

Applying the Agilent 5977A MSD to the Analysis of USP<467> Residual Solvents with the 7697A Headspace Sampler and 7890B GC

Application Note

Pharmaceuticals

Abstract

The Agilent 7697A Headspace Sampler coupled to an Agilent 5977 Series GC/MSD System was used for the analysis of USP <467> residual solvents at their limit concentration in aqueous solution according to procedure A of the method. Scan data gave repeatability generally better than 2.5% RSD for Class 1, Class 2A, and Class 2B solvents. The Multi Mode inlet (MMI) with an Ultra Inert 1-mm id liner was used for sample introduction from the fused silica headspace transfer line. Several tunes were investigated including Atune and Etune for data acquisition with source and quadrupole temperatures of 250 °C and 200 °C, respectively. MassHunter Quant software was used for data analysis.

Agilent Technologies

Authors

Roger L. Firor and Mike Szelewski Agilent Technologies, Inc. 2850 Centerville Rd Wilmington, DE 19808-1610 USA

Introduction

Analysis of residual solvents in pharmaceuticals is extremely important to protect patient safety. Quality assurance (QA) labs routinely use United States Pharmacopeia (USP) Method <467> for this purpose. [1] The basic method is used worldwide for quality control. It is harmonized with Guidance for Industry ICH Q3C Impurities.

Residual solvents in pharmaceuticals may remain from the manufacturing process of the active pharmaceutical ingredients (APIs) or final product. Residual solvents do not provide a therapeutic benefit and should be removed when possible. Monitoring and control of the levels of residual solvents are also done for a number of reasons that include safety, effect on crystalline form, solubility, bioavailability, and stability. All drug substances, excipients, and products must be monitored.

The guidelines of USP <467> were generally followed [1]. Modification and optimization of the headspace parameters were made to take advantage of the advance features of the 7697A Headspace Sampler. Analysis methodologies that deviate from the USP monograph can be used; however, validation and comparison to the original USP procedures may be required. Each class of solvents was run separately for clarity.

USP <467> specifies the following three procedures for Class 1 and Class 2 residual solvents:

- 1. Procedure A: Identification and limit test
- 2. Procedure B: Confirmatory test
- 3. Procedure C: Quantitative test

Procedure A uses a G43 phase (Agilent 624 columns, VF-624ms or DB-624) and Procedure B uses a G16 phase (HP-INNOWax). In general, analytes that coelute on one of these phases do not coelute on the other. Since the primary objective of this application note centers on evaluating sensitivity and repeatability, only the VF-624ms column was used. Other configurations using dual FID's (624 and INNOWax columns) or FID/MSD are possible and have been previously described. [2, 3, 4, 5] The headspace based method has historically suffered from poor repeatability when analyzing solvents at or below their USP 467 limit concentrations. Use of advanced pneumatics, excellent thermal zone control, and precise timing translates into better repeatability and precision for residual solvent analysis. Features of the 5977A Series GC/MSD System including a new inert extractor source also contribute to improved repeatability.

USP 467 is widely known and practiced in pharmaceutical QA laboratories worldwide using GC-headspace systems with FID's. GC-headspace-MSD systems can offer additional capabilities for residual solvent analysis, especially when unknowns are encountered. Using SIM, coelution problems are overcome and better sensitivity can be achieved.

Experimental

This application note used USP 467 Procedure A to investigate the performance of the 5977 Series GC/MSD System with the 7890B-7697A. The 7890B GC was configured with a Multimode inlet (MMI). A 1-mm id deactivated straight liner (p/n 5190-4047) was used.

Class 1, class 2A, and class 2B residual solvents were prepared at their limit concentrations in purified water. Clean organic free water is extremely important for good standard preparation. 250-mL solutions of each class were prepared at their final concentrations and then 6 mL was transferred into 20-mL vials using an auto pipette. Only PTFE lined septa were used. Salt was not added to the solution. Agilent part numbers for the residual solvent standards are:

Class 1: p/n 5190-0490 Class 2A: p/n 5190-0492 Class 2B: p/n 5190-0513

The 7697A Headspace Sampler was interfaced to the inlet using 0.53-mm id deactivated fused silica tubing. Interface to the MMI was through the septum. A 30 m, 0.25-mm id VF-624ms column was used for this work as it represents a good compromise between resolution, speed, capacity, and ease-of-use. Vial pressure is controlled from a Pneumatic Control Module (PCM) in the 7697A Headspace Sampler, while carrier flow is routed from the inlet EPC to the headspace sampler and back to the 7890B inlet. EPC controlled sampling steps give the user control over all aspects of headspace vial sampling in a concise and reproducible method with minimal carryover. Barometric pressure compensation is also implemented in the EPC modules. Parameters can be set from the 7697A Headspace Sampler keyboard or integrated Headspace Control Software. Figure 1 shows the headspace vial sampling pane from the MSD ChemStation. The use of controlled venting in the 7697A Headspace Sampler allows the user flexibility over the final vial pressure when filling the sample loop. This control leads to better repeatability and depending on the analyte k (partition coefficient) value it can also enhance sensitivity [6]. Three modes of vial pressurization are possible in the 7697A Headspace Sampler. These are: 1) flow limited to pressure, 2) to pressure, controlled at flow of 200 mL/min, and 3) fixed volume. The *"to pressure"* mode was used for all experiments. Figure 1 shows a MSD ChemStation pane for setting the vial sampling parameters. Note that HS vial pressure ramps from 15 psi to 10 psi for headspace sampling.

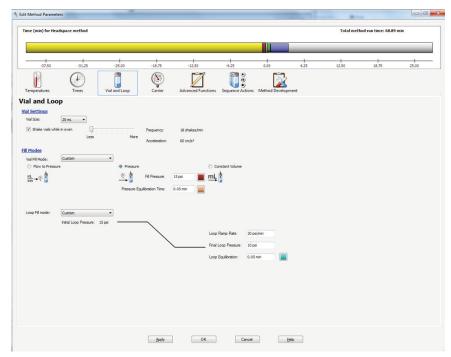


Figure 1. Parameters are shown for 20-mL vials, where the HS vial is pressurized to 15 psi and vented to 10 psi at a rate of 20 psi/min.

A moisture trap designed to reduce condensation is plumbed in the vent line and is purged between runs. The headspace sample loop is 1.0 mL. Helium is used for carrier and vial pressurization. Table 1 gives the application specific parameters.

Mass Hunter Software

The 5977 Series GC/MSD System introduction includes the ability to use MassHunter (MH) software similar to that on the Agilent 7000B GC/MS/MS. The data acquisition has been improved, especially in the ease of setting up SIM tables. SIM, scan, and temperature parameters are on a single screen for quick review. Current MSD Chemstation acquisition methods can be imported and used directly in MH.

Data analysis is accomplished using either MH Qualitative Analyses (Qual) or MH Quantitative Analysis (Quant). This application note used Qual for the chromatogram displays. Quant was used for compound integration and subsequent RSD calculations were done in Excel. Current MSD Chemstation quant databases (calibration tables) can be easily converted for use in MH Quant with the included Converter.

Using MH Qual and Quant is not required. The 5977 Series GC/MSD System acquisition software automatically saves data in both MH format and Classical MSD Chemstation format. Laboratories have a choice in data analysis packages.

Software versions used in this work are as follows: MSD ChemStation B.07.00 acquisition, MassHunter B.05.01 Quant, and Headspace control software B.01.04.

Table 1	Custom Dougnostone for the Analysis of Desidual Colympto
Table 1.	System Parameters for the Analysis of Residual Solvents

Gas chromatograph	Agilent 7890B GC
Injection port	Multi Mode Inlet
Liner	1-mm id Ultra Inert (p/n 5190-4047)
Inlet temperature	140 °C
Inlet flow	Constant flow, 1.3 mL/min
Split ratios	20:1, 100:1
Oven program	40 °C (5 minutes) to 240 °C (2 minutes) at 18 °C/min
Column	VF-624ms, 30 m × 0.25 mm, 1.4 µm
MSD	Agilent 5977A Series GC/MSD System
Transfer line	190 °C
MS Source	250 °C
MS Quad	200 °C
Tune	etune, atune, and bfb tunes used
Scan	29 to 150 amu, 10.3 scans/sec
Gain factor	1.00
Headspace	Agilent 7697A Headspace Sampler
Vial Pressurization gas	Helium
Loop size	1.0 mL
Vial standby flow	20 mL/min
Transfer line	0.53-mm deactivated fused silica
HS Oven temperature	85 °C
HS Loop temperature	85 °C
HS Transfer line temperature	100 °C
Vials	20 mL, PTFE/silicone septa
Vial Shaking	Level 1
Vial fill mode	To pressure
Vial fill pressure	15 psi
Loop fill mode	custom
Loop ramp rate	20 psi/min
Loop final pressure	10 psi
Loop equilibration time	0.05 minutes
Carrier control mode	GC carrier control
Vent after extraction	ON
Post injection purge	100 mL/min for 3 minutes

Results and Discussion

Figure 2 shows the TIC for the Class1 residual solvents at their limit concentrations prepared in pure water. Note that Class 1 solvents benzene and 1, 2-dichloroethane are baseline separated on the VF-624ms column.

As seen in Table 2, scan RSD's are reported for all classes and SIM RSD's for Class 2A. Most RSD's are well below 2.5%. Those with somewhat higher values generally have low k's. Sample preparation variability can have a larger impact on low k solvents. Other solvent systems such as dimethyl sulfoxide (DMSO), dimethyl acetamide (DMAC), 1,3-dimethyl-2imidazolinone (DMI) or mixed, such as DMSO/water, will obviously change the response, however, RSD's should be equal if not better than those shown in this work using an aqueous diluent.

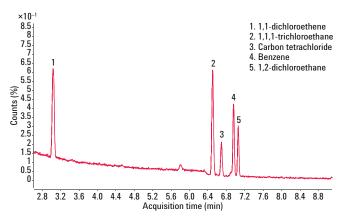


Figure 2. TIC for the Class 1 residual solvents at their limit concentrations prepared in pure water.

Table 2.	Residual Solvent Class1, Class 2A, and Class 2B Repeatability.
	Scan Data shown for all Classes and SIM Data for Class 2A.
	Prepared at Limit Concentrations in Aqueous Diluent

	Compound	USP limit (ppm)	Scan RSD (%)	SIM RSD (%)
Class 1	n = 8			
	1,1-Dichloroethene	8	0.9	
	1,1,1-Trichloroethane	1,500	1.9	
	Carbon tetrachloride	4	1.5	
	Benzene	2	0.7	
	1,2-Dichloroethane	5	0.9	
Class 2A	n = 10			
	Methanol	3,000	2.8	2.4
	Acetonitrile	410	3.3	2.3
	Dichloromethane	600	2.5	2.2
	trans-1,2-Dicloroethene	1,870	2.4	2.2
	cis-1,2-Dichloroethene	1,870	2.1	2.1
	Tetrahyrofuran	720	3.0	2.2
	Cyclohexene	3,880	2.7	1.3
	Methylcyclohexane	1,180	4.3	1.6
	1,4-Dioxane	380	2.6	2.3
	Toluene	890	0.7	2.0
	Chlorobenzene	360	1.9	2.1
	Ethylbenzene	2,170	1.9	2.1
	<i>m</i> -Xylene, <i>p</i> -Xylene	2,170	2.1	1.8
	o-Xylene	2,170	2.1	1.8
Class 2B	n = 9			
	Hexane	290	3.2	
	Nitromethane	50	3.8	
	Chloroform	60	2.5	
	1,2-Dimethoxyethane	100	2.7	
	Trichloroethene	80	2.5	
	Pyridine	200	3.9	
	2-hexanone	50	2.4	
	Tetralin	100	2.5	

A representative TIC for Class 2A solvents is shown in Figure 3. A zoom in on the chromatogram to illustrate the small peaks is shown in Figure 4.

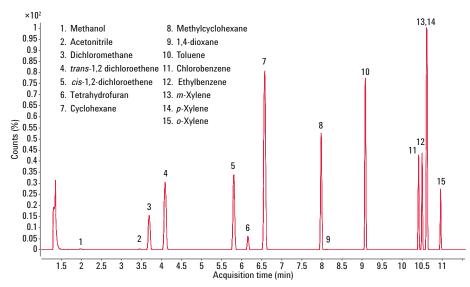


Figure 3. Representative TIC for Class 2A solvents.

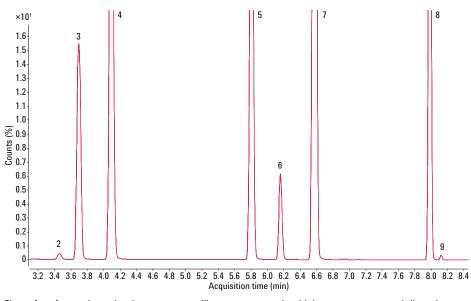


Figure 4. A zoom in on the chromatogram to illustrate compounds with low response, acetonitrile and 1,4-Dioxane. Refer to Figure 3 for peak numbers.

Figure 5 and Table 3, respectively show a SIM chromatogram and SIM ions used. This analysis used a split ratio of 100 to 1. The faster sweep of the liner leads to greatly improved methanol peak symmetry. Even at this high split ratio, signalto-noise (S/N) is excellent. Figure 6 shows the SCAN/SIM setup pane (Class 2A) from MSD ChemStation acquisition. Figure 7 shows a typical SIM run for Class 2B solvents. The split ratio is 20 to 1. Good S/N is seen for nitromethane. Pyridine, always a difficult solvent due to its polarity, shows minimal peak tailing on the VF-624 ms column. Table 4 gives the SIM parameters used, and Figure 8 shows a setup pane from the MSD ChemStation.

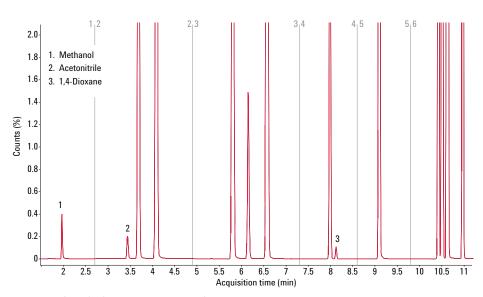


Figure 5. Class 2A SIM chromatogram and SIM group time brackets used.

Table 3. SIM Groups for Class 2A Solvents

Group	Compound	SIM ions
1	Methanol	31,29
2	Acetonitrile Dichloromethane <i>trans</i> -1,2-Dicloroethene <i>cis</i> -1,2-Dichloroethene	39,41,84,86,96,98
3	Tetrahyrofuran Cyclohexene Methylcyclohexane	56,71,72,84,96,98
4	1,4-Dioxane	58,83,88,98
5	Toluene	91,92
6	Chlorobenzene Ethylbenzene <i>m</i> -Xylene, <i>p</i> -Xylene <i>o</i> -Xylene	91,106,112,114

etune	ie.u	Browse		Bun Time		20.00	min						-
Tune	e Type	EI	- :	Solvent Delay		0.00	min			m/z	Dwell Time	Plot Ion	
	e EMV	1453	C	etector Setting						29.00	100		-
CIGa	Gas Valve:			Trace Ion D	etection				*	31.00	100		-
CI Flo	low:			EM Setting:	Gain Facto	nr.	•		*				
	A	ctual Setpoint				.000							
MS S	Source	250 250	_	Gain Factor									
MSQ	Quad	200 200 Apply		Applied EM Vol	tage (V)	562							
	-		- 1	EM Saver	Limit S	um Limit 1e	? (Default)		-				
Acquisit	sition Type	SIM 👻			Linit 2	um umit re	o (Derauit)						
an Tim	me Segments	1 - 1	~			1	1						
an Tim	T 5	tart End Mass Mass Threshold	Scan Sp	eed (u/s)	Frequency (scans/sec)	Cycle Ti (ms)	me Step S (m/z)	e					
an Tim	Time S	lass Mass Inreshold			(scans/sec)	(ms)	(m/z)						
an Tim	T 5	lass Mass Inreshold		eed (u/s) .562 [N=2] 💌		(ms)		e 0.1					
can Tim	Time S	lass Mass Inreshold			(scans/sec)	(ms)	(m/z)						
can Tim	Time S	lass Mass Inreshold			(scans/sec)	(ms)	(m/z)						
an Tim	Time S	lass Mass Inreshold			(scans/sec)	(ms)	(m/z)						
an Tim	Time S	lass Mass Inreshold			(scans/sec)	(ms)	(m/z)						
	Time S	lass Mass Inreshold			(scans/sec)	(ms)	(m/z)						
	Time 5	lass Mass Inreshold		.562 [N=2] 💌	(scans/sec)	(ms)	97.50 97.50						
	Time 5 10 0.00	ass Mass Inreshold 29.00 150.00 Group Name	0 1 Number of Ions	.562 [N=2] Total Dwell Time (ms)	(scans/sec) 10 Cycle Time	(ms) 3 Resolution	(m/z) 97.50	0.1 Calculated EMV					
	Time 5 Segments Time 0.00	ass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr	Number of lons ol 2 e 6	562 [N=2] Total Dwell Time (ms) 200 300	(scans/sec) 10 Cycle Time (Hz)	(ms) 3 Resolution	(m/z) 97.50 Gain Factor 1 1 1 1 1 1 1	0.1 Calculated EMV 0 1562 0 1562					
	Time 5 0.00 0.00	ass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 Th	Number of Ins of	562 [N=2] Total Dwell Time (ms) 200 300 300	(scans/sec) 10 Cycle Time (Hz) 3.7425 2.7233 2.7233	(ms) 3 Resolution	(m/z) 97.50 Gain Factor • 1 • 1 • 1	0.1 Calculated EMV 0 1562 0 1562 0 1562					
	Time N 0.00 0.00 ne Segments Time 0.0 2.7 4.9 7.3	ass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 TH 0 TH	Number of lons al 2 e 6 F 6 e 4	562 [N=2] Total Dwell Time (ms) 200 300 300 320	(scans/sec) 10 Cycle Time (Hz) 3.7425 2.7233 2.7233 2.5826	(ms) 3 Resolution Low Low Low	(m/2) 97.50 Gain Factor 1 1 1 1 1 1	0.1 Calculated EMV 0 1562 0 1562 0 1562 0 1562					
	Time N 0.00 0.00 resegments Time 0.00 2.7 4.9 7.3 8.6 8.6	lass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 Th 0 MCH-Dioxar 0 Toluer	Number of Ins Number of Ins I 2 e 6 F 6 4 e 2	562 [N=2] ▼ Total Dwell Time (ms) 200 300 300 320 200	(scans/sec) 10 Cycle (Hz) 3.7425 2.7233 2.7233 2.5826 3.7425	(ms) 3 Resolution Low Low Low Low	(m/z) 97.50 Gain Factor 1 1 1 1 1 1	0.1 Calculated EMV 0 1562 0 1562 0 1562 0 1562 0 1562					
M Time	Time N 0.00 0.00 ne Segments Time 0.0 2.7 4.9 7.3	lass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 Th 0 MCH-Dioxar 0 Toluer	Number of Ins Number of Ins I 2 e 6 F 6 4 e 2	562 [N=2] ▼ Total Dwell Time (ms) 200 300 300 320 200	(scans/sec) 10 Cycle Time (Hz) 3.7425 2.7233 2.7233 2.7233 2.5826	(ms) 3 Resolution Low Low Low	(m/2) 97.50 Sain Factor 1 1 1 1 1 1 1	0.1 Calculated EMV 0 1562 0 1562 0 1562 0 1562 0 1562					
M Time	Time N 0.00 0.00 resegments Time 0.00 2.7 4.9 7.3 8.6 8.6	lass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 Th 0 MCH-Dioxar 0 Toluer	Number of Ins Number of Ins I 2 e 6 F 6 4 e 2	562 [N=2] ▼ Total Dwell Time (ms) 200 300 300 320 200	(scans/sec) 10 Cycle (Hz) 3.7425 2.7233 2.7233 2.5826 3.7425	(ms) 3 Resolution Low Low Low Low	(m/z) 97.50 Gain Factor 1 1 1 1 1 1	0.1 Calculated EMV 0 1562 0 1562 0 1562 0 1562 0 1562					
	Time N 0.00 0.00 resegments Time 0.00 2.7 4.9 7.3 8.6 8.6	lass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 Th 0 MCH-Dioxar 0 Toluer	Number of Ins Number of Ins I 2 e 6 F 6 4 e 2	562 [N=2] ▼ Total Dwell Time (ms) 200 300 300 320 200	(scans/sec) 10 Cycle (Hz) 3.7425 2.7233 2.7233 2.5826 3.7425	(ms) 3 Resolution Low Low Low Low	(m/2) 97.50 Sain Factor V 11 V 11 V 11 V 11 V 11	0.1 Calculated EMV 0 1562 0 1562 0 1562 0 1562 0 1562					
M Time	Time N 0.00 0.00 resegments Time 0.00 2.7 4.9 7.3 8.6 8.6	lass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 Th 0 MCH-Dioxar 0 Toluer	Number of Ins Number of Ins I 2 e 6 F 6 4 e 2	562 [N=2] ▼ Total Dwell Time (ms) 200 300 300 320 200	(scans/sec) 10 Cycle (Hz) 3.7425 2.7233 2.7233 2.5826 3.7425	(ms) 3 Resolution Low Low Low Low	(m/2) 97.50 Sain Factor V 11 V 11 V 11 V 11 V 11	0.1 Calculated EMV 0 1562 0 1562 0 1562 0 1562 0 1562					
M Time	Time N 0.00 0.00 resegments Time 0.00 2.7 4.9 7.3 8.6 8.6	lass Mass Inneshold 29.00 150.00 Group Name 0 methan 0 acetonitr 0 Th 0 MCH-Dioxar 0 Toluer	Number of Ins Number of Ins I 2 e 6 F 6 4 e 2	562 [N=2] ▼ Total Dwell Time (ms) 200 300 300 320 200	(scans/sec) 10 Cycle (Hz) 3.7425 2.7233 2.7233 2.5826 3.7425	(ms) 3 Resolution Low Low Low Low	(m/2) 97.50 Sain Factor V 11 V 11 V 11 V 11 V 11	0.1 Calculated EMV 0 1562 0 1562 0 1562 0 1562 0 1562					

Figure 6. The SCAN/SIM setup pane (Class 2A) from MSD ChemStation acquisition.

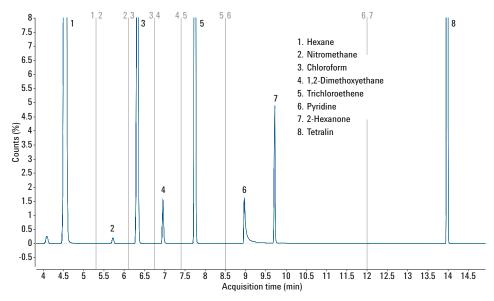


Figure 7. A typical SIM run for Class 2B solvents.

Tune	File		-						SIM	Real-Time Plot	Timed Events		
atune	e.u	Browse		<u>R</u> un Time		20.00				m/z	Dwell Time	Plot Ion	1
Tune	е Туре	El	S	Solvent Delay		0.00	min		•	56.00	100		
Tune	e EMV	1688	D	etector Setting						57.00	100		
CI Ga	ias Valve:			Trace Ion D	etection				*				
CI Flo	low:	%	1	EM Setting:	Gain Facto	r	•						
	Act		(Gain Factor	1	000							
MS S	Source	250 250 Apply	- C	Applied EM Volt		59							
MS Q	Quad	200 200 <u>APPly</u>			age (v)	55							
	_		_	EM Saver	Limit Su	um Limit 1e	8 (Default)	÷					
Acquisit	sition Type SI	• N					o (Derdait)						
an Tim	me Segments												
	The Sta												
	Time Ma	rt End ss Mass Threshold	Scan Spe	eed (u/s)	Frequency (scans/sec)	Cycle T (ms)		e					
	Time Ma	ss Mass Inresnoid			(scans/sec)	(ms)	ime Step Si: (m/z) 97.50						
	Time Ma	ss Mass Inresnoid		eed (u/s) 562 [N=2] ▼		(ms)	(m/z)	e 0.1					
	Time Ma	ss Mass Inresnoid			(scans/sec)	(ms)	(m/z)						
	Time Ma	ss Mass Inresnoid			(scans/sec)	(ms)	(m/z)						
	Time Ma	ss Mass Inresnoid			(scans/sec)	(ms)	(m/z)						
IM Time	0.00	ss Mass Inresnoid			(scans/sec)	(ms)	(m/z)						
IM Time	Time Ma	ss <u>Mass</u> inresnoid 29.00 150.00 0		562 [N=2] 🔻	(scans/sec) 10. Cycle Time	(ms)	97.50 (m/z)						
	time Ma	ss <u>Mass</u> inresnoid 29.00 150.00 0	1, Number	562 [N=2] Total Dwell Time (ms)	(scans/sec) 10. Cycle	(ms) 3	97.50 97.co Gain Factor	0.1 Calculated EMV					
	Time Ma	es Mass Inresnoid 29.00 150.00 0	1, Number of lons	562 [N=2] Total Dwell Time (ms) 200	(scans/sec) 10. Cycle Time (Hz)	(ms) 3 Resolution	(m/z) 97.50 Gain Factor	0.1 Calculated EMV 1659					
	Irme Ma O.00	ss Mass Inresnoid 29.00 150.00 0 (Group Name hexane	1, Number of lons 2	562 [N=2] Total Dwell Time (ms) 200 200	(scans/sec) 10. Cycle Time (Hz) 3.7425	(ms) 3 Resolution	(m/z) 97.50 Gain Factor 1.1 1.1	0.1 Calculated EMV 1659 1659					
	Ime Ma 0.00 3 ne Segments Time 0.00 5.30	ss Mass Inresnoid 29.00 150.00 0 (Group Name hexane ntromethane	1, Number of lons 2 2 2	562 [N=2] Total Dwell Time (ms) 200 200 200	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425	(ms) 3 Resolution Low	(m/z) 97.50 Gain Factor 1.1 1.1 1.1	0.1 Calculated EMV 1659 1659 1659					
	Imme Ma 0.00 3 ne Segments Time 0.00 5.30 6.10 6.10	ss Mass Inresnoid 29.00 150.00 0 Group Name hexane ntromethane chloroform	1, Number of lons 2 2 2 2	562 [N=2] ▼ Total Dwell Time (ms) 200 200 200 200	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425 3.7425 3.7425	(ms) 3 Resolution Low Low	(m/z) 97.50 Gain Factor V 1.1 V 1.1 V 1.1	0.1 Calculated EMV 1659 1659 1659 1659					
	Imme Ma 0.00	San Mass Inresnold 29.00 150.00 0 Group Name	Number of lons 2 2 2 2 2 2	562 [N=2] ▼ Total Dwell Time (ms) 200 2	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425 3.7425 3.7425 3.7425	(ms) 3 Resolution Low Low Low	(m/2) 97.50 97.50	0.1 Calculated EMV 1659 1659 1659 1659					
IM Time	Imme Ma 0.00	Sa Mass Inresnold Space Internation Space Internation Group Name Group Name Intromethane Chloroform dimethoxyethane trichloroethene	Number of lons 2 2 2 2 2 2 2 2	562 [N=2] Total Dwell Time (ms) 200 200 200 200 320	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425 3.7425 3.7425 3.7425 3.7425	(ms) 3 Resolution Low Low Low Low	(m/2) 97.50 97.50 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1	0.1 Calculated EMV 1659 1659 1659 1659					
,	Ime Ma 0.00	Sa Mass Inresnold Space Internation Space Internation Space Internation Group Name Intromethane Chloroform dimethoxyethane trichloroethene pyridine-hexano	Number of lons 2 2 2 2 2 2 2 4	562 [N=2] Total Dwell Time (ms) 200 200 200 200 320	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425 3.7425 3.7425 3.7425 3.7425 2.5826	(ms) 3 Resolution Low Low Low Low Low	(m/2) 97.50 97.50 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1 ▼ 1.1	0.1 Calculated EMV 1659 1659 1659 1659 1659					
	Ime Ma 0.00	Sa Mass Inresnold Space Internation Space Internation Space Internation Group Name Intromethane Chloroform dimethoxyethane trichloroethene pyridine-hexano	Number of lons 2 2 2 2 2 2 2 4	562 [N=2] Total Dwell Time (ms) 200 200 200 200 320	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425 3.7425 3.7425 3.7425 3.7425 2.5826	(ms) 3 Resolution Low Low Low Low Low	(m/2) 97.50 97.50 • Gain Factor • 1.1 • 1.1 • 1.1 • 1.1 • 1.1 • 1.1 • 1.1	0.1 Calculated EMV 1659 1659 1659 1659 1659					
SIM Time	Ime Ma 0.00	Sa Mass Inresnold Space Internation Space Internation Space Internation Group Name Intromethane Chloroform dimethoxyethane trichloroethene pyridine-hexano	Number of lons 2 2 2 2 2 2 2 4	562 [N=2] Total Dwell Time (ms) 200 200 200 200 320	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425 3.7425 3.7425 3.7425 3.7425 2.5826	(ms) 3 Resolution Low Low Low Low Low	(m/2) 97.50 97.50 Gain Factor 1.1 V V 1.1 V V 1.1 V V V 1.1 V V V V V V V V V V V V V	0.1 Calculated EMV 1659 1659 1659 1659 1659					
	Ime Ma 0.00	Sa Mass Inresnold Space Internation Space Internation Space Internation Group Name Intromethane Chloroform dimethoxyethane trichloroethene pyridine-hexano	Number of lons 2 2 2 2 2 2 2 4	562 [N=2] Total Dwell Time (ms) 200 200 200 200 320	(scans/sec) 10. Cycle Time (Hz) 3.7425 3.7425 3.7425 3.7425 3.7425 3.7425 2.5826	(ms) 3 Resolution Low Low Low Low Low	(m/2) 97.50 97.50 Gain Factor 1.1 V V 1.1 V V 1.1 V V V 1.1 V V V V V V V V V V V V V	0.1 Calculated EMV 1659 1659 1659 1659 1659					

Figure 8. SCAN/SIM setup pane from the MSD ChemStation for Class 2B solvents.

Coelutions can occur on the 624 phase when all three classes of solvents are considered. This usually is dealt with in FID systems by using a dual column configuration where the second channel uses a INNOWax column yielding a different elution order compared to the 624 phase. Using the MSD in SIM overcomes this problem when using just the 624 phase.

For new drug development and scale up of new formulations, the 5977 Series GC/MSD System can be a powerful tool. This system is also particularly well suited for the development of generic methods that do not need to follow USP <467> guidelines. When unknown peaks or solvents are present, this system may be the best solution to use. Sensitivity in SIM is also a major advantage when looking for low level impurities either known or unknown.

Table 4. SIM Groups for Class 2B Solvents

Group	Compound	SIM ions
1	Hexane	56,57
2	Nitromethane	46,61
3	Chloroform	83,85
4	Dimethoxyethane	45,60
5	Trichloroethene	130,132
6	Pyridine, 2-Hexanone	52,58,79,85
7	Tetralin	104,132

Conclusion

The Agilent 5977 Series GC/MSD System/Agilent 7890B GC/Agilent 7697A Headspace Sampler is capable of outstanding repeatability for the analysis of residual solvents. Use of the MSD is a powerful analytical tool for investigation of solvent impurities in pharmaceutical starting materials including the API and excipients. It is especially useful in drug discovery and process scale up where unknowns need to be identified.

In the 7697A Headspace Sampler, an inert sample path, thermal zones with stability of better than ± 0.1 °C of set point, and flexible EPC controlled vial sampling all contribute to the systems performance. Carryover was essentially nonexistent in this system. User programmable (flow rate and times) needle/loop purge, and vent line purge are used to effectively clean the system between runs.

The methods outlined in this work illustrate a number of possible strategies for the analysis of residual solvents using the 5977 Series GC/MSD System. Laboratories should perform system suitability studies and validate their proposed methods according to USP or ICH guidelines. The MSD configuration is particularity useful when the need for unknown identification arises, or in QA labs for unambiguous confirmation.

References

- USP 32-NF 27, General Chapter USP <467> Organic volatile impurities, United States Pharmacopeia. Pharmacopoeia Convention Inc., Rockville, MD, 8/2009.
- 2. Albert E Gudat and Roger L. Firor, "Improved Retention Time, Area Repeatability, and Sensitivity for Analysis of Residual Solvents", Agilent Application Note, Publication number 5989-6079EN.
- Roger L. Firor, "Analysis of USP<467> Residual Solvents with Improved Repeatability Using the Agilent 7697A Headspace Sampler", Agilent Application Note, Publication number 5990-7625EN.

- 4. Bart Tienpont, Frank David, Pat Sandra, and Roger L. Firor, "Analysis of USP<467> Residual Solvents using the Agilent 7697A Headspace Sampler with the Agilent 7890B Gas Chromatograph", Agilent Application Note, Publication number 5991-1834EN.
- Roger L. Firor, "Fast Analysis of USP 467 Residual Solvents using the Agilent 7890A GC and Low Thermal Mass (LTM) System", Agilent Application Note, Publication number 5990-5094EN.
- Roger L. Firor, "Optimizing Vial Pressurization Parameters for the Analysis of USP<467> Residual Solvents Using the 7697A Headspace Sampler", Application Note, Publication number 5990-9106EN.

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2013 Printed in the USA March 21, 2013 5991-2079EN

