

- HPLC-Chip/Q-TOF data collected using 75 μm id column (far right)
- For top 200 proteins identified, selected 5 peptides with three transitions each (right)
- Exported dynamic MRM (DMRM) list includes RTs from nanoflow LC/MS
- 17 peptides (51 MRMs) selected for study

Converting retention time scheduled MRM method from nanoflow to standard flow LC/MS.

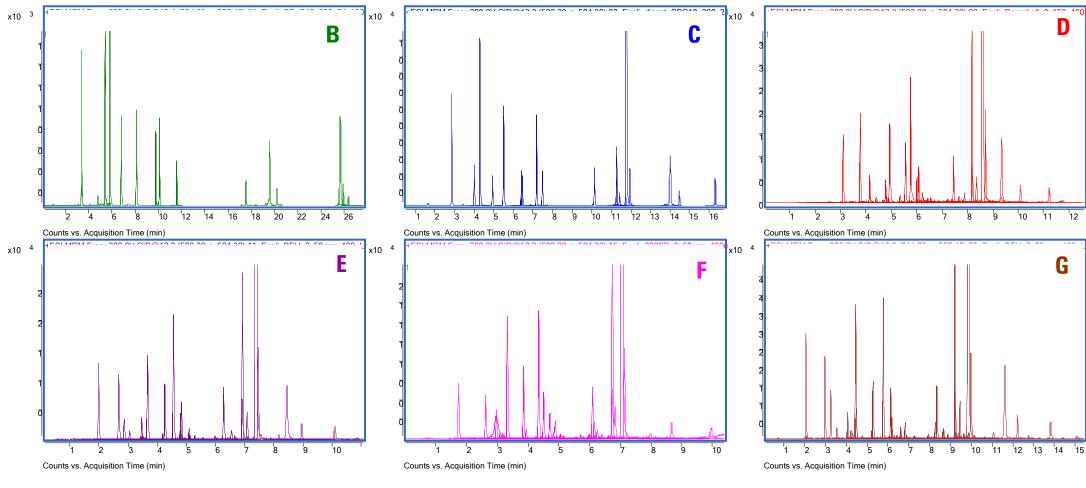

		Bina	ry Pump	2 Pressure				w n optimizer M Method	inaction	MS 8	Dynamic	MRM (45	8.9), ES
								vietnoa IRM Method					
3950			ieo		3971		Cut Copy Paste Paste from	Clipboard		470	480	490	
	uisition Sou an segments	ce Cr	hromato	igram k	strument	Die	Fill Down						
	Compound Na	ne IS	STD?	Precursor	MS1 Res	Р	Fill Column Min 2			Cell celerator Voltage	Ret Time (min)	Delta Ret Time	-
	AQASTHGIG	(E	323.8	Wide		Max 1400			4	2.83	0.61	Pc
	AQASTHGIG	(323.8	Wide		Default 200)		4	2.83	0.61	Pc
	AQASTHGIG	(-	323.8	Wide	1 3	NO 2 UNA	380	0.3	4	2.83	0.61	Pc
	ASAQLETIK			480.8	Wide	8	12.5 Unit	380	15.9	4	6.39	0.64	Pc
	ASAQLETIK		F	480.8	Wide	7.	31.4 Unit	380	15.9	4	6.39	0.64	Pc
	ASAQLETIK			480.8	Wide	61	33.4 Unit	380	15.9	4	6.39	0.64	Pc
	GYEIHISDEA	LK	E		Wide		77.8 Unit	380	11.7	4	10.13	1.01	Pc_1
14	fi manne i		- 1	100.0	de es	-	a alu s	200					1
	namic MRM Pa	rameters					MRMs = 3 M	n/Max Duvel = 1	65.25				

Calibration S													
Method File	D:\MassHunter\methods\chris\RT_Correction_SBC18_300_21x100_400uLmin_short_dMRM.m												
Data File	D:\MassHunter\Data\Chu_Yang\201201	7/05_Ecol_SB_C18_300_21x10	0_400uLmin_short_N	MRM.d	244								
Methods													
			Add	Remove	Remove All								

Adjust RTs

- 1290 UHPLC /6490 QQQ with 2.1 mm column
- RT standard set of 8 peptides was selected.
- Did single MRM analysis with the 8 RT peptides
- Used "Calibrate MRM Method" option in acquisition software to adjust full DMRM methods

From the single data file, an automatic algorithm was used to recalibrate retention times for all 17 peptides (51 transitions) in the full DMRM method. The results can be inspected in the RT calibration screen (below) before accepting the adjusted method.



ASMS 2012 MP 011

Agilent Technologies

Optimizing DMRM Methods

$A \rightarrow B \qquad B \rightarrow C$				$C \rightarrow D$			0	\rightarrow E			$E \rightarrow F$					$F \rightarrow G$				
Real	Cali	dRT]	Real	Cali	dRT	Real	Cali	dRT	Real	Cali	dRT] [Real	Cali	dRT] [Real	Cali	dRT
2.855	2.828		1	2.855	2.828		3.530	3.530		1.990	1.948			1.730	1.731		1 [6.700	6.885	
4.000	3.175	0.825		4.000	4.087	-0.087	4.510	4.940	-0.430	2.670	2.583	0.087		2.620	2.474	0.146		6.900	2.986	3.914
4.300	4.222	0.078		4.300	4.313	-0.013	5.000	5.240	-0.240	2.870	2.902	-0.032		2.930	2.305	0.625		7.200	4.363	2.837
4.930	4.922			4.930	4.922		5.060	5.700	-0.640	3.470	3.459	0.011		2.980	2.980			8.500	4.050	4.450
5.510	5.373	0.137		5.510	5.559	-0.049	5.860	5.840		3.670	3.659			3.330	3.204	0.126		8.500	11.668	-3.168
6.420	6.393	0.027		6.420	6.393	0.027	6.160	6.330	-0.170	4.190	4.111	0.079		3.860	3.864	-0.004		8.600	8.204	
6.464	5.956	0.508		6.464	6.529	-0.065	6.840	7.070	-0.230	4.260	4.271	-0.011		3.920	3.920	0.000		10.600	11.455	
7.180	6.976	0.204		7.180	7.251	-0.071	7.080	7.110		4.310	3.940	0.370		3.940	3.786	0.154		10.700	7.141	3.559
7.487	7.460	0.027		7.487	7.460	0.027	7.460	7.655	-0.195	4.560	4.524	0.036		4.350	4.188	0.162		10.800	5.302	5.498
10.139	10.131			10.139	10.131		7.890	7.880	0.010	4.840	4.819	0.021		4.520	4.501	0.019		11.700	11.146	0.554
11.271	11.176	0.095		11.271	11.272	-0.001	10.020	10.040		6.270	6.279			6.100	6.109			11.700	11.710	
11.735	11.706	0.029		11.735	11.609	0.126	11.070	11.170	-0.100	6.920	7.041	-0.121		6.750	6.758	-0.008		11.900	7.632	4.268
11.750	11.615	0.135		11.750	11.715	0.035	11.640	11.648	-0.008	7.380	7.454	-0.074		7.060	7.224	-0.164		13.100	12.164	0.936
11.937	11.925	0.012		11.937	11.925	0.012	11.830	11.838	-0.008	7.470	7.592	-0.122		7.140	7.135	0.005		13.300	12.928	
14.020	14.014			14.020	14.014		13.040	13.105	-0.065	8.450	8.468			8.306	8.306			13.400	12.395	1.005
14.470	14.729	-0.259		14.470	14.128	0.342	13.970	13.570	0.400	8.950	9.049	-0.099		8.690	8.812	-0.122		14.300	5.742	8.558
16.320	16.313			16.320	16.307		15.670	15.690		10.100	10.134			9.970	9.975		l L	15.900	7.039	8.861
Avg.	abs dRT	0.195		Avg. a	abs dRT	0.071	Avg.	abs dRT	0.208	Avg.	abs dRT	0.089		Avg.	abs dRT	0.128		Avg.	abs dRT	3.967

Adapting RTs during LC method development

During routine method development, it is not uncommon to test many conditions. From the parameters tested, we found RT adjustment worked well for the following:

- Column id and length changes
- Different column type (only C18 tested, though)
- Changes in the gradient
- Switching standard LC systems

The solvent change caused selectivity differences (as would be expected) and thus only some of the peptide RT changes could be correctly recalibrated.

Conclusions

- Demonstrated a simple algorithm for RT adjustment that was effective for typical method development changes
- Method changes that cause shifts in selectivity (organic solvent change, large column temperature change) were less successful as was anticipated.
- The ability to rapidly adapt methodology will facilitate the development of routine quantitative methods
- RT adjustment is also useful with quality control and column replacement for routine methods
- This approach also works for small molecules

