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ABSTRACT

Comprehensive two-dimensional gas chromatography (GCxGC) is
a new technology for chemical separation. Peak template match-
ing is a technique for automatic chemical identification in GCxGC
analysis. Peak template matching can be formulated as a Largest
Common Point Set problem (LCP). Minimizing Hausdorff dis-
tances is one of the many techniques proposed for solving the
LCP problem. This paper proposes two novel strategies to search
the transformation space based on Markov Chain Monte Carlo
(MCMC) methods. Experiments on seven real data sets indicate
that the transformations found by the new algorithms are effective
and searching with two Markov chains is much faster than search-
ing with one Markov chain.

1. INTRODUCTION

Comprehensive two-dimensional gas chromatography (GCxGC) is
a new technology for chemical separation that provides an order-
of-magnitude increase in separation capacity over traditional GC
[1, 2]. GCxGC separates chemical species with two capillary col-
umns interfaced by two-stage thermal desorption. Given a chem-
ical sample, the GCxGC output can be visualized as a 2D image,
with pixels arranged so that the X-axis (left-to-right) and the Y-
axis (bottom-to-top) are the elapsed times for the first and second
column separation respectively. Each pixel value indicates the rate
at which molecules are detected at a specific time. Each chem-
ical substance in the chemical sample produces a small peak or
cluster of pixels in the image with values that are larger than the
background values.

The goal of GCxGC analysis is to separate, quantify, and iden-
tify specific chemicals in a sample. The major image analysis tasks
include segmenting the image into individual peaks and back-
ground, measuring peaks, and identifying the chemical for each
peak of interest. GCxGC images easily contain several thousand
chemical peaks. Manually annotating the peaks is tedious and
time-consuming. Peak template matching offers a way to speed
the annotation process.

A peak templateP is a set of peaks whose corresponding
chemicals are known. A target peak setQ is a set of peaks whose
corresponding chemicals are to be determined. GivenP andQ,
the objective of template matching is to establish as many corre-
spondences as possible from the peaks inP to the peaks inQ.
After the correspondences are established, the information carried
by source peaks is copied to target peaks and the chemical identi-
fication is achieved.

A peak has many features such as peak location, area, volume, shape, etc. 
In this paper, only peak location (the coordinates of the pixel with the largest 
value within the peak) is used for matching. As such, the peak template and 
the target peak set can be abstractly
represented by two point sets in two-dimensional space.

i=1Let P = {pi(xi, yi)}m be the point template and Q =
{qi(ui, vi)}n

i=1 be the target point set. The peak template match-
ing problem can be posed as the Largest Common Point Set (LCP)
problem [3, 4].

Given point template P , target point set Q, par-

tial directed Hausdorff distance d~k
H , transformation space 

T , and the desired number of points in P to
be matched k, compute:

min
t∈T

{
d~k

H(t(P ), Q)

}
.

Generally, P may not be congruent to Q or any subset of Q. The above 
formulation is merely intended to match a subset of P to a subset of Q and 
minimize the distance. The solution to the LCP problem is a transformation. 
From the transformation, the corre-spondence from P to Q is then computed.

The partial directed Hausdorff from P to Q is defined as [5]:

d~k
H(P, Q) = max

p∈P

k min
q∈Q

‖p − q‖

where ‖p − q‖ is the Euclidean distance between point p and point q, and 
maxk means taking the kth largest distance. The par-tial directed Hausdorff 
distance is a good choice here because it has the effect of matching part of P 
to part of Q. In addition, it is not required to specify which part of P is to be 
matched. When k = |P |, the partial directed Hausdorff distance becomes

the directed Hausdorff distance which is denoted by d~
H(P, Q). The partial 

directed Hausdorff distance can be computed in time O((m + n) log(m + 
n)) [5].

Minimizing Hausdorff distances is one of the many techniques proposed 
for solving the LCP problem. This technique uses Haus-dorff distance (or its 
variations) as the similarity measure and searches the transformation space 
for a transformation that min-imizes the Hausdorff distance. The search 
strategies proposed in the literature include exact computation [6, 7], 
rasterization of the upper envelope of Voronoi surfaces [5], transformation 
space sub-division [7], multi-instance learning [8], etc.

In this paper, we propose using Markov chain Monte Carlo (MCMC) 
methods to search the transformation space. MCMC methods are general 
tools for simulating complex distributions by ergodic Markov chains [9]. 
When used for solving optimization

MCMC-BASED PEAK TEMPLATE MATCHING  
FOR GCXGC



i n s p i r a t i o n m e e t s i n n o v a t i o n !


Your supplier of GCXGC and LCXLC software

problems, MCMC methods map the objective functions to some
probability distributions and search the parametric space for a point
that optimizes the objective function [9].

2. THE MCMC-BASED SEARCHING ALGORITHMS

In the LCP problem, the goal is to minimize the objective function
d~k

H(t(P ), Q). We define a distributionπ on a finite transformation
spaceT as:

π(t) =
exp(−d~k

H(t(P ), Q))

Z ∫
wheret ∈ T andZ is a normalization factor such that π(t)dt =

T

1.0 . Becauseπ(t) andd~k
H(t(P ), Q) are inversely related, if some

t maximizesπ(t), it minimizesd~k
H(t(P ), Q). So the solution to

the LCP problem isargmax π(t).

2.1. Searching with one Markov chain

In this paper, the Metropolis-Hastings algorithm [10] is used to
search the transformation spaceT by sampling. The algorithm
samplesT according toπ by performing random walk on a Markov
chain whose state space isT . The walk starts with some initial
transformation (state) and makes each transition as follows: a new
transformationt′ is proposed from an uncorrelated Gaussian distri-
butionN(t, Σt), where the mean valuet is the current transforma-
tion andΣt is a diagonal covariance matrix. The new transforma-
tion t′ will be accepted with the Metropolis-Hastings acceptance
probability:

At(t
′) = min

{
1,

π(t′)Gt′(t)

π(t)Gt(t′)

}

whereGt′(t) andGt(t
′) are the pdf’s ofN(t′, Σt′) andN(t, Σt).

If d~k
H(t′(P ), Q) < d~k

H(t(P ), Q), t′ is always accepted (At(t
′) =

1.0).
In the experiments presented in Section 3, the sameΣ is used

for every state. In such a case,At(t
′) is simplified as:

At(t
′) = min

{
1, exp(d~k

H(t(P ), Q)− d~k
H(t′(P ), Q))

}
.

2.2. Searching with two Markov chains

One difficulty with the above searching algorithm is how to setΣt.
If standard deviations inΣt are too large, the proposed new trans-
formation stays away from the current transformation with high
probability. As a consequence, the Markov chain tends to make
big jumps in the transformation space, overshooting the global op-
timal transformation. On the other hand, if standard deviations in
Σt are too small, the proposed new transformation may oscillate
around a local optimal transformation [9].

The selection ofΣt becomes easier when using two Markov
chains instead of one. Then, the searching algorithm runs two
Metropolis-Hastings processes,<g and<l, simultaneously. Pro-
cesses<g and<l use two different covariance matrices,Σg and
Σl, with larger standard deviations forΣg and smaller standard
deviations forΣl. The start transformation of<l is set to the
best transformation that<g has found so far after each fixed num-
ber of steps. The algorithm can be roughly thought of as a two-
level multi-resolution searching, where process<g looks through

T quickly for a good start point at the course resolution and pro-
cess<l starts from that point and searches its neighborhood at the
fine resolution.

3. EXPERIMENTAL RESULTS

3.1. Data sets

The seven data sets, summarized in Table 1, were acquired at three
different laboratories on three different GCxGC instruments. Each
data set has several images generated from the same chemical sam-
ple or from related samples with the same chemicals. Selected
peaks in each data set were annotated usingGCImageTM soft-
ware [11]. The selected peaks form a peak set for each image.
Peak correspondences across images in each data set were estab-
lished for testing the effectiveness of the algorithm. Also, for com-
putational stability, peak locations are normalized. The normaliza-
tion is done for each data set separately. Let(µx, µy) and(σx, σy)
be the mean and standard deviation of the peak locations in some
data set. Then, the peak location(x, y) in that data set is normal-
ized as: {

x′ = x−µx
(σx+σy)/2

y′ =
y−µy

(σx+σy)/2

where(x′, y′) is the new peak location.

Table 1. Data sets
Data set Number of images Number of selected

peaks
D2287 sdalk 3 15
D2287 sdgas 3 580
Doixin 3 26
GCC2002 12 14
Linearity 5 18
NYSDH 5 10
PCB 4 17

3.2. EstimatingT

The transformation model used in this paper is global constrained
affine transformation. The global constrained affine transforma-
tion fromp(xp, yp) to q(uq, vq) is:

[
uq

vq

]
=

[
sx hx(= 0.0)
hy sy

] [
xp

yp

]
+

[
tx

ty

]

with hx set to0.0 because thex coordinates (first column separa-
tion time) are independent of they coordinates (the second column
separation time) in GCxGC images. Experimental results (not re-
ported here) indicate that the above transformations work well for
largely removing image-to-image distortions.

Given the global constrained affine transformation model, the
complexity of finding a matching primarily depends on the ranges
that the transformation parameters vary. If all five parameters vary
freely, searching for a solution is expensive. However, experiments
show that the least-squares optimal transformations are clustered
in the transformation space. Consequently, a search over a small
region typically will find a good matching.
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Given a training data set, optimal transformations are com-
puted from each peak set to every other peak set based on least-
squares estimation. An uncorrelated Gaussian modelN(µ, Σ) is
then fit to the distribution of the resultant transformations using
common techniques such as those in [12].T is set∫to be a rectangu-
lar regionA in the transformation space, where N(µ, Σ)dt ≥

A
certain probability threshold and t is a variable defined in
transformation space. Figure 1 and 2 illustrate the spatial distri-
butions of the scale parameters and translation parameters of the
transformations generated from the seven data sets.
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Fig. 1. Scale parameter distribution.
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Fig. 2. Translation parameter distribution.

3.3. Selecting the standard deviations

In the experiments described in Section 3.4 and 3.5, when one
Markov chain is used, the standard deviations ofΣ is set to those
of the covariance matrix of the Gaussian distribution that models
the transformation space (See Section 3.2). When two Markov
chains are used,Σg is set to be theΣ. For Σl, the standard de-
viations are selected based on the desired matching accuracy. For
example, if the desired matching accuracy isE, we setΣl such

that
∫

E(0)
N(0, Σt)dt ≥ certain probability threshold. Here,

the accuracy is defined as the neighborhoodE(q) around a target
point q. Template pointp is said to be matched to target pointq if
p lies inE(q). It is clear that the smaller theE, the more accurate
the matching.

3.4. Effectiveness of transformations found by the MCMC-
based searching algorithms

For point templateP and target point setQ, assume that the
MCMC-based searching algorithms return transformationtf , and
based ontf the point correspondences betweenP andQ are then
computed. To evaluate the effectiveness oftf , d~H(tf (P ), Q) is
computed and compared tod~H(to(P ), Q), whereto is the least-
squares optimal transformation. The experimental results on the
seven data sets are reported in Table 2. Note that when one data
set is used for testing, all other six data sets are used as training
data for estimating the search range and the standard deviations.
Also, within the testing data set, one peak set is selected to be the
template, and all others are target sets. Table 2 only reports the
average distances for each data set. The average number of steps
used to find the transformations are described in Section 3.5. The
results show that the transformations found in limited steps by the
algorithms work well compared to the least-squares optimal trans-
formations. For four out of the seven data sets, the algorithms
found better transformations in terms ofd~H , which is the objec-
tive function. For the other data sets, the results of the algorithms
are comparable to the least-squares optimal transformations.

Table 2. Effectiveness of the transformations found by the
MCMC-based searching algorithm.

Data set d~H(to(P ), Q) d~H(tf (P ), Q)
D2287 sdalk 0.0382 0.0369
D2287 sdgas 0.0436 0.0385
Doixin 0.0415 0.0430
GCC2002 0.0902 0.0728
Linearity 0.0711 0.0613
NYSDH 0.0404 0.0422
PCB 0.0492 0.0498

3.5. Computational efficiency

The experiments in this section evaluate and compare the compu-
tational efficiency of the two MCMC-based searching algorithms.
Because the behavior of MCMC methods depends on random
number generation and thus varies from one run to another, the
experiments run the two algorithms 20 times under the same con-
figuration and report only the average results.

The average numbers of steps that the two algorithms take to
find tf (see Section 3.4) are reported in Figure 3 and 4. For the
results in Figure 3, both algorithms start with identity transforma-
tion. For the results in Figure 4, both algorithms start with some
identical randomly generated transformation inT . The results
clearly indicate that searching with two Markov chains is statis-
tically much more efficient than searching with one Markov chain.
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Fig. 3. Comparison of the two algorithms with the initial state
being identity transformation.
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Fig. 4. Comparison of the two algorithms with the initial state
being a random transformation inT .

4. CONCLUSION

Peak template matching is an automatic chemical identification
method for GCxGC. This paper proposes two novel MCMC-based
searching algorithms for solving the problem. Experiments indi-
cate that the algorithms work effectively. On average, the algo-
rithms find transformations with smaller partial directed Hausdorff
distances than the least-squares optimal transformations. Experi-
ments also show that searching with two Markov chains is statisti-
cally much faster than searching with a one Markov chain.

Our future work includes:

• trying different formulations of the distributionπ(t),

• using more data sets to test the searching efficiency of the
searching algorithms, and

• adjusting standard deviations based on some local proper-
ties of the transformation space to accelerate the searching.
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