Ultrafast Analysis of an Immunosuppressant Drug Panel in Whole Blood Using a High-Throughput SPE/MS/MS System

Kari E. Schlicht¹, Pierre Wallemacg², Vaughn P. Miller¹, and William A. LaMarr¹ 1. Agilent Technologies Inc., Wakefield, MA 2. Cliniques Universitaires St-Luc, UCL, Brussels, Belgium

Introduction

In many clinical research laboratories, liquid chromatography-mass spectrometry (LC/MS) methods of analysis of immunosuppressant drugs have proven superior because of their increased sensitivity and selectivity. We evaluated the ability of an ultrafast SPE/MS/MS system to simultaneously analyze tacrolimus, everolimus, sirolimus, and cyclosporin A in whole blood with much faster sample cycle times and similar analytical results compared to LC/MS/MS assays.

Experimental

The SPE/MS/MS system consisted of an Agilent RapidFire 360 and an Agilent 6460 triple quadrupole mass spectrometer. The RapidFire cycle consisted of five states: aspirate, load/aqueous wash, extra wash with 50% methanol, elute, and re-equilibration (Table 1). All four immunosuppressant drugs and their corresponding internal standards were simultaneously measured using a 12 MRM panel (Table 2).

Table 1. RapidFire Conditions

RapidFire Conditions
Buffer A: 10 mM ammonium acetate + 0.09% Formic acid + 0.01% TFA
Buffer B: 50% Methanol
Buffer C: 10 mM ammonium acetate in methanol + 0.09% FA + 0.01% TFA
10µl injection
C18 Agilent RapidFire SPE cartridge
RF State 1 (aspirate): sip sensor
RF State 2 (load/wash) 3000 ms
RF State 3 (extra wash) 2000 ms
RF State 4 (elute) 3500 ms
RF State 5 (re-equilibrate) 500 ms

Table 2. 12 MRM Panel

Analyte	01	0.3	Dwell	Fragmentor	CE
Tacrolimus quantifier	821.9	768.5	10	145	17
Tacrolimus qualifier	821.9	786.5	10	145	13
Ascomycin	809.6	756.5	10	125	17
Everolimus quantifier	975.6	908.6	10	170	15
Everolimus qualifier	975.6	926.8	10	170	10
Everolimus-d4	979.6	912.7	10	180	10
Sirolimus quantifier	931.6	864.6	10	175	12
Sirolimus qualifier	931.6	882.2	10	175	8
Sirolimus-d3	934.6	864.5	10	180	18
Cyclosporin A quantifier	1219.8	1202.8	10	170	12
Cyclosporin A qualifier	1202.9	1184.8	10	200	30
Cyclosporin A-d4	1223.9	1206.9	10	170	12

Calibration standards for tacrolimus, sirolimus, everolimus (0.8-50 ng/mL), and cyclosporin A (15.6-1000 ng/mL) were prepared by spiking all four drugs into bovine whole blood. Commercially available quality control standards made in whole blood were prepared according to the manufacturer's instructions. The whole blood samples were mixed with water and precipitated using a zinc sulfate and methanol solution containing the internal standards. Precipitated samples were gently mixed and then centrifuged. Following centrifugation, supernatants were transferred to a 96-well plate for analysis.

Human samples were independently analyzed by LC/MS/MS at UCL and aliquots of identical samples analyzed by RapidFire.

Table 3. QQQ MS Conditions

QQQ Conditions			
Gas temperature	225°C	Sheath gas temperature	325°C
Gas flow	9 L/min	Sheath gas flow L/min	12
Nebulizer	40 psi	Nozzle voltage	300 V
Sheath gas temperature	325°C	Capillary voltage	4000 V

0.6-AUC/AUC IS t 0.2

Experimental

Figure 1. Representative standard curve and Intra- Interday data for Everolimus

Figure 3. Representative standard curve and Intra- Interday data for Tacrolimus

Figure 4. Representative standard curve and Intra- Interday data for Cyclosporin A

- blood.
- seconds per sample.
- method.

MSACL 2013 Poster # 20

Results and Discussion

The RapidFire method for all four analytes had excellent linearity within their respective measured ranges with an R² value greater than 0.995. Signal-to-noise ratios were calculated by looking at peak to peak height and found to be greater than 40:1 at the limit of quantitation for all four analytes.

To further evaluate this method, identical human samples were analyzed. The human samples were independently analyzed by LC/MS/MS at UCL and aliquots of identical samples analyzed by RapidFire. Excellent correlation was found for the two methods.

Conclusions

• Cyclosporin A, everolimus, sirolimus, and tacrolimus were accurately and precisely measured in whole

• All four immunosuppressant drugs were simultaneously analyzed in a 12 MRM panel in less than 13

• Human samples correlated well with identical samples ran independently by a traditional LC/MS/MS

• While the analytical results were comparable to LC/MS/MS, the analysis time was approximately 10 times faster. This methodology is capable of throughputs >270 samples per hour.