Rapid and Simultaneous Analysis of 25-Hydroxy Vitamin D2 and D3 in Plasma by LC-MS/MS with Online Sample Cleanup

Mi Ryung Chun², Hyun-Jin Jung^{1*}, Jeong Soo Yang^{2*,}, Hyo-Young Kim¹, Soo-Youn Lee² ¹Agilent Technologies, Suwon, Korea; ²Samsung Medical Center, Seoul, Korea

Abstract

This study was developed to simultaneously analyze 25-OH vitamin D3 (25-OHD3) and 25-OH vitamin D2 (25-OHD2) by LC-MS/MS with online sample cleanup utilizing valve switching. By using two LC columns to minimize sample matrix effect, it is possible to reduce the burden of sample preparation to a simple protein precipitation. To ensure data quality, 20 DEQAS samples were analyzed (Vitamin D External Quality Assessment Scheme, www.degas.org) using LC-MS/MS. Results show good correlation with DEQAS results.

Background

In recent years the demand for 25-hydroxyvitamin D (25-OHD) analysis in serum or plasma has been increasing continuously. Vitamin D exists in two forms, vitamin D2 and vitamin D3. Many clinical research laboratories have now adopted LC-MS/MS based methods to enable the direct and reliable quantification of 25-0HD2 and 25-0HD3 (Figure 1). Traditionally, the analysis of 250HD by LC-MS/MS requires pretreatment of serum/plasma samples to release 25-OHD from the vitamin D binding protein and to minimize matrix effects. Often times, these steps can be time-consuming. This study demonstrates the analysis of 25-OHD2 and 25-OHD3 by LC-MS/MS utilizing a 2-column switching valve system for online sample cleanup to reduce matrix effects while simplifying any manual sample preparation.

Figure 1. Structures of 25-OH Vitamin D

Sample preparation

- 1. Pipette 100ul sample/calibrator into 1.5ml reaction vial.
- 2. Add precipitation reagent (ZnSO4).
- 3. Add ISTD
- Vortex for 20sec.
- 5. Incubate at 4°C.
- 6. Centrifuge.
- 7. Transfer clear supernatant into a clean vial.
- 8. Inject 10ul of supernatant into the LC-MS/MS.

System configuration

An Agilent 1260 LC system with HTC PAL autosampler (DLW option) coupled to an Agilent 6460 triple quadrupole mass spectrometer was used for all analyses. The instrument was operated in positive electrospray ionization mode. Multiple Reaction Monitoring (MRM) was used for guantitation. Agilent MassHunter[™] software was used with the automated quantitation function based on batch.

LC Parameters

Source Parameters					
IPLC	Agilent 1260				
utosampler	HTC (DLW option)				
rapping Column	Poroshell 120 EC-C18 2.1 x 50mm, 2.7µm				
nalytical Column	Poroshell 120 EC-C18 2.1 x 50mm, 2.7µm				
njection Volume (µl)	10				
column Temp (°C)	40				
low Rate (ml/min)	0.5				
Iobile Phase A	Formic Acid + NH4 Formate in water				
Aobile Phase B	Formic Acid + NH4 Formate in ACN				
socratic Composition	90% B				

The LC configuration depicted in figure 2 below allows for cleaner throughput to the mass spectrometer by performing online sample cleanup. Samples are injected onto a trapping column where the vitamin D metabolites are retained and washed reducing the amount of matrix sent to the mass spectrometer. As the analytes are about to elute off of the first column, a valve is switched and analytes are eluted onto a second column where further chromatography is performed

Online sample cleanup

Figure 2. Switching Valve configuration for online sample cleanup

In addition to decreasing the amount of required sample preparation, figures 3 and 4 demonstrate significant advantages to using an LC configured for online sample cleanup.

Figure 3. Analysis with (a) and without (b) online sample cleanup.

Figure 4. Source comparison with and without online sample cleanup.

MS Parameters

Source Parameters				
Model	Agilent 6460 QqQ			
Dry Gas Temp (°C)	250			
Gas Flow (I/min)	4			
Nebulizer (psi)	60			
Sheath Gas Temp (°C)	400			
Sheath Gas Flow (I/min)	10			
Capillary (V)	4000			
Nozzle (V)	500			
Polarity	Positive			
MRM Dwell time (ms)	75			

MRM tran	sitions (Unit)	Frag (V)	CE (V)
25-0HD3	401.3 - 383.3	100	3
25-0HD2	413.3 -395.3	100	3
25-OHD3-d6	407.3 - 389.3	100	3

Result

A linear calibration curve was created with a weighting of 1/x. Excellent linearity was achieved with an R^2 of > 0.999 for both 25-OH vitamin D metabolites. The accuracy of the calibrators was 98.1 to 103.4 for 25-OHD3 and 95.3 to 104.3 for 25-OHD2 across all levels of calibrators. The accuracy of the high and low QC was 93.0 to 107.2 for 250HD3 and 96.7 to 113.0 for 250HD2. Figure 4 shows the calibration curve for 25-0HD3 and 25-0HD2.

The sum of 25-OHD3 and 25-OHD2 was used for the total 25-OHD to compare with the LC-MS value by DEQAS (Vitamin D External Quality Assessment Scheme). Figure 6 shows the correlation between DEQAS results and LC-MS/MS results. The R² (0.979), slope close to 1 and small y-intercept suggest excellent correlation of results between the evaluated methods.

		250HD3 Results 250HD2 Results			DEQAS	LC-MS/MS				
Name	Type	Level	na/ml	Accuracy	na/ml	Accuracy	Sample	ng/ml	ng/ml	%Dev
cal1	Cal	1	3.8	98.9		· · ·	381	40.3	41.5	-2.8
cal2	Cal	2	7.8	98.7	5.1	104.3	382	16.0	15.4	3.9
cal3	Cal	3	20.8	103.4	13.2	95.3	383	33.7	33.7	-0.1
cal4	Cal	4	35.1	100.2	27.1	101.6	384	11.8	12.7	-6.7
cal5	Cal	5	67.2	98.1	50.1	97.3	385	26.4	30.5	-13.4
cal6	Cal	6	107.7	100.6	91.9	101.6	386	12.2	13.0	-6.2
381	Sample		41.5		N.D.		387	24.1	23.7	1.6
382	Sample		15.4		N.D.		388	33.1	35.8	-7.5
383	Sample		33.7		N.D.		389	19.4	18.8	3.0
384	Sample		12.7		N.D.		390	28.7	27.6	4.0
385	Sample		30.5		N.D.		391	6.7	7.5	-10.7
386	Sample		13.0		N.D.		392	29.6	31.9	-7.2
387	Sample		23.7		N.D.		393	12.1	14.4	-14.7
388	Sample		35.8		N.D.		394	23.7	26.2	-9.5
389	Sample		18.8		N.D.		395	16.1	17.7	-9.1
390	Sample		13.2		14.6		396	11.6	13.5	-14.0
391	Sample		7.5		ND		397	19.2	18.6	3.3
392	Sample		31.9		ND		398	32.3	35.1	-7.9
393	Sample		14.4		N.D.		399	14.0	15.6	-10.5
394	Sample		26.2		N.D.		400	28.3	29.0	-2.4
395	Sample		17.7		N.D.					
396	Sample		13.5		N.D.					
397	Sample		18.6		N.D.					
398	Sample		35.1		N.D.		Correlation to DEQAS			
399	Sample		15.6		N.D.		50 -			
400	Sample		29.0		N.D.		50			
	•									
	N.D. – Not detected (below LOQ)		€ 40							
3- 2.8- 2.6- 2.4- 2.2- 2-	3- 2.8- 2.6- 2.4- 2.2- 2- 2-				e Cleanup (ng/n 30 -		2 · • •			

Figure 5. Results table and calibration curves

Result

MSACL 2012

Poster 5

Conclusions

A rapid and accurate quantitative method has been developed for the simultaneous analysis of 25-OH Vitamin D3 and 25-OH Vitamin D2 in plasma using online sample cleanup utilizing a 2-column switching valve system. This approach saves time by decreasing the amount of sample preparation, improves robustness with a cleaner ion source, and compares favorably to DEQAS with good accuracy, linearity, and sensitivity.