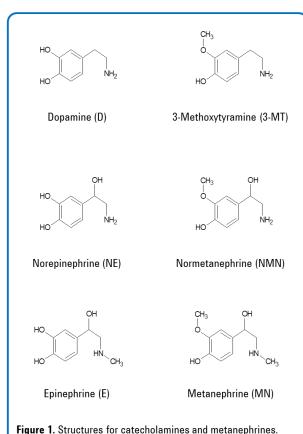
ASMS 2013


TP-461

Determination of Urinary
Catecholamines and
Metanephrines in a Single
Run by LC-MS/MS for
Clinical Research

Linda Côté¹, Christophe Deckers¹, Kevin McCann²; ¹Agilent Technologies Inc. Montréal, QC, Canada, ²Agilent Technologies Inc. Santa Clara, CA, USA

Introduction

Liquid chromatography triple quadrupole mass spectrometry (LC/MS/MS) is ideally suited for the rapid analysis of multiple analytes. A highly sensitive and specific LC/MS/MS method has been developed for the quantitation of catecholamines (dopamine, epinephrine and norepinephrine), metanephrine, normetanephrine and 3-methoxytyramine in urine. This method uses a single solid phase extraction procedure to simplify sample preparation.

A single, efficient solid phase extraction (SPE) sample preparation procedure was developed for the simultaneous extraction of dopamine, epinephrine, norepinephrine, metanephrine, normetanephrine and 3-methoxytyramine in urine. Calibrators were created by spiking clean urine with various concentrations of each analyte. The chromatographic system consists of a pentafluorophenyl column and a mobile phase comprised of methanol and water containing 0.2% formic acid. Quantifier and qualifier MRM transitions were monitored and deuterated internal standards were included for each analyte to ensure accurate and reproducible quantitation.

Experimental

Sample Preparation

Prepare complexed samples:

0.5 mL sample Add 40 μ L of internal standards mix Add 0.8 mL of complexing agent Verify pH is between 7.5-9.5

- Condition SPE cartridge (Bond Elut Plexa, 30 mg, 3 mL) with 1 mL of MeOH and 1 mL of aqueous wash buffer (0.2 M NH4CI-NH4OH).
- 2. Load complexed samples onto SPE cartridge.
- Wash with 1 mL of 5% methanol wash buffer (0.2 M NH4CI-NH4OH) and dry at full vacuum for 5 minutes.
- Elute with 1 mL of 5% formic acid in water. Apply vacuum 5" Hg for 30 seconds. Transfer to autosampler vial.

LC Method

Agilent 1290 HPLC binary pump, well plate sampler with thermostat, temperature-controlled column compartment

Parameter	Value
Analytical Column	Pursuit 3 PFP, 2x150mm, 3µm
Column Temp	40°C
Injection Volume	20 µl
Autosampler Temp	4°C
Needle Wash	Flush port for 20 seconds
Mobile Phase A	0.2% Formic Acid in Water
Mobile Phase B	Methanol
Flow Rate	0.3 ml/min
Table 1 I C Parameters	

Table 1. LC Parameters

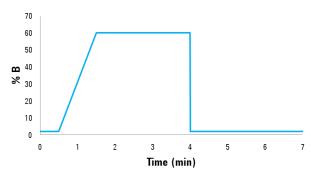


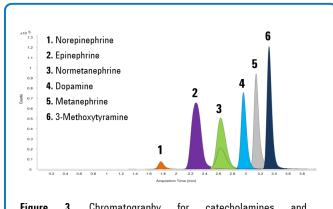
Figure 2. LC gradient

Experimental

154.1 154.1 158.1 170.1 170.1 176.1 184.1	137.1 91.1 141.1 152.1 107 158.1 166.1	75 75 75 65 65 65	8 28 8 4 20 4	3 3 3 5 5
158.1 170.1 170.1 176.1 184.1	141.1 152.1 107 158.1	75 65 65 65	8 4 20 4	3 5 5
170.1 170.1 176.1 184.1	152.1 107 158.1	65 65 65	4 20 4	5 5
170.1 176.1 184.1	107 158.1	65 65	20 4	5
176.1 184.1	158.1	65	4	
184.1				5
	166.1	70		
		70	8	5
184.1	107.1	70	24	5
190.1	172.1	70	8	5
151.1	91.1	135	20	3
151.1	119	135	12	3
155.1	95.1	135	24	3
166.1	134	105	16	3
166.1	106.1	105	20	3
169.1	137.1	105	16	3
180.1	165.1	120	16	5
180.1	148.1	120	16	5
183.1	168.1	120	16	5
	151.1 151.1 155.1 166.1 166.1 169.1 180.1	190.1 172.1 151.1 91.1 151.1 119 155.1 95.1 166.1 134 166.1 106.1 169.1 137.1 180.1 165.1 180.1 148.1 183.1 168.1	190.1 172.1 70 151.1 91.1 135 151.1 119 135 155.1 95.1 135 166.1 134 105 166.1 106.1 105 169.1 137.1 105 180.1 165.1 120 180.1 148.1 120 183.1 168.1 120	190.1 172.1 70 8 151.1 91.1 135 20 151.1 119 135 12 155.1 95.1 135 24 166.1 134 105 16 166.1 106.1 105 20 169.1 137.1 105 16 180.1 165.1 120 16 180.1 148.1 120 16 183.1 168.1 120 16

MS Method

Agilent 6460 QQQ with JetStream technology


lon mode: Gas temperature: Drying gas (nitrogen): Nebulizer gas (nitrogen): Sheath gas (nitrogen): Sheath flow: Capillary voltage: Nozzle voltage: Q1/Q3 Resolution: Dwell time: Delta EMV:	AJS ESI+ 325 °C 5 L/min 35 psi 375 °C 12 L/min 3000V 0V 0.7 unit 20 msec 200V
---	---

MRM transitions (table 2) were determined and optimized automatically using Agilent Optimizer software.

Results and Discussion

Chromatographic separation of all analytes (figure 3) is achieved in less than four minutes through the use of a pentafluorophenyl column. The separation of epinephrine and normetanephrine, and the separation of metanephrine and 3-methoxytyramine are especially critical since these compounds share common fragments. Without proper separation by retention time, fragmentation of these compounds can cause interferences with one another and lead to inaccurate quantitation.

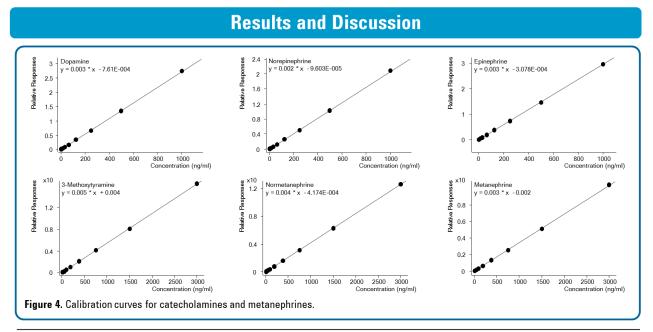

Commercially available quality control (Ω C) material (BioRad) was used to measure the accuracy and precision of this method. Results (table 3) show agreement with expected values and excellent precision at both levels.

Figure 3. Chromatography for catecholamines and metanephrines.

		Level 1			Level 2		
Compound	Free/Total	Range	Measured	CV (%)	Range	Measured	CV (%)
Dopamine	Free	44.4 - 75.0	61.4	3.4	377 - 629	509	2.8
Norepinephrine	Free	31.3 - 51.6	38.4	5.8	156 - 239	192	4.8
Epinephrine	Free	9.62 - 19.1	14.3	5.3	67.8 - 104	86.7	2.0
3-Methoxytyramine	Total	28.6 - 48.7	44.7	3.8	381 – 572	557.7	2.2
Normetanephrine	Total	220 - 366	300.7	2.4	1084 - 1630	1379.2	2.8
Metanephrine	Total	69.0 - 116	91.2	2.0	434 - 655	612	2.5

Table 3. Results in ng/mL of BioRad QC run by LC/MS/MS (range determined by BioRad using HPLC)

C	R ²	Concentration Accuracy (%)		Intraday CV (%)	Interday CV (%)	
Compound	n-	(ng/mL)	n = 3	n = 3	n = 5	
Dopamine		1.56	107.5	1	2.7	
	0.9997	62.5	99.1	1.7	2	
		1000	101.3	0.1	0.3	
		1.56	102.9	0.9	5.4	
Norepinephrine	0.9999	62.5	101.1	3.5	4	
		1000	101.1	0.6	0.6	
Epinephrine		1.56	101.6	4.3	2.7	
	0.9998	62.5	100.9	2.5	2	
		1000	100.3	0.4	0.3	
3-Methoxytyramine		4.69	95.7	1.1	3.6	
	0.9999	187.5	102.9	0.9	2	
		3000	100	0.2	0.3	
Normetanephrine		4.69	100.1	1.5	3.2	
	0.9999	187.5	102	1.1	2.5	
		3000	100.7	0.2	0.2	
		4.69	100.5	0.3	2.8	
Metanephrine	0.9999	187.5	102	0.5	2.2	
•		3000	100.8	0.1	0.2	

Table 4. Summary of analyte performance for catecholamines and metanephrines.

Conclusions

A four minute method has been developed for quantifying catecholamines and their metabolites. Offline solid phase extraction (SPE) for simultaneous extraction of all six analytes from urine is shown with excellent recoveries. Chromatographic separation of all six analytes with conditions compatible with LC-MS/MS have been developed. Typical method performance results are well within acceptable criteria.

Reference: Whiting, M J. "Simultaneous measurement of urinary metanephrines and catecholamines by liquid chromatography with tandem mass spectrometric detection." Ann Clin Biochem 46 (2009): 129–136.

Agilent LC/MS products are for research use only and not to be used in diagnostic procedures