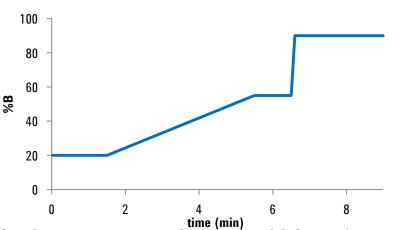

A Quantitative and Selective Analysis of Aldosterone and Cortisol in Plasma by LC-MS/MS for Clinical Research

Linda Côté, Kevin McCann, Rory Doyle, Joan Stevens, Mike Chang, Agilent Technologies, Santa Clara, CA

Introduction

Liquid chromatography triple guadrupole mass spectrometry (LC-MS/MS) is ideally suited for the rapid, simultaneous analysis of multiple analytes. The ability of an LC/MS system to identify compounds based on chromatographic retention and molecular mass is especially critical when dealing with an application such as steroid analysis. As demonstrated in Figure 1, all steroids share a common structure, making them difficult to differentiate by other methodologies. Through the use of LC-MS/MS, it is possible to confidently perform accurate quantitation.


A highly sensitive and specific method has been developed for the quantitation of two mineralocorticoids for clinical research – aldosterone and cortisol. The described method achieves the required functional sensitivity and is capable of quantitating analytes over a sufficiently wide dynamic range. The analysis is achieved through the use of ultra high performance liquid chromatography (UHPLC) to quickly separate compounds of interest from any interference. Two different sample preparation procedures are evaluated and compared.

Experimental

LC Instrumentation and Methodology

Chromatographic separation was achieved using an Agilent 1290 LC system consisting of one 1290 UHPLC binary pump, one well plate sampler with a thermostat and one temperature-controlled column compartment.

Parameter	Value
Analytical Column	Agilent Poroshell 120 EC-C18, 2.1 x 100 mm, 2.7
Column Temp	55°C
Injection Volume	40 µl
Autosampler Temp	4°C
Needle Wash	Flush port for 10 seconds
Mobile Phase A	2 mM NH4 Acetate in H ₂ 0
Mobile Phase B	2 mM NH4 Acetate in Methanol
Table 1. LC Parameters	S

Figure 3. LC gradient with a flow rate of 0.35 ml/min.

MS Instrumentation and Methodology

MS analysis was performed with an Agilent 6460 Triple Quadrupole Mass Spectrometer coupled with an Agilent JetStream Ionization Source.

lon mode:	AJS negative
Gas temperature:	350 °C
Drying gas (nitrogen):	8 L/min
Nebulizer gas (nitrogen):	35 psi
Sheath gas (nitrogen):	350 °C
Sheath flow:	10 L/min
Capillary voltage:	3000V
Nozzle voltage:	1500V
Q1/Q3 Resolution:	0.7 unit
Delta EMV:	500V

		Dwell	Frag (V)	CE (V)
359.2	331.2	50	110	12
359.2	189.1	50	110	16
366.2	338.3	50	110	12
361.2	297.2	50	130	32
361.2	282.1	50	130	40
365.2	286.2	50	130	40
	359.2 366.2 361.2 361.2	359.2 189.1 366.2 338.3 361.2 297.2 361.2 282.1	359.2 189.1 50 366.2 338.3 50 361.2 297.2 50 361.2 282.1 50	359.2 189.1 50 110 366.2 338.3 50 110 361.2 297.2 50 130 361.2 282.1 50 130

Sample Preparation

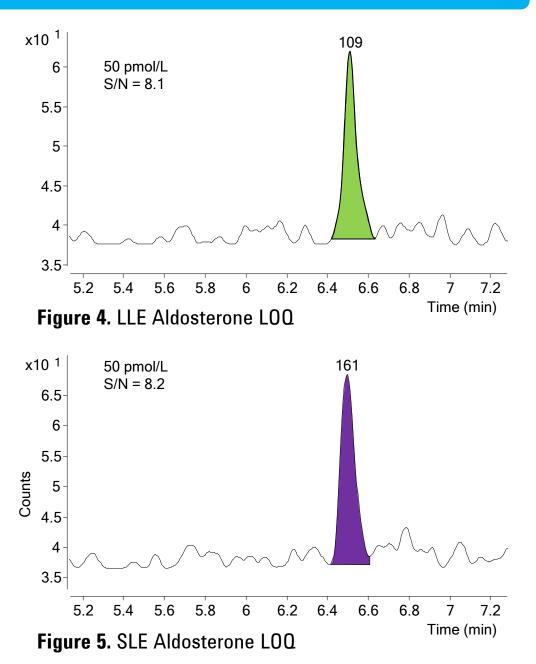
In additions to developing an accurate quantitative QQQ method, two sample preparation techniques were explored to ensure the optimal robustness and sensitivity were achieved. A liquid-liquid-extraction (LLE) procedure was developed and then adapted for use with Agilent's Versatube supported-liquid extraction (SLE) tubes. Half the amount of sample was used for the SLE procedure so a smaller SLE bed mass could be used, allowing the procedure to be done in the 96-well plate format. This simplified the sample handling, which in turn made the sample preparation faster.

Liquid-Liquid Extraction (LLE) Procedure

- Pipet 500 µL of each calibrator, QC, unknown and blank into a 10 mL glass tube
- Add 60 µL of ISTDs solution
- Add 2.5 mL of MTBE
- Vortex for 5 min
- Centrifuge for 5 min at 3000 RPM at 5°C to separate aqueous and organic layer
- Pipet 2 mL of the organic layer (top) into another tube, taking care to not disturb the aqueous/organic interface
- Evaporate under nitrogen at room temperature
- Reconstitute with 125 µL of 2 mM NH4 Acetate in MeOH:H2O 20:80
- Vortex for 1 min
- 10. Transfer into autosampler vial or plate

Supported-Liquid Extraction (SLE) Procedure

- Pipet 250 µL of each calibrator, QC, unknown and blank onto the SLE material
- Add 50 μ L of ISTDs solution
- Apply a short burst of vacuum and wait for 5 min to absorb the aqueous solution into the material
- Add 800 µL of MTBE and wait for 5 min to allow the MTBE to extract the analytes of interest
- Apply vacuum for 1 min. to elute MTBE
- Repeat the extraction with another 800 µL of MTBE
- Evaporate under nitrogen at room temperature
- Reconstitute with 125 µL of 2 mM NH4 Acetate in MeOH:H2O 20:80
- 9. Vortex for 1 min
- 10. Transfer into autosampler vial or plate


Results

LLE vs SLE: Aldosterone

When comparing the described LLE and SLE procedures, both achieved excellent linearity ($r^2 \ge 0.995$) and lower limits of quantitation (LLOQ = 50 pmol/L with $S/N \ge 6$ and %RSD <10%). It is important to notice, however, these results are achieved with half the amount of sample with the SLE protocol.

	Range	Equation	R ²
LLE	50-7000 pmol/L	y=9.99e-4*x-7.00e-4	0.998
SLE	50-7000 pmol/L	y=5.77e-4*x-9.78e-4	0.997
Table 3	3. LLE vs SLE Aldostero	ne calibration curves	

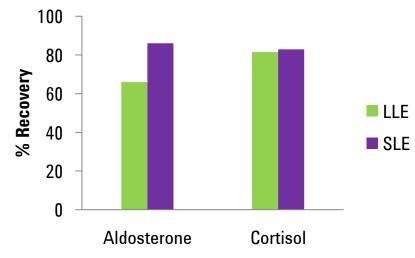
LLE	7.26	9.19
SLE	7.64	10.13
LLE	7.15	7.93
SLE	6.34	10.42
LLE	0.70	4.02
SLE	3.55	8.69
	LLE SLE LLE	LLE 7.15 SLE 6.34 LLE 0.70

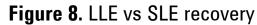
ASMS 2012 Poster #MP-473

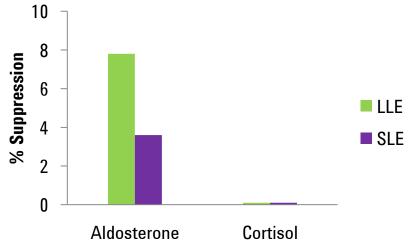
Agilent Technologies

Results and Discussion

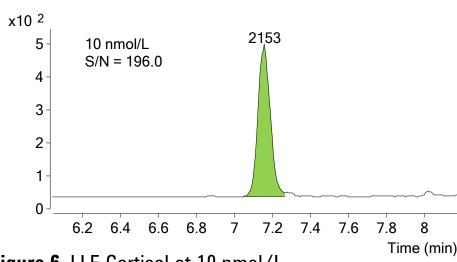
LLE vs SLE: Cortisol


When comparing the described LLE and SLE procedures, both achieved excellent linearity ($r^2 \ge 0.995$). For the purposes of this experiment, a LLOQ was not determined. However, at the lowest concentration calibrator the, SLE procedure resulted in a better signal-to-noise ratio despite a lower response. Further optimization of the SLE procedure could improve the recovery of cortisol.


	Range	Equation	R ²
LLE	10-1500 nmol/L	y=0.007*x-0.035	0.998
SLE	10-1500 nmol/L	y=0.004*x-0.019	0.996


Table 5. LLE vs SLE Cortisol calibration curves

Cortisol	Extraction	Intraday	Interday
QC 1	LLE	4.08	2.96
	SLE	2.93	4.15
QC 2	LLE	2.61	2.00
	SLE	1.49	2.02
QC 3	LLE	1.55	1.68
	SLE	1.20	4.91
Table 6 Cort	isol intra- and inte	rdav reproducibi	lity


Table 6. Cortisol intra- and interday reproducibility

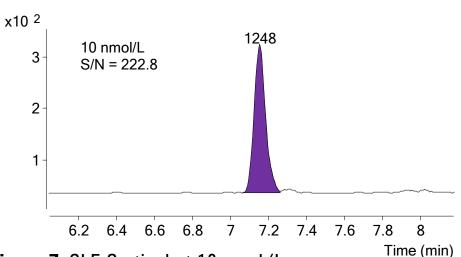


Figure 7. SLE Cortisol at 10 nmol/L

Recovery, Suppression

SLE greatly improved the recovery and suppression for aldosterone over LLE. Equivalent results have been demonstrated for cortisol (Figures 8 and 9)

Interferences

11-deoxycortisol, corticosterone, 17-hydroxyprogesterone, androstenedione, DHEA , DHEAS, progesterone and testosterone were injected at appropriate concentrations to investigate chromatographic interferences. No interfering peaks were observed at the retention times for aldosterone or cortisol.

Conclusions A robust and accurate quantitative LC/MS/MS method has been developed for the simultaneous determination of aldosterone and cortisol in plasma. A comparison of LLE and SLE procedures showed significant improvements for aldosterone and equivalent results for cortisol when using SLE while only using half as much sample material. The easy to handle 96-well plate format of the SLE also improved the efficiency of sample preparation.

Reference

J Clin Pathol, 457-462, Vol 65, No 5, 2012, Van Der Gugten JG, Dubland J, Liu H-F, et al. J Clin Pathol

Agilent LC/MS products are for research use only and not to be used in diagnostic procedures