A Presentation by OI Analytical

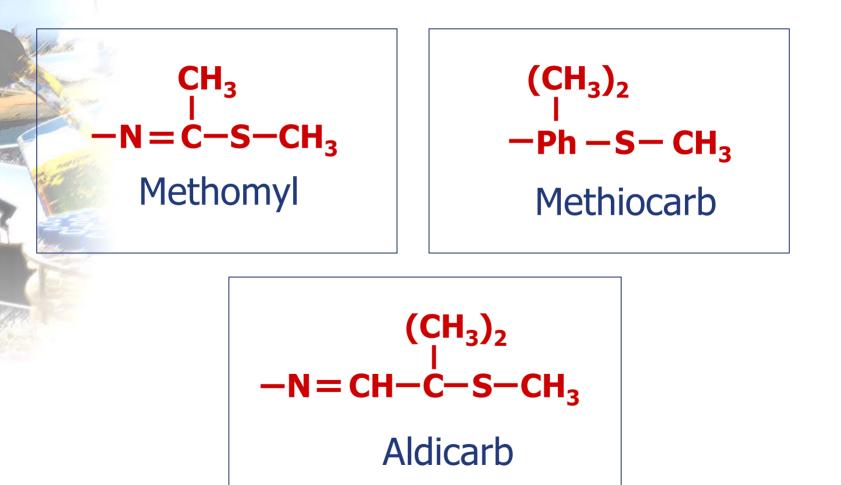
Analysis of Aldicarb, Methomyl, and Methiocarb by GC/PFPD in Under Five Minutes!

Laura Chambers and Michael L. Duffy, OI Analytical Prof. Aviv Amirav, Tel Aviv University

Background

- Carbamates are among the most widely used pesticides in the world
- Shown by the USEPA to pose a human health risk
- Many are included in the USDA Pesticide Data Program (PDP)
- Because these compounds are thermally labile, they are traditionally analyzed by HPLC with post-column derivatization and UV fluorescence

Chemical Structure


General structure for the *N*-methyl-carbamates:

 $\begin{array}{c} \mathbf{O} \\ \mathbf{H} \\ \mathbf{CH}_{3} - \mathbf{NH} - \mathbf{C} - \mathbf{O} - \mathbf{R} \end{array}$

Where R is a functional group. For the three carbamates analyzed here, the R group contains at least one sulfur.

R-Group Structure

HPLC Drawbacks

- Expensive and complex non-GC instrumentation
- Lower resolution

Advantages of Using GC/PFPD

- Fast analysis time; <5 minutes
- Simple detector; readily available GC technology
- Improved resolution
- No derivitization necessary
- The GC-PFPD system can also be used for OP pesticide analysis (cost effective instrumentation)

The Analytical Challenge

- Develop GC analytical configuration and conditions that will allow carbamate analysis at low GC temperatures
- Reduce thermal degradation at the column
- Reduce injector degradation
- Maintain sensitivity and repeatability

The Analytical Approach

- Reduce residence time in a cooler injector via higher column flow rate
- Use a short GC column (4 meters), and high column flow rates (5 mL/minute)
- Compounds will elute at lower temperatures

Theory

- Assume half the theoretical plates
 - Shorter column
 - Faster column flow rate
- Assuming constant elution time, analytes will spend twice the time at each adsorption site
- For each reduction in theoretical plates by half, double residence time is achieved by lowering column temperature by 20 °C
 - Experimentally determined

Theory (cont.)

- Thus, each time the number of theoretical plates is divided by 2 the elution temperature is dropped by 20 °C
- For this case, using a 4-meter column and 5 mL/minute column flow, reduced the elution temperature by as much as 100 °C
 - Compare to 30-meter column
 - Compare to 1 mL/minute column flow

Theory (cont.)

High column flow rate and low injection temperature also help to reduce compound degradation at the injector

– *140 °C*

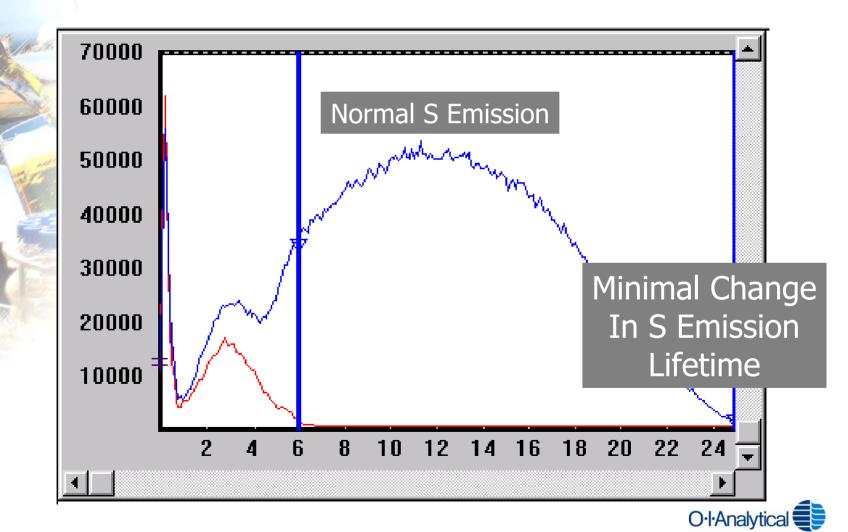
- Purge flow turned on at 0.2 minutes
- Some loss in GC resolution compensated for by the PFPD sulfur selectivity (S/C 10⁶ or better)
- Results in resolution and sensitivity better than or comparable to the LC method

Project Goals

- Develop GC configuration that allows fast, low-temperature elution of aldicarb, methomyl, and methiocarb
- Demonstrate linearity of calibration
 - Demonstrate repeatability
- Demonstrate performance in a matrix

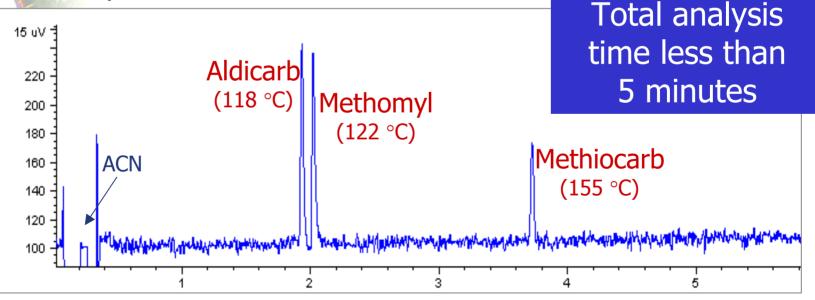
Sample Description

- Aldicarb, methomyl, and methiocarb
- Acetonitrile solvent
- Individual standards combined to make 10 ppm stock standard
- Dilutions to make six calibration standards, 50 ppb to 2,000 ppb
- Diluted to 100 ppb for repeatability study



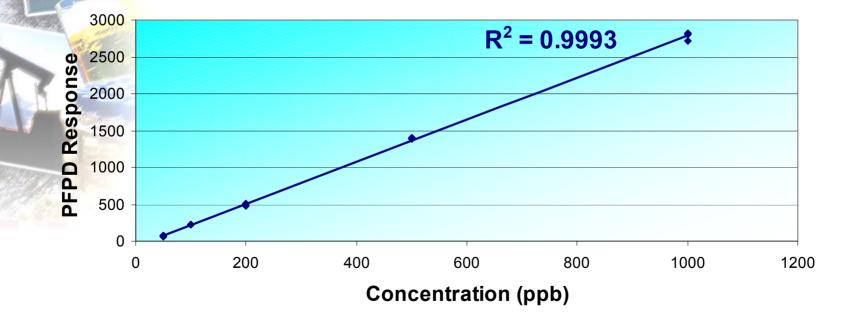
Instrument Conditions

Injector	Splitless, 140 °C, purge flow 20 mL/minute at 0.2 minutes, 4-mm single gooseneck liner without wool
Column	DB-5MS, 4 m x 0.25 mm I.D. x 0.25 µm film, 5 mL/minute column flow (He)
Oven	80 °C (no hold) 20 °C/minute to 180 °C, hold 1 minute Total run time 5 minutes or less
Detector	PFPD, 2-mm combustor, BG-12 optical filter, 200 °C, gases tuned for sulfur, 6–25 msec sulfur gate, linear mode

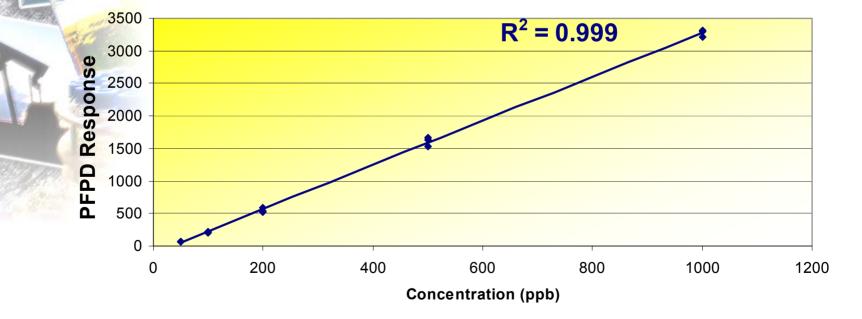


Sulfur Emission at 5 mL/min

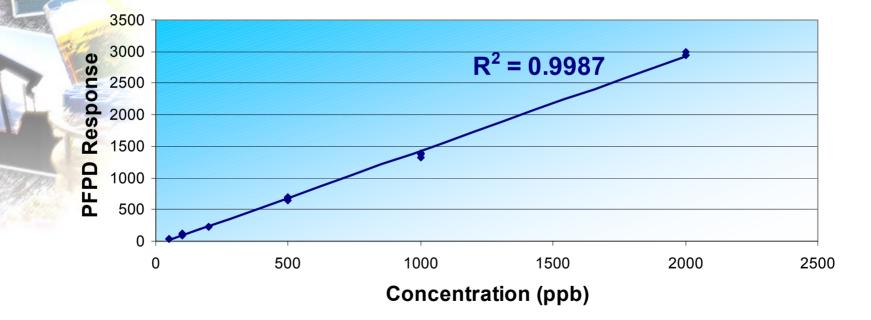
Chromatogram at 100 ppb


- 100 ppb each aldicarb, methomyl, and methiocarb
- Correlates to 20 ng/g (20 ppb) with 5 g/mL extracts
 - S/N of 10 or better

Aldicarb Calibration Curve

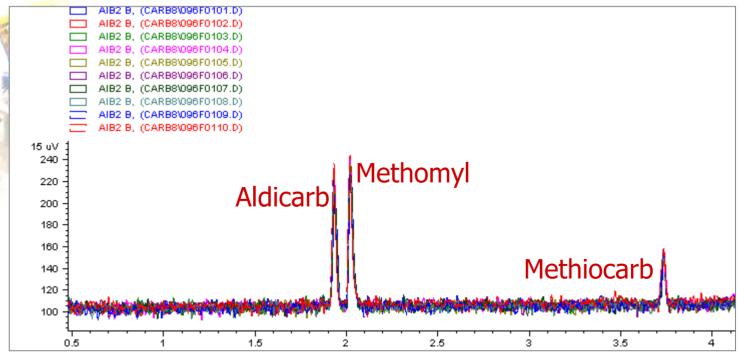

Calibration of Aldicarb on the PFPD 50 to 1,000 ppb

Methomyl Calibration Curve


Calibration of Methomyl on the PFPD 50 to 1,000 ppb

Methiocarb Calibration

Calibration of Methiocarb on the PFPD 50 to 2,000 ppb


Calibration Summary

Compound	Calibration Range	R ²
Aldicarb	50–1,000 ppb	0.9993
Methomyl	50–1,000 ppb	0.9990
Methiocarb	50–2,000 ppb	0.9987

Repeatability at 100 ppb

Overlaid chromatograms; n=10 100 ppb 1 µL splitless injections; 4-meter column

O·I·Analytical

Repeatability at 100 ppb

Run No.	Aldicarb	Methomyl	Methiocarb
1	181.3	229.2	67.9
2	175.7	232.1	83.1
3	190.5	232.3	71.2
4	196.7	221.4	71.3
5	184.8	215.3	78.5
6	173.1	216.5	70.7
7	171.2	210.2	60.7
8	201.0	214.1	69.8
9	179.5	196.7	77.4
10	177.8	195.6	81.4
Average	183.2	216.3	73.2
%RSD	5.5	<i>6.1</i>	9.4

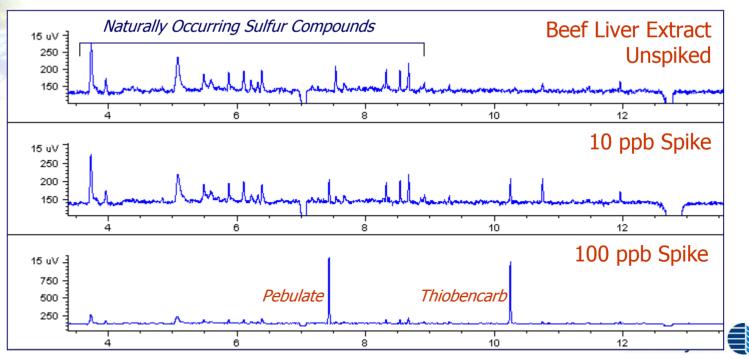
Repeatability Summary

%RSD for 10 replicate analyses at different concentrations

Compound	100 ppb	500 ppb	1 ppm
Aldicarb	5.5	4.0	2.5
Methomyl	6.1	6.8	3.9
Methiocarb	9.4	6.2	3.2

Summary

- Short column and high column flow rate resulted in lower elution temperatures by $\sim 100 \ ^{\circ}C$
- Lower elution temperatures reduced or eliminated thermal degradation of the pesticides
- Loss of GC resolution compensated for by the excellent PFPD S/C selectivity
- Resolution still better than LC method


Summary (cont.)

- Linear calibrations: R² >0.999
- Excellent repeatability: RSD <10%
- The other non-sulfur carbamates are less thermally labile (carbaril, carbofuran and propoxur) and can be analyzed using standard GC/MS methods

PFPD: Carbamates in Beef Liver

- Pebulate and thiobencarb at 10 ppb by a "conventional" GC/PFPD method (30-m column, ramping to 300 °C, 220 °C injection port, etc.)
- High PFPD S/C selectivity eliminates most of the usual matrix interferences

A Presentation by OI Analytical

For a thorough explanation of the low temperature elution of thermally labile compounds, see the following: "Extending the Range of Compounds Amenable for Gas Chromatography/Mass Spectrometry Analysis," A. Fialkov, A. Gordin, and A. Amirav, J. Chromatog. A., **991**, 217–240, 2003.

