# Simultaneous Detection of Haloacetic Acids using Ion Chromatography **Electrospray Ionization Tandem Mass Spectrometry**



# Jo-Anne Barcellano, Tarun Anumol, Shane A. Snyder

Department of Chemical and Environmental Engineering, BIO5 Institute, University of Arizona, Tucson (AZ)



## Introduction & Objective

#### Context and Background:

- Haloacetic acids (HAAs) are a group of disinfection byproducts that has caused concern due to its potential harmful effects from long term exposure.
- HAAs are especially concerning when the drinking water source is linked with water reuse, which typically involves multiple forms of disinfection.
- Typical forms of detection are time consuming and allow for possible analyte loss.
- HAAs are moderately strong acids in drinking water (pH >6) and disassociate to haloacetate ions, making them suitable for ion chromagraphy.

#### Objective:

Detection of HAAs in drinking water through ion chromatography, negativeion electrospray ionization tandem mass spectrometry through direct injection and without the need for extraction and concentration.

## Ion Chromatographic Conditions

Ion Chromotography System:

Metrohm 850 Professional IC Anion

Column: Metrosep A Supp 7 250mm x 4mm

Column Temperature: 20°C

Injection Volume: 150 µL

Eluent Flow Rate: 0.4ml/min

Eluents: A: 100mM NaOH

B: 5% Acetonitrile



# Mass Spectrometer Acquisition Conditions

Mass Spectrometer: Agilent 6490 MS/MS

#### **Source Parameters:**

Gas Temperature: 120°C Gas Flow: 13 I/min Nebulizer: 45 psi

Sheath Gas Temperature: 390°C Sheath Gas Flow: 12 I/min

Chamber Current: 0.24 µA

Capillary: 3000V Nozzle Voltage: 1500V

#### **iFunnel Parameters:**

 High Pressure RF: 160 V Low Pressure RF: 40

| Compound Name                    | Precursor Ion | Product Ion | Collision Energy |
|----------------------------------|---------------|-------------|------------------|
| Monobromoacetic Acid (MBAA)      | 137           | 83          | 6                |
| Monochloroacetic Acid (MCAA)     | 93            | 35          | 6                |
| Bromochloroacetic Acid (BCAA)    | 173           | 128.9       | 8                |
| Dibromoacetic Acid (DBAA)        | 216.8         | 173         | 8                |
| Dichloroacetic Acid (DCAA)       | 127           | 83          | 6                |
| Tribromoacetic Acid (TBAA)       | 250.9         | 78.9        | 20               |
| Bromodichloroacetic Acid (BDCAA) | 163           | 81          | 8                |





### Conclusion

- Successful detection of seven HAAs. Future method development must be made to account for missing HAAs.
- Use of isotopically labeled standards is suggested due to low recoveries in wastewater.
- Direct injection allows for easier determination by eliminating necessary derivatization and extraction typically needed in other HAAs detection methods.

# Acknowledgment

The Authors would like to thank Dr. Jay Gandhi (Regulatory Affairs Manager, Metrohm (USA) and Agilent Technologies for providing the analytical instrumentation and training required for this study.



