
Method Comparison of Underivatized 1,25-Dihydroxyvitamin D_2 and D_3 Quantitative Analysis in Serum by LC-MS/MS Utilizing Ion Funnel Technology

Peter Christensen, Andre Szczesniewski, Rory Doyle & Kevin McCann; Agilent, Technologies Inc.

Introduction

1,25-dihydroxyvitamin D exists in two forms $-D_2$ and D_3 – and while they are not isobaric to each other, both have several isobaric compounds which can be separated through liquid chromatography to achieve accurate quantitation using triple quadrupole mass spectrometry. Whereas it is common in positive ESI to identify analytes by their protonated species, 1,25-(OH)₂D is more commonly measured as the ammonium or lithium adduct. The work in this poster looks at these two adducts and assess the methods for sensitivity and robustness.

Experimental

Samples

 $1,25-(OH)_{2}D_{2}$ standards were prepared neat in 50% MeOH and spiked into charcoal stripped serum at various concentrations

Sample Preparation

Ammonium adduct method

Proteins were precipitated from 500 µL of serum with acetonitrile. Samples were vortexed, incubated at room temperature and centrifuged. The supernatant was transferred to autosampler vial for injection to the LC-MS/MS.

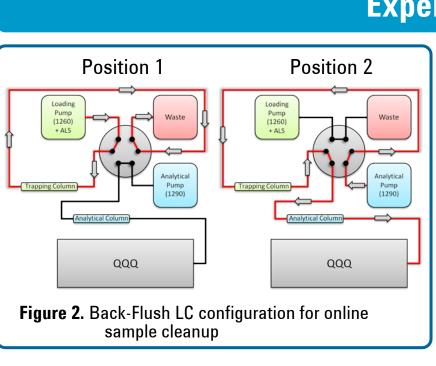
Lithium adduct method

Proteins were precipitated from 500 µL of serum with acetonitrile. Samples were vortexed, incubated at room temperature and centrifuged. The supernatant was evaporated to dryness under N_2 and reconstituted in 110 μ of H₂O.

Experimental

LC Method

Agilent 1290 Infinity UHPLC series binary pump, 1260 binary pump, well plate sampler, temperaturecontrolled column compartment, 2 position/6 port switching valve


Parameter	Value
Trapping Column	Eclipse Plus C18, 4.6x12.5mm 3.5mm
Analytical Column	Eclipse Plus C18, 2.1x50mm 1.8mm
Column Temp	50°C
Injection Volume	100 µl
Autosampler Temp	4°C
Needle Wash	Flush port for 10 seconds
Mobile Phase A	$\rm NH_4$ Formate or Lithium Acetate in $\rm H_2O$
Mobile Phase B	NH ₄ Formate or Lithium Acetate in MeOH
Table 1. LC Paramete	rs

MS Method

Agilent 6490 triple guadrupole mass spectrometer with Agilent JetStream in ion positive mode (ESI).

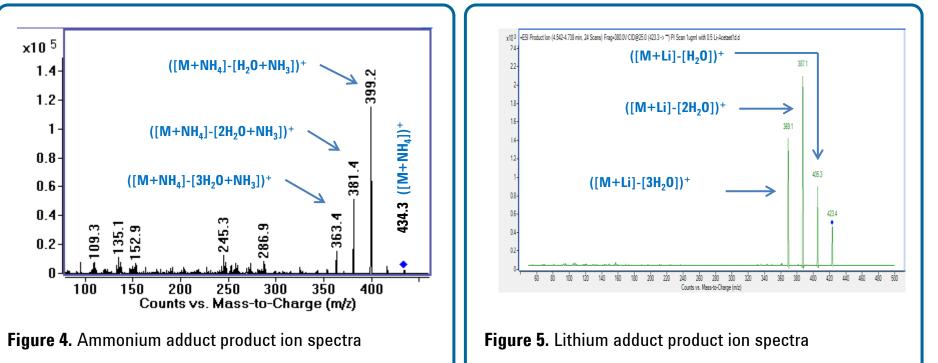
Parameter	NH ₄ Adduct	Li Adduct
Drying Gas Temp	130°C	130°C
Drying Gas (N ₂)	20 L/min	17 L/min
Nebulizer Gas (N ₂)	15 psi	60 psi
Sheath Gas Temp	200°C	100°C
Sheath Gas (N ₂)	11 L/min	7 L/min
Capillary Voltage	3500 V	5000 V
Nozzle Voltage	300 V	2000 V
Q1/Q2 Resolution	1.2/0.7	1.2/0.7
Delta EMV	400 V	400 V
Collision Accel	2 V	2 V
Table 2. MS Parame	ters	

Compound	Prec Ion	Prod Ion	Dwell	CE (V)
([M+Li]-[H ₂ 0])+	423.3	405.3	100	22
([M+Li]-[2H ₂ 0])+	423.3	387.3	100	22
([M+Li]-[3H ₂ 0])+	423.3	369.3	100	28
([M+NH ₄]-[H ₂ O+NH ₃]) ⁺	434.3	399.3	60	6
([M+NH ₄]-[2H ₂ O+NH ₃]) ⁺	434.3	381.3	60	8
([M+NH ₄]-[3H ₂ O+NH ₃]) ⁺	434.3	363.3	60	8
Table 3. MRM table				

Signal selection for quantitation

x10 ⁵	
1.4-	
1.2-	
1-	
0.8-	
0.6-	
0.4-	
0.2-	
0	

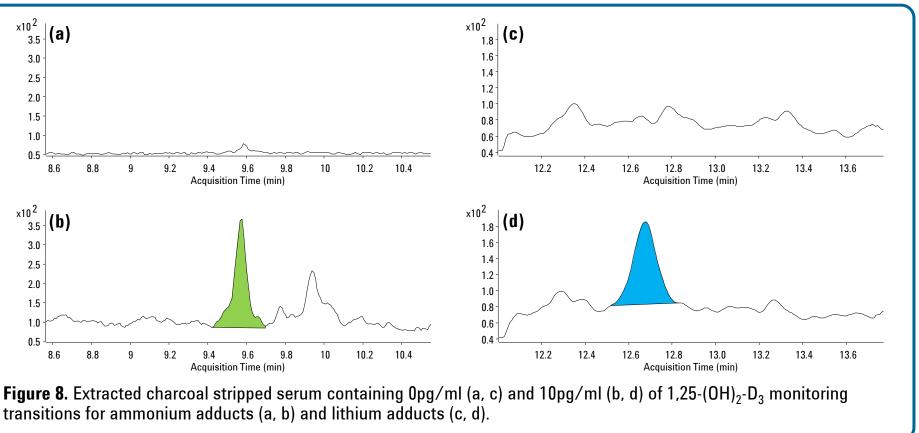
Experimental



Results and Discussion

Analysis of 1,25-dihydroxyvitamin D₃

One of the challenges of this assay is that in many biological samples, 1,25-Diydroxyvitamin D is present at low picogram per milliliters levels and most instruments are unable to reach this level of sensitivity without the use of extensive sample preparation. There are several existing methods that employ chemical derivatization. However, in this work, development of a simple method without derivatization was explored. The proposed method utilizes state of the art ion funnel technology (Fig.3) integrated into the Triple Quadrupole Mass Spectrometer (QQQ) in conjunction with best in class, Ultra High Performance Chromatography (UHPLC) system, taking advantage of the chromatographic separation power of the column packed with sub two micron particles to achieve the limit of quantification (LOQ) of 10 pg/mL for 1,25dihydroxyvitamin D₃ in extracted biological matrix.

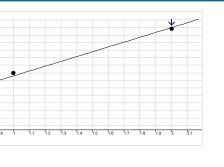

Both ammonium and lithium adducts loose 1,2 and 3 water molecules under CID. The most intense product ion for both adducts is the first water loss -434.3 ([M+NH₄]-[H₂O+NH₂])⁺ and 423.4 ([M+Li]-[H₂O])⁺. However, these fragments suffer from an interfering background resulting in poor specificity. The m/z 381 $([M+NH_4]-[2H_2O+NH_3])^+$ fragment was about 2 times smaller then m/z 399 fragment but showed no interfering peaks. The m/z 405.3 ([M+Li]-[H₂0])⁺, and 387.1 ([M+Li]-[2H₂0])⁺ suffer from interferences but the 3^{rd} water loss product ion at 369.1 ([M+Li]-[$3H_2O$])⁺ does not and provides the required sensitivity.

_	x10 -1 y=0. 13 12 13 12 14 14 14 14 14 14 14 14 14 14	It. 4 Levels Used. 4 Pains 4 Pains Used. 0.025 04093**-00110080P2=0.999400940	bs b7 bs b3		
	Level	RT			
-	1	10	10.67		
	2	40	10.68		
	3	100	10.67		
_	4	200	10.67		
I	Figure 6.	Results for 1,2	5-dihydro		

Limit of Quantification (LOQ)

The LOQ for ammonium and lithium adducts was observed at 10pg/ml with 100 µL injection (1 pg on column) (Fig.8b and d respectively). Calibration plots for both the ammonium and lithium adducts demonstrate excellent linearity with an $R^2 > 0.996$, (Fig. 6 & 7).

Conclusions


The limit of detection for underivatized 1,25dihydroxvitamin D_3 was observed at 10 pg/mL (1 pg on column) for both ammonium and lithium adducts when spiked into charcoal stripped serum. Linearity of calibration curves for both samples were found to have R² better then 0.996. However, the use of lithium acetate proved to be less robust compared to ammonium formate. While using lithium acetate, the source required more frequent cleaning, making the application less suitable.

MSACL 2012 Poster 23

-25Di0H Vit D3 - 4 Levels 4 Levels Used 4 Points 4 Points Used 0.0

Results and Discussion

1	10	12.67	782.8	8.20	81.97
Level	Exp. Conc.	RT	Resp.	Conc.	Accuracy
Responses	000 v 103 + 200802 + 20080 4 2	30 35 40 45	50 55 60 65 7	0 75 80 85	90 95 100 105 Concentration (ng/ml)

				II					
R	esp.	Conc.	Accuracy	Level	Exp. Conc.	RT	Resp.	Conc.	Accuracy
2	76.6	9.26	92.63	1	10	12.67	782.8	8.20	81.97
5	26.9	41.22	103.05	2	25	12.67	1855.9	26.19	104.75
8	57.8	98.17	98.17	3	50	12.60	3363.6	51.46	102.93
15	548.2	200.31	100.16	4	100	12.64	6208.2	99.15	99.15
oxyvi	tamin [D₃ ammoniı	um adduct	Figure 7	. Results for 1,2	25-dihydro	xyvitamin [D₃ lithium a	Idduct

References

- 1. A-M. Kissmeyer, K. Sonne, J. of Chrom. A 935 (2001) 93-103
- 2. Z. Maunsell, D.J. Wright, S.J. Rainbow, *Clinical Chem.* 51:9 (2005) 1683-1690
- 3. R.J. Singh, R.L. Taylor, G.S. Reddy, S.K. Grebe, J. *Clin. Endocrinol. Metab.* 91(8) (2006) 3055-3061