

Centri Applications

Exploring new areas and improving analytical quality of volatiles and semi-volatiles analysis

Advantages of using a focusing trap for preconcentration

Enhanced performance with cold trap refocussing HS-trap, SPME-trap, HiSorb probe-trap, TD-trap..

- Preconcentration = Improved peak shape = enhanced
 S/N = Gain in sensitivity
- Hydrophobic sorbents and trap purge parameters for water and solvent management
- Multi bed sorbents for selective refocussing across extended volatility range
- Peltier cooled sub-ambient trap control providing maximum trapping efficiency
- Automated re-collection (TD-50) in all sampling modes-HiLo analysis, unique SPME, Probe, HS operation

HS-Trap vs. Direct HS

Effect of injection volume on peak shape

HS-Trap **Direct HS** U.9 U.9-U.9 U.9 U.9-U.9 0.9 U.9 0.875 0.875-0.875 0.875 0.875-0.875 0.875 0.875-0.85 0.85-0.85 0.85-0.85 0.85 0.85-0.85-0.825 0.825-0.825 0.825 0.825 0.825 0.825 0.825-0.8 0.8-0.8 0.8 0.8 0.8 0.8 0.8 0.775 0.775-0.775 0.775-0.775 0.775 0.775-0.775-0.75 0.75-0.75-0.75 0.75 0.75 0.75 0.75-0.725 0.725-0.725 0.725 0.725 0.725 0.725 0.725-0.7 0.7 0.7 0.7 0.7-0.7 0.7-0.7-0.675 0.675-0.675 0.675 0.675 0.675 0.675 0.675-0.65 0.65-0.65 0.65 0.65 0.65 0.65 0.65-0.625 0.625-0.625 0.625 0.625 0.625 0.625-0.625-0.6 0.6-0.6 0.6 0.6 0.6 0.6 0.6 0.575-0.575 0.575 0.575 0.575 0.575 0.575 0.575-0.55 0.55-0.55 0.55 0.55 0.55 0.55 0.55-0.525 0.525-0.525 0.525 0.525 0.525 0.525 0.525-0.5 0.5-0.5 0.5 0.5 0.5-0.5 0.5-0.475 0.475-0.475 0.475 0.475 0.475 0.475-0.475-0.45 0.45-0.45 0.45 0.45 0.45-0.45 0.45 0.425-0.425 0.425 0.425 0.425 0.425 0.425 0.425-0.4 0.4-0.4 0.4 0.4-0.4 0.4 0.4-0.375 0.375-0.375 0.375 0.375 0.375 0.375 0.375-0.35 0.35-0.35 0.35 0.35 0.35 0.35 0.35-0.325 0.325-0.325 0.325 0.325 0.325 0.325-0.325-0.3 0.3-0.3 0.3 0.3 0.3 0.3 0.3-0.275 0.275-0.275 0.275 0.275 0.275 0.275-0.275-0.25 0.25-0.25 0.25 0.25 0.25 0.25 0.25-0.225 0.225-0.225 0.225 0.225 0.225 0.225 0.225-0.2 0.2-0.2 0.2 0.2-0.2 0.2-0.2-0.175 0.175-0.175 0.175 0.175 0.175 0.175-0.175-0.15 0.15 0.15 0.15 0.15 0.15 0.15-0.15-0.125 0.125-0.125 0.125 0.125 0.125 0.125-0.125-0.1 0.1 0.1-0.1 0.1-0.1-0.1 0.1 0.075 0.075-0.075-0.075-0.075 0.075 0.075-0.075-0.05 0.05-0.05-0.05-0.05-0.05 0.05-0.05-0.025 0.025-0.025-0.025-0.025-0.025-0.025-0.025-0. 2 2 2.5 2 2.5 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2.5mL 0.5mL 1.5mL 2.0mL 0.5mL 1.5mL 2.0mL 2.5mL

Centri: Headspace-trap

Effect of injection volume on peak shape

- Headspace Analysis- Sample: 10mL @500ppt odourants in water
- Increasing the HS sample volume by a factor of 10
- No loss in peak shape/symmetry across this range
- No peak splitting observed at higher volume
- Incremental gain in sensitivity

Splitless analysis

Volatile organic compounds in drinking water

Water

A fundamental resource for life

- Water is one of the most precious resources we have, and it needs protecting and safeguarding
- More than one-quarter of all bottled water comes from a municipal water supply – the same place that tap water comes from
- The access to safe drinking-water is essential to health, a basic human right and a component of effective policy for health protection (WHO Guidelines 2008)
- A two-person household (UK) uses ~100,000 L per year (92.5% goes to waste)

Drinking water

Water comes in multiple types

Environmental water

Waste water

Ground water

Maximum/reporting levels for example contaminants

Compound	US EPA	China EPA	European EEA	Canadian CDWQG	WHO guidelines
Benzene	5 ppb	10 ppb (0.01 mg/L)	1 ppb (0.001 mg/L)	5 ppb (5 μg/L)	10 ppb
Ethylbenzene	700 ppb	300 ppb (0.3mg/L)		140 ppb (140 μg/L)	300 ppb
Benzo[a]pyrene	0.2 ppb	0.01 ppb (0.00001 mg/L)	0.01 ppb (0.00001 mg/L)	0.04 ppb (0.04 μg/L)	All PAHs: 0.7 ppb
Xylenes	10 ppm	500 ppb (0.5 mg/L)		90 ppb (90 µg/L)	500 ppb
Vinyl chloride	2 ppb	5 ppb (0.005 mg/L)	0.5 ppb (0.0005 mg/L)	2 ppb (2 µg/L)	

Headspace-trap analysis

- With BFB tuning
- Minimum detection limits (0.002–0.27 ppb)
- Much lower than reporting limits for:
 - US (0.5 ppb)
 - EU (0.1–100 ppb)
 - China (2-60 ppb)

Application Note 253

Reproducibility and linearity

The recoveries for the internal standard and the two surrogates (from 22 consecutive analyses of the 25 ppb standard) fall within the 80–120% range, with RSDs below 10%.

0.9977 0.9987

3 Vinvl chloride

Bromomethane

Welsh drinking water

- Real-world sample of tap water
- Surrogates added at 25 ppb
- 82 compounds
 <2 ppb
- Exception of chloroform (25 ppb)

Application Note 253

Reproducibility – Re-collection

- Repeat analysis without lengthy sample preparation
- Different split conditions possible ('High–Low' analysis)
- Protecting the GC column and MS
- Sample security
- Storing samples for later analysis or re-analysis

Lowering detection limits of volatiles in water

...stepping down the ladder

Compounds of interest

Use Headspace / with trap

...stepping down the ladder

..stepping down the ladder

..stepping down the ladder

Chrometography & Spectrometry

..stepping down the ladder

Use Headspace / with trap

Use enhanced tuning & SIM mode

Increase injection volume from 1 to 5 ml

From split to splitless

Why increase sensitivity?

- New insights from heath risks
- Futureproofing
- Being better than the competition
- Meets detection limit across the world.

Reproducibility and linearity

- Centri headspace showed excellent linearity and %RSD
- Excellent R² all compounds: 0.9980
- Meet the performance required by US EPA 524.2, 8260, HJ810, and 98/83/EC

Headspace-trap 1 mL

	Enhanced tuning (SIM mode)
BFB injected	Passed
Calibration & linearity (1 ppt to 20 ppb)	R ² ~ 0.9980 RRF <14%
Method detection limits	3.32 ppt
Accuracy (5 ppb & 0.5 ppb)	RSD <8%
Precision (5 ppb & 0.5 ppb)	90.10%

Benefits of adding a cold trap: injection volume

Benefits of adding a cold trap: injection volume

Benefits of adding a cold trap: splitless injection

A company of the **SCHAUENBURG** International Group

Experiment

- Whole peaches were placed in a roasting bag and left to equilibrate at 20°C for 90 minutes.
- 600 mL of air within the roasting bag drawn directly on to an 'Odour/Sulfur' sorbent tube using an Easy-VOC[™] manual pump.
- Sampling at day 0 (D0) and day 7 (D7)

• Empty roasting bags used as control blanks.

Analysis by Centri-GC×GC-TOF MS

creating of the second second

Comparison of aroma profiles

OFRI

UNIVERSI DELLA CALABR

- Statistical analysis of the aroma profiles
- The six cultivars are grouped according to ripening time
- Ethyl octanoate and linalool are major differentiators between the cultivars

A company of the SCHAUENBURG International Group

Milk analysis

High-capacity sorptive extraction...with HiSorb

- Same principles as SPME but on a larger, more robust scale
 - ~100+ fold higher sensitivity
 - Robust & re-useable (>50 uses)
- Direct introduction of a sorptive material to the sample matrix simplifies and expedites the sampling process
 - Simple
 - Minimise sample prep stages
 - Selective
 - Immersive or headspace sampling

Centri – GCxGC - TOF

 Robust HiSorb probes for confident immersive sampling

- Enhanced separation by GC×GC
 - Siloxanes separated from compounds of interest

Automated sample preparation

HiSorb probe in the automated wash station

...using ChromSpace stencils

% composition of key chemical classes

- Coconut milk contains the highest composition of lactones and only sample to contain vanillin
- Almond milk was the only sample to contain numerous pyrazines

Total peak area for target classes

 Soya and almond milk contained lowest VOC content when compared to cow's milk and goat's milk

Smelly water

- The most common complaint to water distribution companies relates to smelly water
- Odorants in water are monitored by SM 6040D method
- Some odorous compounds:
 - IPMP (Isopropyl methoxypyrazine) Asian ladybug smell
 - IBMP (3-IsobutyI-2-methoxypyrazine) Green bell-pepper smell
 - 2-MIB (2-Methylisoborneol) Unpleasant earthy, musty and mouldy aromas
 - 2,4,6 TCA (2,4,6-Trichloroanisole)
 Cork taint in wine can be smelt down to very low ppt levels
 - Geosmin (a hydroxylated decalin derivative)
 Its name is derived from the Greek for 'earth smell'

The human nose is able to detect compounds to very low levels

~5 ppt

Comparing sorptive extraction methods

- Reaching lower limits with preconcentration on stationary phase
- Comparison of SPME–trap with HiSorb
- Pre-concentration of odorants down to single-digit ppt

Odorants in water

Reproducibility and linearity

- Centri showed excellent linearity R² and RSD for 9 consecutive runs
- Average recovery of 93% for SPME–trap and 110% for HiSorb
- Centri meets the performance required by SM 6040D

SPME-trap fibers: DVB/CAR/PDMS HiSorb: Only PDMS

SPME-trap vs. HiSorb

Increased sensitivity

- Detection limits are lower than for SPME-trap because of the larger capacity of the PDMS sorbent.
- HiSorb can be used for immersive or headspace sampling of liquids and solid samples

Time and cost savings

- Robust, easy-to-use probes allow unattended sample preparation and maximum productivity.
- HiSorb is easier and quicker to use than solvent extraction.
- Re-usable probes and tubes minimise the cost per sample.
- The cost of solvent consumption and disposal is eliminated.

Prep-ahead functionality

Probe storage keeps probes clean and ensures conditioned probes are ready to be used.

The robot inserts the probe into the vial and the assembly is incubated/agitated to ensure analyte equilibration.

The probe is removed from the vial and a wash/dry station removes the residual sample matrix.

The probe is thermally desorbed and the vapours transferred to the focusing trap.

The trap is thermally desorbed at up to 100°C/s in inject the sample into the GC-MS system.

Semi-volatile compounds in air and in water

PAHs in the environment

SVOCs with Centri

- PAHs are carcinogenic, mutagenic and teratogenic properties
- They need to be monitored both in air and in water
- Traditionally:
 - Solvent extracted
 - Preconcentrated via rotary evaporation
- Centri offers
 - TD-50 module
 - HiSorb immersive for versatile PAHs analysis

PAHs in air

SVOCs with Centri

 Sample-path temperature uniformity allows analysis of VOCs and SVOCs on the same platform, without modifications.

Application note 139

PAHs in air

Breakthrough analysis

Only 1.5% of Naphthalene broke through

PAHs in water

SVOCs with Centri

- US EPA Method 610 requires the monitoring of PAHs
- Boiling points: 218–500°C
- 2.5 ppb in water
- Immersive extraction
- PDMS sorptive phase

Low-level odorants in wine by automated HiSorb

Produced by yeast

- The yeast *Brettanomyces* (*Dekkera*) *bruxellensis* ('Brett')
- Its growth results in the production of:
 - 4-ethylphenol (4-EP)
 - 4-ethylguaiacol (4-EG)
- These have unpleasant odours:
 - 'medicinal', 'phenolic' or 'horse sweat'
 - masking fruity aromas
- Goal is to identify a range of VOCs in red wine, including 4-EP and 4-EG

HiSorb analysis of wine

- High split: 50 mL/min
- TargetView for deconvolution and background subtraction

- 3) Ethyl acetate
- 9) Pentan-1-ol
- 17) 3-Methylbutyl acetate
- 24) Hexanoic acid
- 25) Ethyl n-hexanoate
- 34) Phenylethyl alcohol
- 36) Diethyl butanedioate
- 37) Ethyl n-octanoate

HiLow analysis

Reduction of Ethanol

- hydrophobic sorbents in the focusing trap
- Purging the focusing trap
- Use of a low split ratio

Expanded HiLow analysis

1 Ethanol	acetate	34 Phenylethyl alcohol	
2 3-Methylfuran	18 Styrene	35 2-Ethylphenol	
3 Ethyl acetate	19 Non-1-ene	36 Diethyl butanedioate 37 Ethyl n-octanoate	
4 2-Methylpropan-1-ol	20 Heptanal		
5 3-Methylbutanal	21 γ-Butyrolactone		
6 Benzene	22 3-Methylbutan-1-ol	38 Decanal	
7 n-Propyl acetate	23 Benzaldehyde	39 Ethyl phenylacetate	
8 1,1-Diethoxyethane	24 Hexanoic acid	40 Ethyl	
9 Pentan-1-ol	25 Ethyl n-hexanoate	pnenylpropanoate	
10 Toluene	26 n-Hexyl acetate	41 n-Decanoic acid	
11 2-Methylpropyl	27 2-Ethylhexan-1-ol	42 Ethyl n-decanoate	
acetate	28 1-Phenylpropyne	43 Ethyl 3-methylbutyl butanedioate	
12 Hexanal	20		
13 Ethyl butanoate	Benzeneacetaldehyde	44 n-Dodecane	
14 Ethyl 2-	30 Acetophenone	45 Ethyl n- dodecanoate	
nydroxypropanoate	31 Octan-1-ol 32 Linalool		
15 Furfural			
16 Hexan-1-ol	22 Nonanal		
17 3-Methylbutyl	JUTIALIAI		

Malodours in wine

А 4-EP

 $R^2 = 0.9984$

1

Identifying odour taints in pet food

A company of the SCHAUENBURG International Group

Background

- Palatability
 - Why 'brand A' over 'brand B'?

Analysis by Centri-GC×GC-TOF MS

Enhanced separation of trace sulfurs

Octanal

1

- 2-Methyltetrahydrothiophen-3-one
- 3 2-Ethyl-3-methyl pyrazine
- Benzene, 1,2,4-trimethyl-4
- 5 2-Acetyl thiazole
- Acetophenone 6
- 7. 2,5-Dimethyl 3-ethyl pyrazine
- 8. 2-Nonanone
- 9. Undecane
- 10. 5-Methyl-2-formylthiophene
- 2-Acetyl thiophene 11.
- 12. Nonanal
- 13. 2-Acetyl-3-methyl thiophene
- 14. 1-Dodecene
- 2-Decanone 15.
- 1,2-dithian-4-one 16.
- Kahweofuran 17.
- 18. Decanal

These odorous compounds would have co-eluted with higher-loading species in 1D GC-MS

Comparison of aroma volatiles

Comparison of aroma volatiles

Contact Markes

enquiries@markes.com

+44 (0)1443 230935

www.markes.com

@MarkesInt

www.linkedin.com/company/markes-international

inf@ingenieria-analitica.com

+34 902 45 66 77

www.ingenieria-analitica.com

What can we offer

Approaches to handling the analysis of water

Challenges include:	Solutions we can offer with Centri:	Benefits
High sample number	Full automationRe-collection	Saves time / money
High contaminant levels (e.g. waste water)	 Classic headspace Multi-bed sorbent Large split range (1:125,000) 	One instrument for all
Low contaminant levels (e.g. drinking water)	 Multi-bed sorbents SPME fibre preconcentration Trapping capabilities Multiple injection modes Multiple enrichment steps Splitless analysis 	Confidence in the results
 Drinking water Waste water Slurry water 	 SPME / HiSorb / Classic headspace / Matrix modification Classic headspace / HiSorb HiSorb 	One instrument for all
Wide analytical target list from VVOCs to SVOCs	 Multi-bed trap SPME fibre preconcentration Multiple injection modes 	Saves time
Reproducibility	Trapping capabilitiesRe-collection	Confidence in the results
Sample traceability	TubeTAG (RIFD)Barcode scanner	Confidence in the results

Centri

