High-Throughput Analysis of Tacrolimus in Whole Blood Using Ultra-fast SPE-MS/MS

Kari E. Schlicht¹, Eric W. Korman², Vaughn P. Miller¹, Christine L. Snozek², Frank W. Crow², Loralie J. Langman² and William A. LaMarr¹ 1. Agilent Technologies Inc., Wakefield, MA 2. Mayo Clinic, Rochester, MN

Introduction

In many clinical research laboratories, liquid chromatographymass spectrometry (LC/MS) methods of analysis of immunosuppressant drugs have proven superior to current analytical measurement technologies because of their increased sensitivity and selectivity. We have evaluated the ability of an ultra-fast SPE/MS/MS system (Agilent RapidFire Highthroughput Mass Spectrometry System) to analyze the immunosuppressant drug tacrolimus in whole blood. The results demonstrate the superior speed of SPE/MS/MS to complement the superior sensitivity and selectivity of MS with significantly faster sample cycle times than LC/MS while yielding similar analytical results

States 1&4: Aspirate & Re-equlibrate

State 2: Load/Wash

RapidFire Conditions				
Cycle durations (ms)	State #1 aspirate	600		
	State #2 load/wash	3000		
	State # 3 elute	3000		
	State # 4 re-equilibrate 500			
Solvents	Solvent A: water + 0.09% formic acid + 0.01% TFA			
	Solvenet B: acetonitrile + 0.09% formic acid + 0.01% TFA			
Column	Phenyl			

Experimental

MS methods for tacrolimus and its internal standard ascomycin were optimized for analysis by QQQ MS. Calibration standards for tacrolimus (2-50 ng/ml) were prepared in bovine whole blood. The whole blood samples were mixed with water and precipitated using a zinc sulfate and methanol solution containing the internal standard. Precipitated samples were gently mixed, centrifuged, and -transferred to a 96-well plate for analysis. Samples were analyzed at a rate of 9.5 seconds per sample using an Agilent RapidFire high-throughput mass spectrometry system coupled to an Agilent 6460 mass spectrometer. The SPE method consisted of a Phenyl column and elution with 100% acetonitrile. Data analysis was performed using RapidFire Integrator software. This methodology is capable of throughputs >370 samples per hour.

Agilent 6460 Settings

Source Parameters

lonization mode	ESI + Agilent Jet Stream
Drying gas temp.	350 °C
Drying gas flow	8 L/min
Sheath gas temp.	400 °C
Sheath gas flow	11 L/min
Nebulizer pressure	45 psi
Nozzle voltage	500 V
Capillary voltage	3500 V

Acquisition Parameters (Positive Mode)

Transition	Precursor Ion	Product Ion	Dwell (ms)	Frag. (V)	CE (V)	CAV
IS	809.61	756.5	100	125	17	3
Quantifier	821.91	768.5	100	145	17	6
Qualifier	821.91	786.5	100	145	13	6

Results and Discussion

Prepared calibration standards and commercially available quality controls were run in triplicate over a series of days to establish both intra- and inter-day precision and accuracy. Tacrolimus had both intra- and inter-day accuracies within 15% and coefficient of variation values less than 10% for all concentrations within the linear range. This method had excellent linearity within the measured range of 2-50 ng/ml with an R² value greater than 0.99. Blank whole blood was treated and analyzed in the absence of internal standard in the same manner as the other samples to establish signal-to-noise which was found to be greater than 30 to 1.

	Representative Standard Curve	Tacrolimus	Accuracy* (%)	Precision* (%)	Accuracy* (%)	Precision* (%)	Quant/Qual
(ס.5-	Conc (ng/mL)	Intraday (n=3)	Intraday (n=3)	Interday (n=4)	Interday (n=4)	AUC
		2	106.3	3.5	105.2	2.6	3.4
<u>с</u> ($R^2 = 0.9983$	10	94.6	1.2	96.0	3.8	3.1
AL AL	12	20	96.6	7.4	97.0	4.0	3.4
C/IS	J.J-	40	101.1	3.3	100.3	4.5	3.5
AU	0.2-	50	101.3	1.9	101.6	2.8	3.4
IAC		UTAK 1 (4.9)	99.1	5.3	95.9	4.6	3.7
	0.1-	UTAK 2 (14.2)	90.1	2.6	93.8	6.1	3.6
		UTAK 3 (28)	96.5	0.5	96.6	5.0	3.5
	0 20 40 60	*1 /	: fo of or				

Tacrolimus (ng/mL)

1/x weighing factor

Results and Discussion

ASMS 2011

WP 160

To further evaluate this method, thirty blinded human samples were analyzed for tacrolimus. The human samples were determined to have tacrolimus values ranging from <2to 36.9 ng/mL. Values obtained using a RapidFire-MS system were compared to values determined independently at the Mayo Clinic using traditional LC/MS/MS methods. A good correlation between the two methods was found with an R^2 value greater than 0.97.

Tacrolimus	Mayo ng/mL	Agilent ng/mL	% Difference
P1	3.4	3.0	-11.1%
P2	4.9	4.9	0.1%
P3	6.4	6.8	6.0%
P4	6.2	7.1	14.1%
P5	5.8	5.5	-5.7%
P6	5.4	4.6	-15.0%
P7	9.5	8.2	-13.3%
P8	2.9	2.9	-0.9%
P9	6.1	5.8	-4.2%
P10	7.3	7.4	1.3%
P11	7.3	8.0	9.9%
P12	8.2	8.3	1.3%
P13	10.6	10.2	-3.5%
P14	6.9	6.4	-6.5%
P15	5.4	4.9	-8.8%
P16	< 2.0	< 2.0	0.0%
P17	6.4	5.8	-8.8%
P18	10.3	9.5	-7.9%
P19	8.1	9.3	14.9%
P20	5.7	4.8	-15.4%
P21	5.6	5.2	-7.7%
P22	6.1	6.4	5.6%
P23	4.2	3.5	-16.9%
P24	3.9	3.9	0.4%
P25	31.3	36.9	17.8%
P26	3.5	3.0	-13.9%
P27	7.9	7.3	-7.1%
P28	7.6	7.4	-2.5%
P29	7.7	7.1	-7.8%
P30	21.1	18.9	-10.4%

Conclusions

- Tacrolimus was accurately measured in whole blood using a RapidFire-MS system at a rate of 9.5 seconds per sample
- Intra- and inter-day accuracies were determined to be within 15% and precision values less than 10% for all concentrations within the linear range (2-50 ng/mL).
- Both quantifier and qualifier transitions for tacrolimus had excellent linearity with R^2 values >0.998.
- Blinded human samples analyzed using the RapidFire-MS system correlated well with identical samples ran independently using a traditional LC/MS/MS system
- Analytical results are comparable to LC/MS/MS with an analysis time that is approximately 20 times faster
- This novel methodology is capable of throughputs >370 samples per hour.