

MassHunter Forensics and Toxicology PCD or PCDL

Quick Start Guide

What is the MassHunter Forensics and Toxicology PCD or PCDL? 3 PCD 3 Broecker, Herre & Pragst PCDL 4 Kit Contents 5 Where to find more information 7 Before You Begin 8 Installation 8 Required reagents and parts (to run test mix) 9 Alternative configuration 9 Running the Test Mix 10 To run the Checkout Mix 11 To bypass mixer and damper 14 Using MassHunter Qualitative Analysis to Identify Compounds 16 To identify compounds using the MassHunter Qualitative Analysis program 16 To identify spectrum peaks using the MassHunter Qualitative Analysis program (PCDL only) 16 Familiarization Exercises - Compound Search 17 Exercise 1. Process and interpret data with Find by Formula 18 Exercise 2. Process and interpret data with Defined Extracted Ion Chromatograms 25 Exercise 3. Process and interpret data with Find by Molecular Feature Extractor 28 Exercise 4. Process data automatically using Worklist Automation 32 To develop a custom PCD or PCDL 35 Familiarization Exercises - Targeted MS/MS Analysis with Identification by Library Search 36 Exercise 1. Set up the targeted MS/MS method 37

Exercise 2. Process the data 42
Exercise 3. Automate the process with worklist actions 51
Familiarization Exercises - Auto MS/MS Analysis with Identification by Library Search 54
Exercise 1. Learn about the content of an Auto MS/MS data file 54
Exercise 2. Optimize the number of data points 60
Exercise 3. Process the data and automate 62
Reference 67
Checkout Mix Content 67
Forensics and Toxicology LC Parameters 68
Forensics and Toxicology LC/MS Parameters 70
Forward vs. Reverse Library Search 74

What is the MassHunter Forensics and Toxicology PCD or PCDL?

The MassHunter Forensics and Toxicology Personal Compound Database (PCD) and the accurate mass Personal Compound Database and Library (PCDL), along with the included methods and example test mix data, lets you screen analytes of forensic and toxicological interest in a single LC/MS analysis.

The G6855AA or G3876AA Forensics and Toxicology PCD or PCDL Kit also includes the column and test mix to acquire example data. The search is done using the MassHunter Forensics and Toxicology PCD or the MassHunter Forensics and Toxicology PCDL.

The PCDL contains accurate mass MS/MS spectra for some compounds, in addition to accurate mass information for all compounds in the PCD.

PCD

The PCD lets you screen over 9000 analytes all in a single LC/MS analysis.

The MassHunter Forensics and Toxicology PCD kit helps minimize method development time for your analysis. The database stores accurate mass values, as well as retention time values and other information that you add to compounds in the database. Subsets of the database can also be created. These subsets can contain different lists of compounds which have different retention times associated with them, allowing the database collection to be tailored to the specific needs of your laboratory.

The high mass accuracy of the Agilent time-of-flight (TOF) and tandem quadrupole time-of-flight (Q-TOF) LC/MS instrument provides the capability to screen and identify all compounds in the database that are detected by their exact mass and retention time (if known). Retention times can be a search criterion specified as not required (non-targeted screen), as optional providing a targeted and non-targeted forensic and toxicological screen, or required (targeted screen only).

Broecker, Herre & Pragst PCDL

The *Broecker*, *Herre & Pragst* Forensics and Toxicology PCDL lets you screen 9000 analytes with accurate mass database and/or perform a compound library search for over 3500 compounds. The MassHunter Forensics and Toxicology PCDL kit helps minimize method development time for your analysis.

The master Forensics and Toxicology *Broecker*, *Herre & Pragst* PCDL can be used as is, or as the basis of your own customized PCDL. Your customized PCDL can store the retention times for compounds you analyze. You can add, remove and change the compounds in your PCDL to meet the specific needs of your laboratory and your analyses. You can also add your own spectra to your customized PCDL, in addition to those provided in the master PCDL. With MassHunter Qualitative Analysis B.07.00, you can run a database search to identify compounds, and then send the MS/MS spectra to your customized PCDL. You can also filter spectral noise and correct the product ions to their theoretical accurate mass.

The high mass accuracy of the Agilent tandem quadrupole time-of-flight (Q-TOF) LC/MS instrument provides the capability to screen all compounds in the library that are detected by their exact mass and retention time (if known). Searching the library can then identify the compounds found by comparison to their accurate product ion mass spectra. Retention times can be a search criterion specified as not required (non-targeted screen), as optional providing a targeted and non-targeted forensic and toxicological screen, or required (targeted screen only). With the Q-TOF, detection of unknowns (compounds not in the library), and identification using the MS/MS spectra, is also possible.

Kit Contents

Quick StartMassHunter Forensics and Toxicology PCD or PCDL Quick Start GuideThe QuickGuidesStart Guide gives an overview of the MassHunter Forensics and Toxicology
PCD or PCDL and tells you how to use it.The Quick

MassHunter Personal Compound Database and Library Manager Quick Start Guide The Quick Start Guide gives you an overview of the MassHunter Personal Compound Database and Library Manager and tells you how to use it with the MassHunter Forensics and Toxicology PCD or PCDL.

Installation and Supplemental Discs

Each kit includes the MassHunter Personal Compound Database and
 Library Manager disc. Each kit also contains either the MassHunter
 MassHunter Forensics and Toxicology PCD disc or the MassHunter
 Forensics and Toxicology PCDL disc.

MassHunter Forensics and Toxicology PCD or PCDL disc This disc contains:

- MassHunter Forensics and Toxicology PCD (ForTox_AM_PCD.cdb) or MassHunter Forensics and Toxicology PCDL (ForTox_AM_PCDL.cdb)
- Test Mix database:
 - ForTox_Std.cdb
- MassHunter Forensics and Toxicology PCD or PCDL Quick Start Guide (PDF)
- Technical notes
- Application notes

Kit Contents

- TOF/Q-TOF LC/MS methods to run and analyze the test mix:
 - ForTox_TestMix_MS.m
 TOF/Q-TOF acquisition method for MS-only analysis (positive mode)
 - ForTox_TestMix_MS_DA.m
 TOF/Q-TOF data analysis method for MS-only analysis
 - ForTox_TestMix_TMSMS.m
 Q-TOF acquisition method for targeted MS/MS analysis
 - ForTox_TestMix_TMSMS_DA.m
 - Q-TOF data analysis method for targeted MS/MS analysis
 - ForTox_TestMix_AMSMS.m
 Q-TOF acquisition method for auto MS/MS analysis
 - ForTox_TestMix_AMSMS_DA.m
 - Q-TOF data analysis method for auto MS/MS analysis
- Example data files:
 - ForTox_TestMix_MS.d
 - ForTox_TestMix_TMSMS.d
 - ForTox_TestMix_AMSMS.d
- Example reports
- MassHunter Forensics and Toxicology PCD or PCDL Comprehensive Test Mix *Method Setup Guide*

MassHunter Personal Compound Database and Library Manager disc This disc contains:

- MassHunter Personal Compound Database and Library Manager
- MassHunter Personal Compound Database and Library Manager Quick Start Guide (PDF)
- Software license agreements
- Example data

Other Parts If you purchase the G6855AA or G3876AA Forensics and Toxicology PCD or PCDL Kit, you also receive these parts.

ZORBAX LC Column (p/n 959757-902) Eclipse Plus C18, 2.1 mm × 50 mm, 1.8 μm.

ZORBAX LC Column (p/n 959758-902) Eclipse Plus C18, 2.1 mm × 100 mm, 1.8 μm.

Poroshell 120 Column (p/n 693775-902) EC-C18, 2.1 mm × 150 mm, 2.7 μm.

LC/MS Forensic/Toxicology Checkout Test Mix (p/n 5190-0556) Test mix containing 13 analytes of interest for your test runs. The contents are listed in "Checkout Mix Content" on page 67.

Where to find more information

Application Notes and Publications You can find information about the MassHunter Forensics and Toxicology PCD or PCDL in the application notes and publications included on the MassHunter Forensics and Toxicology PCD or PCDL disc.

Go to http://www.chem.agilent.com/ for the most current information on Agilent products.

Before You Begin

Installation

To run the test mix

- **1** Check that the Agilent 1200 Infinity Series LC is properly installed and verified.
- **2** On the Agilent 1200 Series Binary Pump SL, check that the mixer and damper are bypassed. See "To bypass mixer and damper" on page 14 for details.
- **3** Check that the 6500 Series LC/MS (PCD or PCDL) or 6200 Series LC/MS (PCD only) is properly installed and verified.

To do compound and library searches

- **1** Check that the following programs are properly installed:
 - MassHunter Data Acquisition B.05.00 or higher
 - MassHunter Qualitative Analysis B.07.00 or higher
- 2 Install the MassHunter Personal Compound Database and Library Manager. Refer to the MassHunter Personal Compound Database and Library Manager Quick Start Guide.
- **3** Install the MassHunter Forensics and Toxicology PCD or PCDL:
 - **a** Insert the database disc into the disc drive.
 - **b** In the welcome screen, click **Forensics and Toxicology PCD** (or **PCDL**) **Installation**.
 - **c** Read the instructions to install the database, then click the command to install the MassHunter Forensics and Toxicology PCD or PCDL and the Test Mix PCDL.
- **4** Copy the methods from the MassHunter Forensics and Toxicology PCD or PCDL disc to the **MassHunter\Methods** folder on your computer.

Required reagents and parts (to run test mix)

- Methanol, highest purity
- 5M Ammonium Formate (p/n G1946-85021)
- Formic acid, highest purity (Agilent p/n G1946-85201 or equivalent)
- ZORBAX LC Column (p/n 959758-902)

Alternative configuration

The sample methods and data files from the test mix are all based on the configuration described in the installation instructions. Any Agilent Q-TOF LC/MS instrument configuration can be used for library search screening and identification, but not all configurations have been tested. No retention times are provided with the library. You can create as many custom libraries as you need for your use. These libraries can be named to distinguish your chromatographic conditions and the matrices for which they are intended.

Running the Test Mix

Do the steps in this section if you purchased the G6855AA or G3876AA Forensics and Toxicology PCD or PCDL Kit, and you want to run the test mix to collect example data. Otherwise, use the example data that is included with the PCD or PCDL disc to do the exercises in this guide.

The sample data files provided in the MassHunter Forensics and Toxicology PCD or PCDL disc were acquired with the test mix on a system with the LC/MS system configured as described in "Installation" on page 8. Along with the sample data files are the methods with which these data files were acquired. If you review the acquisition method and sample data, you will get a sense of the data acquisition, data processing, and result interpretation you will encounter while using the MassHunter Forensics and Toxicology PCD or PCDL.

To review the Data Acquisition methods, use the MassHunter Data Acquisition program to open these method files:

- ForTox_TestMix_MS.m for compound searches
- ForTox_TestMix_TMSMS.m (targeted MS/MS), or ForTox_TestMix_AMSMS.m (auto MS/MS) for library searches (Q-TOF only)

The following Data Acquisition settings for the test mix are listed:

- Data Acquisition method information
- Q-TOF LC/MS settings
- Wellplate sampler settings
- Binary pump settings
- Thermostatted column compartment settings

Note that the method uses two reference ions, which are dispensed from reference bottle A of the calibration delivery system. The two compounds used are from the API-TOF Reference Mass Solution (p/n G1969-85001) and are purine and HP-0921. Prepare the reference ion solution as recommended in the installation guide for your instrument. *Do not use the trifluoracetic acid (TFA) found in the reference kit.*

If you previously used TFA in your calibrant, make sure little or no TFA signal remains.

To run the Checkout Mix

Run the LC/MS Forensic/Toxicology Checkout Test Mix (p/n 5190-0556) to get a better idea of how the database kit will work for you.

1 Do a check tune to verify that the instrument operates properly.

Refer to the *Agilent 6200 Series TOF and 6500 Series Q-TOF LC/MS System Quick Start Guide* for instructions to tune the instrument.

2 Prepare the Checkout Mix.

The concentration of the Checkout Mix stock solution is 100 $\mu g/mL$ (100 ppm).

a Dilute 10 μ L of the stock solution to 1.0 mL with 10% MeOH:H₂O to create the final solution concentration of 1 μ g/mL (1 ppm).

For more accurate results, and if conservation of sample is not a concern, dilute 100 μL of the stock solution to 10.0 mL of solvent instead.

b Transfer 1 mL of the final sample solution to a standard 2-mL sample vial for analysis.

The final solution is a $1 \,\mu g/mL (1 \text{ ppm})$ working solution.

For some instrument models, this sample concentration is too high. If you consistently see "saturated" warnings listed for some compounds, or if "*" indicators appear routinely above mass peaks in spectra, dilute the sample again by a factor of 10 or more, and inject the diluted sample.

- **3** Prepare mobile phases A and B.
 - A= 5 mM ammonium formate in 0.01% formic acid in water
 - B= 0.01% formic acid in methanol
- **4** Verify the system configuration.

The checkout method uses the system configuration listed in the next table. If your system deviates from this configuration, adjust the method as needed. Refer to the *Method Setup Guide* for the Comprehensive Test Mix that is included on the Installation Disc. Set the LC parameters according to "Forensics and Toxicology LC Parameters" on page 68.

	Column	ZORBAX LC Column (p/n 959758-902), Eclipse Plus C18, 2.1 mm × 100 mm, 1.8 μm.	
	Wellplate Sampler Pump	h-ALS-SL+, model# G1367C Binary Pump – SL, Model 1312B	
	Column Compartmen	If you are using a 1260 Binary Pump, you need to configure with damper and mixer bypassed. See "To bypass mixer and damper" on page 14 nt Column – SL, Model G1316C or similar	
5	Load the Checkout M	ix method ForTox_TestMix_MS.m.	
6	Check that your meth	nod is set up to make a 2 μ L injection.	
7	Click Sample > Run multiple injections.	to do a single sample run, or create a worklist to make	
8	If you do not see all t	he peaks after you process your data:	
	a Extend your Stop	time in the method to 12 minutes.	
	b Check that you de counts, and that the m/z values.	tect both reference ions between 10,000 and 100,000 neir m/z values are within a few mDa of the expected	
	c Make sure your sy	stem is tuned and calibrated correctly.	
	d Run the Checkout	Mix again.	
	This will not affect your results but will show if retention times are different on your system. There are a number of reasons your retention times can change from those determined by Agilent, such as different instrument delay volume, dead volumes or configuration.		
Re 12 the da mu Se	etention times collected v 90 Infinity LC binary pum e ForTox_Std database w Ita with an 1290 Infinity L ust change the retention are "Forensics and Toxicol	with a 1260 Infinity LC binary pump are longer than with the p because of different delay volumes. The retention times in ere collected on a 1260 Infinity LC binary pump. If you collect C binary pump to use with the Familiarization Exercises, you times in the ForTox_Std database to match those in your data. bgy LC Parameters" on page 68.	

NOTE

For Library Searches (with PCDL)

9 Run the test mix again with the methods ForTox_TestMix_TMSMS.m and ForTox_TestMix_AMSMS.m.

When you run the test mix with these methods, a workflow is simulated for the screening and identification of toxins using library searching. See the application note *Toxicological Screening with the Agilent LC/MS-QTOF* and the Personal Compound Database and Library using the "Broecker, Herre and Pragst" Accurate Mass Spectral Library (p/n 5590-6419EN).

To bypass mixer and damper

You only need to bypass the mixer and damper if you have a G1312B Agilent 1260 Infinity Binary Pump.

The Binary Pump SL is delivered in standard configuration (damper and mixer connected). This step shows how to bypass the damper and mixer and convert the pump to low delay volume mode.

Configurations where only the damper or the mixer is disconnected while the other part is still in line are not supported by Agilent Technologies.

Tools required • Wrench, 1/4-inch x 5/16-inch (p/n 8710-0510)

- Wrench, open end, 14-mm (p/n 8710-1924)
- Hex Driver, 1/4-inch, slitted (p/n 5023-0240)

Preparations for this procedure

• Turn the flow off.

• Flush the system (water if buffers were used, otherwise IPA).

To bypass mixer and damper

Using MassHunter Qualitative Analysis to Identify Compounds

To identify compounds using the MassHunter Qualitative Analysis program

- To search the PCD or PCDL to identify compounds (with or without retention times), refer to the online Help for **Identifying Compounds > Search database for a compound**.
- To search the PCD or PCDL to identify compounds from spectrum peaks, refer to the online Help for **Spectrum Tasks > Search database from a spectrum**.

To identify spectrum peaks using the MassHunter Qualitative Analysis program (PCDL only)

- To search the PCDL to identify compounds, refer to the online Help for **Identifying Compounds > Search accurate mass library for compounds**.
- To search the PCDL for spectra, refer to the online Help for **Spectrum Tasks > Search accurate mass library for spectra**.

The exercises in this section can be done with a TOF or Q-TOF LC/MS, with the MassHunter Forensics and Toxicology PCD or PCDL.

Three exercises are described in this topic to do a compound search. The recommended process is described in "Exercise 1. Process and interpret data with Find by Formula" on page 18.

Isomeric compounds are identified during routine LC/MS by injecting an authentic sample of each isomer and determining its retention time under the chromatographic conditions used for the analysis. The retention time is needed for identification in cases where the MS-MS spectra of these isomers are very similar. The LC/MS Forensic/Toxicology Checkout Test Mix (p/n 5190-0556) contains three sets of isomers:

- Morphine and Hydromorphone
- Codeine and Hydrocodone
- Methamphetamine and Phentermine

The elution order of the compounds in the Checkout Test Mix have been determined using the Eclipse Plus C18 column and mobile phases specified in the "To run the Checkout Mix" on page 11. The expected elution order is:

- Morphine
- Hydromorphone
- Codeine
- Hydrocodone
- Methamphetamine
- MDMA/Methylendioxymethamphetamine
- Phentermine
- Benzoylecgonine
- PCP/Phencyclidine
- Trazodone
- Carisoprodol
- Alprazolam
- Diazepam

Exercise 1. Process and interpret data with Find by Formula

Note that depending on the delay volume the compounds Methamphetamine and MDMA can co-elute (1290 Infinity LC pump) or separate slightly (1260 Infinity LC pump).

Exercise 1. Process and interpret data with Find by Formula

Before you begin, copy the custom database ForTox_Std.cdb to D:\MassHunter\PCDL\, or wherever MassHunter databases are stored.

Use the data file found in the **Example Data** folder on the MassHunter Forensics and Toxicology PCD or PCDL disc. If you have the G6855AA or G3876AA Forensics and Toxicology PCD or PCDL Kit and you ran the test mix (see "To run the Checkout Mix" on page 11), you can use the data file that you acquired. Your results may differ slightly.

Steps		Detailed Instructions		Comments	
1	Process the data file for the positive ion test mix.		Open the Agilent MassHunter Qualitative Analysis program.		
	Open the data file.		Click Cancel if you are asked to open a data file.		
		b c d	Process the data file for the positive ion test mix: Load the method ForTox_TestMix_MS_DA.m. Open the data file ForTox_TestMix_MS.d.		
		u	See Figure 1.		

Exercise 1. Process and interpret data with Find by Formula

Figure 1 Example Test Mix Total Ion Chromatogram

2 Review the method to become familiar with the settings for Find by Formula. Use the database ForTox_Std.cdb.

- a Locate the Find Compounds by Formula
 > Options section in the Method Explorer.
- **b** Select the custom database **ForTox Std.cdb** . See Figure 2.
- c Review the settings in this method to become familiar with peak detection, mass tolerances and other settings. If needed, adjust for specific matrices.

The technical note *Forensics and Toxicology Personal Compound Database and Library for Screening and Identification: the Broecker, Herre and Pragst PCDL Accurate Mass Spectral Library* (p/n 5990-6450EN) included on the MassHunter Forensics and Toxicology PCD or PCDL disc describes how to create a custom database, and to add retention times for your compounds and chromatographic conditions to the database.

Exercise 1. Process and interpret data with Find by Formula

Method Explorer: ForTox_TestMix_MS_DA.m ×	🗄 🍸 Method Editor: Find Compounds by Formula - Options 🛛 🗙
🕑 Chromatogram	😧 🕟 Find Compounds by Formula 🔹 🚮 🖃 🗠 🖬 📲
🕀 Spectrum	Scoring Results Result Filters Fragment Confirmation
🗄 General	Formula Source Formula Matching Positive Ions Negative Ions
Reports	Source of formulas to confirm
Find Compounds	
Find Compounds by Formula	(type a comma-separated list of formulas, e.g., "C6H6, CH4")
Find by Formula - Options	Compound exchange file (.CEF):
Find by Formula - Chromatograms	
Find by Formula - Mass Spectra	Database / Library
Find by Formula - Sample Purity	C:\MassHunter\PC@L\ForTox_Std.cdb
Identify Compounds	⊘ Worklist
Search Database Search Accurate Mass Library Generate Formulas Combine Identification Results	Matches per formula Maximum number of matches 1 I Automatically increase for isomeric compounds
Compound Automation Steps	
Worklist Automation	Values to match
+ Export	© Mass
	Mass and retention time (retention time optional)
	 Mass and retention time (retention time required)
Export	Mass and retention time (retention time optional) Mass and retention time (retention time required)

- match those in the ForTox Std database, update the retention times in the database
- retention time options.)
- **b** Tentatively identify your compounds using the mass option only.
- c Update the retention times in a user copy of the ForTox Std database in MassHunter PCDL Manager. Use the elution order on page 17 to identify the three sets of isomers.
- d After the retention times are updated, change Values to match back to Mass and retention time (retention time required), then repeat step 2. Continue to step 4

Exercise 1. Process and interpret data with Find by Formula

Steps		Detailed Instruction	ons	Commen	ts	
4	Check that the desired ion species are present.	 a In the Positive lons tab, check that the desired ion species are present. See Figure 3. 				
		For example, ma m/z is not shov species is desir	ake sure that the addu vn if only the protonate ed.	ct ed		
		Method Editor: Fin	nd Compounds by Formula - Opt	ons		×
		Results	Result Filters	Fragment Positive lons	Confirmation	
		Charge carriers	Neutral losses			1

Results		Rea	sult Filters		Fr	agment	Confirmation
Formula Source	Form	ula Mat	tching	A	Positive Ion	s	Negative lons
Charge carriers			Neutral los	ses			
I -electron ↓ +H		^				2	
+Na +K +NH4							
•	• 🗙]]			• >	<	
• Charge states, if not kr	• 🗙]	Aggregate	s	+ >	<	

Figure 3 Positive lons tab.

- 5 Use the MassHunter Forensics and Toxicology Standard PCDL to find compounds in the data file ForTox TestMix MS.d.
- a Click the green arrow ()) in the Method Editor toolbar.

The Qualitative Analysis program searches each entry in the MassHunter Forensics and Toxicology Standard PCDL (**ForTox_Std.cdb**) to find compounds in the data file.

Note in Figure 4 that Phentermine and Methamphetamine are correctly identified using the retention time information. Inspection of the compound list will show similar results for morphine and hydromorphone, and codeine and hydrocodone. These analytes are isobaric and accurate mass alone could not distinguish between each isomeric set.

Exercise 1. Process and interpret data with Find by Formula

Figure 4 Find By Formula Results using MassHunter Forensics and Toxicology Standard PCDL. (ForTox-_Std.cdb)

6	Review the Compound Table. Return to the	а	Click Compound Details View to switch views. See Figure 5.	Note that multiple IDs flags are shown for Codeine due to the close retention time of its
	Navigation view when you are done.	b	Click or use the arrow keys to move through the Compound Table to review one compound a a time.	isomer hydrocodone. Hydrocodone will also show a multiple IDs flag if the Do not match if score is <70 option, in the Find
		C	Click Navigator View.	Compounds by Formula > Options > Result Filters tab, is unmarked. The Find by Formula score is very different for the two analytes, which allows for correct identification.

Exercise 1. Process and interpret data with Find by Formula

Figure 5 Compound Details view.

- 7 Export the compound list as a spreadsheet in text format.
- **a** In the Compound List table, select all rows.
- **b** Right-click anywhere in the compound list and select **Export**. See Figure 6.
- c For File type, select Data as Text file (*.txt; *.csv).
- d Click OK.

The spreadsheet file appears in the data file folder with the same name as the data file.

You will use this file in a later exercise for Targeted MS/MS analysis.

The ForTox_TestMix_MS.csv test mix data file in Excel format is included in the Example Reports folder on the installation disc.

Exercise 1. Process and interpret data with Find by Formula

Steps	Detailed Instructions	Comments
	Export Export	
	File type: Data as With delimiter:	Text file (*.bd; *.csv)
	Export contents Only highlighted rows All rows	
	Export destination Auto-generate a file at data file Specified file: 	location
		OK Cancel
	Figure 6 Export Find	by Formula results to a Text file.

- to the next exercise and
- 8 Remove the results prior a Click Find >Delete Find Compound Results to remove the results
 - close the Compound List. **b** Close the Compound List to free up display space.

Exercise 2. Process and interpret data with Defined Extracted Ion Chromatograms

In this exercise, you process the data file ForTox_TestMix_MS.d.

Steps		Detailed Instructions	Comments	
1	Process the data file for the positive ion test mix.	 a In Method Explorer, click Chromatogram > Define Chromatograms. See Figure 8. 	A list of the exact <i>m/z</i> values of the compounds in the mixture is displayed in the Chromatograms > Define Chromatograms section.	

Figure 7 Example Test Mix Total Ion Chromatogram

Exercise 2. Process and interpret data with Defined Extracted Ion Chromatograms

Steps	Detailed Instructions	Comments
B Method Explorer: ForTox_TestMix_M	S_DAm × Ethod Editor: De	fine Chromatograms X
🖻 Chromatogram	🔺 🤅 💽 E tract Defined C	Chromatogram 🔹 🚮 🖃 🔹 🕅 Method Items 🔹 📳 🦉
Integrate (MS)	Defined chromatograms	3
Integrate (MS/MS)	EIC (150.1276 m/z) MS	(Cycle-summed)
Integrate (UV)	EIC (194.11/6 m/z) MS EIC (244.2061 m/z) MS	(Cycle-summed) (Cycle-summed)
Integrate (ADC)	EIC (261.1811 m/z) MS EIC (285.0792 m/z) MS	(Cycle-summed) (Cycle-summed)
Smooth	EIC (286.1441 m/z) MS EIC (300.1598 m/z) MS	(Cycle-summed)
Exclude Mass(es)		
Calculate Signal-to-Noise	Chromatogram definition	Integrate when
Define Chromatograms	E Type: EIC	extracted
Adjust Delay Time	MS Chromatogram A	dvanced Excluded Masses
extraction Data Format	MS level:	MS Polarity: Both
Spectrum		
+ General	Scans:	Ali single stage scan types
	m/z of interest:	Any 👻
* Reports	m/z value(s):	150.1276
E Find Compounds	Do cycle sum	
• Find Compounds by Formula	Merge multiple m	asses into one chromatogram
Identify Compounds		

Figure 8 Define Chromatograms section selected. Click the green arrow (circled) to extract the ions.

- 2 Extract the ions.
- a Click the green arrow in the Method Editor toolbar.
- After the chromatograms are extracted, they are displayed in the Chromatogram Results window, as seen in Figure 9, if the view is in List Mode. In this figure, you can see the major peak in each EIC.

Exercise 2. Process and interpret data with Defined Extracted Ion Chromatograms

Figure 9 Extracted Ion Chromatograms

Exercise 3. Process and interpret data with Find by Molecular Feature Extractor

Exercise 3. Process and interpret data with Find by Molecular Feature Extractor

Steps		Detailed Instructions		Comments	
1	Review the settings for Find by Molecular Feature. Make sure that only protonated species are selected.	a b c	Locate the Find Compounds/Find by Molecular Feature section in the Method Explorer. In the Method Editor, review all settings in the Find Compounds by Molecular Feature tabs. These will have to be adjusted per sample type and according to sample matrices. Click Find by Molecular Feature > Ion Species and make sure that only the protonated species is checked. If multiple adduct ion species are checked, the compound result list becomes unnecessarily long. See Figure 10.	If the retention times are not the same in your sample, the retention times in the ForTox_Std database needs to be updated. See the Comments for step 2 in "Exercise 1. Process and interpret data with Find by Formula" on page 18.	

Exercise 3. Process and interpret data with Find by Molecular Feature Extractor

Steps		Detailed Instructions		Comments
2	Search the data file to generate a compound list. Use the model settings.	а	Click the green arrow (() in the Method Editor toolbar.	The Molecular Feature Extractor (MFE) "mines" the data file for all possible compounds and uses a "first principle" approach. Once the possible compounds have been separated and identified from probable background interferences, a compound list is generated. All possible analytes according to the method settings will be extracted. Figure 11 illustrates the results for Find by Molecular Feature.
3	Search the PCD or PCDL for the selected compounds.	a b	In the Data Navigator, click the Compounds line to select all compounds that were generated by MFE and which are shown. When all the compounds are selected, right-click the selected compounds and click Search Database for Compounds from the shortcut menu (Figure 11).	If the Advanced tab is not visible in the Method Editor, click Configuration > User Interface Configuration and then mark the Accurate mass (TOF, Q-TOF) and Show advanced parameters check boxes.

Exercise 3. Process and interpret data with Find by Molecular Feature Extractor

Figure 11 Database Search Results on Find by Molecular Feature compounds. To get the overlaid chromatograms in the display, use the **Overlaid** tool at the top of the Chromatogram Results window.

The custom database is searched against each MFE result. Figure 12 shows the compound identification results obtained from a search on the MassHunter Forensics and Toxicology Standard PCDL.

Exercise 3. Process and interpret data with Find by Molecular Feature Extractor

Figure 12 Find by Molecular Feature Database Search. Use the tools at the top of the Compound List window to hide columns, auto-size the column widths, and sort the list.

Exercise 4. Process data automatically using Worklist Automation

After you decide the correct settings for all aspects of the Find Compounds algorithms and Search Database algorithms (such as those described in the application note 5990-4252EN), you can save these settings to one convenient Qualitative Analysis method for repetitive and consistent data manipulation from week to week.

The Worklist Automation feature of the MassHunter Qualitative Analysis program lets you take advantage of the ability to save reprocessing options. This topic describes how you can set up Worklist Automation to automatically process a data file with the Find by Molecular Feature algorithm, search the MassHunter Forensics and Toxicology PCD or PCDL, and send the report of results to a specific printer or data file location.

Steps		Detailed Instructions	Comments	
1	Open the automation worklist.	a In the Method Explorer, click Worklist Automation > Worklist Actions.	The Method Editor shows a list of automatic Qualitative Analysis actions that will be executed in the order shown.	
2	Add actions to the worklist.	 a Copy the actions that you want the method to do from the Available actions list to the Actions to be run list. See Figure 13. 	Note that if Search Database for Compounds is selected as an action to be run, then make sure that in the Find Compounds by Molecular Feature > Results tab, the Highlight All Compounds option is selected	

Figure 13 Method Editor with list of selected actions

Exercise 4. Process data automatically using Worklist Automation

Steps		Detailed Instructions Comments	
3	If you chose Generate Compound Report , then modify the reporting options.	 a From the Worklist Automation list, click Reporting Options. b In the Method Editor, in the Reporting Options section, set your reporting options. See Figure 14. 	
		Method Editor: Reporting Options	
		🗄 💽 - 🖌 🚰 - 🖓 - 🍽 - Method Items - 🛛 ট 📴	
		Print report	
		Prints sport	
		Save report	
		Save report as Excel file Save report as PDF file Inside data file's reports subdirectory	
		At specified directory:	
		C:\MassHunter\reports	
		If report file already exists	
		Overwrite existing report	
		Auto-generate new report file name	
		Figure 14 Reporting Options	
L	Save the method settings to an acquisition method.	 a In the MassHunter Qualitative Analysis program, click Method > Save As. b Browse to the folder on your system that contains the Data Acquisition method 	w Data
		 c Click the name of the Data Acquisition method that you want to outcomete and 	
		click Save .	

Exercise 4. Process data automatically using Worklist Automation

Steps	Detailed Instructions	Comments		
5 Create a Data Acquisition worklist, and then run the worklist.	 a In the MassHunter Data Acquisition program, click Worklist > Worklist Run Parameters. b For Part of method to run, select Both Acquisition and DA. c Select whether Execution for Acquisition-DA is to be Synchronous or Asynchronous. d Save the worklist. e Run the worklist. 	Worklist Run Parameters Page 1 Page 2 Operator Information Operator name: Run Type: Standard Stat Part of method to Synchronous Part of method to Synchronous Verified Daths Synchronous Verified Daths Synchronous Verified DAths Synchronous Figure 15 Worklist Run Parameters windowy		

The Qualitative Analysis steps defined and set up under **Actions to be Run** in the Method Editor will run automatically during the sample acquisition without any user intervention.

Using worklist automation, features of the MassHunter Data Acquisition program for TOF and Q-TOF with the MassHunter Qualitative Analysis program and in combination with the MassHunter Forensics and Toxicology PCD or PCDL, samples can be screened for and reported automatically.

You can create smaller and more focused custom databases from the larger MassHunter Forensics and Toxicology PCD or PCDL for a specific industry needs such as work-place drug testing.

Some compounds in the database will only ionize using specific LC/MS sources, such as electrospray or APCI.

NOTE

To develop a custom PCD or PCDL

The use of a smaller and more focused database to screen samples can be a powerful tool to detect and identify specific analytes that are required by various regulatory agencies, such as governmental work-place drug testing. After a custom database of targeted compounds is created, single standards of those compounds must be analyzed using a standard chromatography method, retention times recorded, and detection limits determined.

• Run standards of targeted compounds and create custom databases from the MassHunter Forensics and Toxicology PCD or PCDL.

The technical notes Forensics and Toxicology Personal Compound Database and Library for Screening and Identification: the Broecker, Herre and Pragst PCDL Accurate Mass Spectral Library (p/n 5990-6450EN) included on the MassHunter Forensics and Toxicology PCD or PCDL disc describes how to create a custom database, and to add retention times for your compounds and chromatographic conditions to the database.

Familiarization Exercises - Targeted MS/MS Analysis with Identification by Library Search

The use of Targeted MS/MS has many advantages.

Refer to the MassHunter Data Acquisition online Help and user guides to learn more about how Targeted MS/MS works.

- Only one run is needed both to screen for compounds using accurate mass database searching and to perform a library search for identification.
- Targeted MS/MS always performs MS/MS acquisition at exactly the specified m/z value over the specified time range in the run. If the target is present, even in a complex matrix and of low abundance, the precursor of the target compound will be fragmented and an MS/MS spectrum will be obtained. If you use Auto MS/MS mode instead (see "Familiarization Exercises Auto MS/MS Analysis with Identification by Library Search" on page 54), the precursor in the mass spectrum must satisfy certain "on-the-fly" rules in order to be chosen for fragmentation. Under some conditions of high sample complexity and low precursor intensity, or if multiple adducts are formed, Auto MS/MS operation can miss desired precursors.
- The number of precursors that can be examined in any cycle is limited. If the number of targets is too large, or the chromatography too fast for good integration or peak detection, divide the target list over multiple methods and inject the sample repetitively.
- To acquire spectra of compounds that are not listed in the acquisition method or are not present in the database/library, use Auto MS/MS. Targeted MS/MS operation does not acquire MS/MS spectra on unexpected targets, only on what is on the precursor list in the method.

In these exercises, you process the data file **ForTox_TestMix_TMSMS.d.** Use the example data file found in the **Example Data** folder on the MassHunter Forensics and Toxicology PCD or PCDL disc. If you have the G3876AA MassHunter Forensics and Toxicology PCDL Kit and you ran the test mix, you can use the data file that you acquired. Your results can differ slightly.
This section consists of three exercises:

- Exercise 1. Set up the targeted MS/MS method
- Exercise 2. Process the data
- Exercise 3. Automate the process with worklist actions

Exercise 1. Set up the targeted MS/MS method

In this exercise you use the compound information found in the previous exercises using Find by Formula.

You have screened the compounds by match to the accurate MS mass and isotope pattern in the library. You now confirm the identifications with an MS/MS experiment.

Exercise	1. Set u	o the	targeted	MS/	'MS	method

St	ер	D	etailed Instructions	Comments
St 1	Create a template file in .csv format. See Figure 17. Then open the template in Excel.	D a b c d e	etailed Instructions Open the MassHunter Data Acquisition program. In the Method Editor pane, right-click the table in the Targeted List tab and click Add to add a row. Change the Iso. Width to Narrow (~1.3 m/.z). For Delta Ret. Time window, type 0.5. Right-click the table in the Targeted List tab and select Export. See	Comments
		f g h i	Figure 16. For File type, select text (*.csv). Select a file name and location. Click OK. In Excel, open the template .csv file that you just created. See Figure 17.	

Exercise 1. Set up the targeted MS/MS method

Exercise 1. Set up the targeted MS/MS method (continued)

TargetedM	SMSTable							
On	Prec. m/z	Z	Ret. Time	Delta Ret.	Iso. Width	Collision Energy	Acquisitio	n Time (ms/spec)
TRUE	200	1	0	0.5	Narrow (~1.3 m/z)			

Figure 17 Template .csv file

- 2 Create exact mass column in the Compounds List results file that you saved previously, and add to the template file. See Figure 18.
- a Start the Excel program, and open the spreadsheet file that you exported from the MassHunter Qualitative Analysis program in "Exercise 1. Process and interpret data with Find by Formula" on page 18.
- **b** Add a column called **Prec.** m/z.
- c Set the formula for this column to be the **Mass(tgt)** value plus 1.00727645 (the mass of hydrogen minus an electron). This value represents the exact mass of the protonated compound found in the library.
- d Copy all **Prec.** m/z values to the template .csv file.

The base peak column in the compound list table is the measured m/z of the largest mass peak in the spectrum for this "found" compound. However, in samples with matrix, the base peak may not be the protonated ion. Using the calculated exact mass for the targeted MS/MS analysis is by far a better approach.

Exercise 1. Set up the targeted MS/MS method

Step	Detailed Instructions	Comments
	 From the compound list Excel file, copy: the Z values the retention times the delta retention times the iso widths 	The collision energy values should be the same as the three energies in the library (10, 20 and 40 eV), as described in the application notes <i>Toxicological</i> <i>Screening with the Agilent</i> <i>LC/MS-QTOF and the Personal</i>
	The template .csv file now looks similar to Figure 18.	Compound Database and Library using the "Broecker, Herre and Pragst"
	f Save the template .csv file.	Accurate Mass Spectral Library (p/n 5590-6419EN). However, for real samples, the duty cycle of the O-TOF
	The compound list Excel file and the template .csv file used in these examples can be found on the	LC/MS can be negatively affected if you measure at 2 or 3 collision energies.
	MassHunter Forensics and Toxicology PCDL disc under Example Reports , as ForTox_TestMix_MS.csv and ForTox_TestMix_TMSMSimport .csv.	The alternative is to use a collision energy calculation which is calculated from a linear fit of the collision energy to the <i>m/z</i> of the precursor ion as described in "Familiarization Exercises - Auto MS/MS Analysis with Identification by Library Search" on

Exercise 1. Set up the targeted MS/MS method (continued)

1	ile Home	e Insert P	age Layout	Formulas	Data	Review View	MassHunter Report	ing	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 - Ø	
	E1	+ (°	f_x								
21	Α	В	С	D	E	F	G	н	1	J	
L	TargetedMS	MSTable									
2	On	Prec. m/z	Z	Ret. Time	Delta Ret.	Iso. Width	Collision Energy	Acquisitio	on Time (m	s/spec)	
	TRUE	286.1437765	1	1.704	0.5	Narrow (~1.3 m/z)					
	TRUE	286.1437765	1	2.486	0.5	Narrow (~1.3 m/z)					
	TRUE	300.1593765	1	2.969	0.5	Narrow (~1.3 m/z)					
	TRUE	300.1593765	1	3.149	0.5	Narrow (~1.3 m/z)					
	TRUE	150.1276765	1	3.355	0.5	Narrow (~1.3 m/z)					
	TRUE	194.1175765	1	3.377	0.5	Narrow (~1.3 m/z)					
	TRUE	150.1276765	1	3.773	0.5	Narrow (~1.3 m/z)					
)	TRUE	290.1386765	1	3.931	0.5	Narrow (~1.3 m/z)					
	TRUE	244.2059765	1	5.163	0.5	Narrow (~1.3 m/z)					
2	TRUE	372.1585765	1	5.391	0.5	Narrow (~1.3 m/z)					
	TRUE	261.1808765	1	7.205	0.5	Narrow (~1.3 m/z)					
L	TRUE	309.0901765	1	7.341	0.5	Narrow (~1.3 m/z)					
5	TRUE	285.0788765	1	8.242	0.5	Narrow (~1.3 m/z)					
5											
7											

page 54.

Figure 18 Template .csv after retention time and accurate mass are added

Exercise 1. Set up the targeted MS/MS method

Step	Detailed Instructions	Comments	
3 Open the Compounds List results file that you saved in "Exercise 1. Process and interpret data with Find by Formula" on page 18, and then import the values from the template .csv file that you just created. Run the newly saved Targeted MS/MS method.	 a Use Excel to open the spreadsheet file that you saved in "Exercise 1. Process and interpret data with Find by Formula" on page 18. This spreadsheet file is in the same folder as the data file that was processed in that exercise. b In the Data Acquisition program, right-click the Targeted Mass tab and select Import. c Import the values from the template .csv file that you just created. d Save this Targeted MS/MS method as the method to use to identify the compounds found by library search. e Run the sample again with the newly saved Targeted MS/MS method. 		

Exercise 1. Set up the targeted MS/MS method (continued)

Figure 19 shows the total ion chromatogram of the targeted MS/MS data. The alternation of single-MS to MS/MS is seen in the signal intensity change across peaks that are targeted. This acquisition was done with a delta retention time window of 0.5 minutes. The data shows that this setting causes the acquisition program to collect MS/MS spectra from 0.25 minutes before the peak to 0.25 minutes after the peak. If chromatographic reproducibility is excellent, this window can be reduced, which increases the duty cycle by reducing overlapping peaks.

Exercise 1. Set up the targeted MS/MS method

Figure 19 Total ion chromatogram from a typical targeted MS/MS data shows sawtooth pattern from alternating MS and MS/MS scans.

Familiarization Exercises - Targeted MS/MS Analysis with Identification by Library Search **Exercise 2. Process the data**

Exercise 2. Process the data

You can process the data in one of several ways. The steps used in this topic support automated data processing. Processing the data file consists of these steps:

- · Find compound using "Find Compounds by Formula"
- · Identify compounds using "Search Accurate Mass Library"
- Generate Compound Report
- Print Compound Report

You find the best match for the single-MS precursor ion, based on accurate mass and isotope information. Then you search the MS/MS library to find the best match for the MS/MS spectrum.

Exercise	2.	Process	the	data
----------	----	---------	-----	------

Detailed Instructions	Comments
 a Start the MassHunter Qualitative Analysis program b Open the Method Editor. c Open the data analysis method ForTox_TestMix_TMSMS_DA.m. d Click Find Compounds by Formula > Options, and then on the Formula Source tab, set the Database/Library path to the Forensics and Toxicology Standard Library. See Figure 20. e On the Results tab, select Extract MS/MS spectrum and Separate MS/MS spectrum per CE. See Figure 21. 	Without Editors Time ColoredWithout Editors Time ColoredWithout EditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditorsWithout EditorsEditors
	 Detailed Instructions a Start the MassHunter Qualitative Analysis program b Open the Method Editor. c Open the data analysis method ForTox_TestMix_TMSMS_DA.m. d Click Find Compounds by Formula > Options, and then on the Formula Source tab, set the Database/Library path to the Forensics and Toxicology Standard Library. See Figure 20. e On the Results tab, select Extract MS/MS spectrum and Separate MS/MS spectrum per CE. See Figure 21.

integrators before you select the integrator that gives you the best results.

Familiarization Exercises - Targeted MS/MS Analysis with Identification by Library Search Exercise 2. Process the data

Step	Detailed Instructions	Comments
	Method Editor: Find Compounds by Formula - Options D Find Compounds by Formula - Options	titems * (A Bu
	Formula Source Formula Matching Positive Ioni Results Result Fiters	s Negative Ions Scoring Fragment Confirmation
	Previous results Image: The set of the set	
	New results Highlight first compound Highlight all compounds	
	Chromatograms and spectra	
	Extract cleaned spectrum Extract raw spectrum Prefer profile for raw spectra, if available Clip extracted raw spectra Symmetric (m/2) +/- 5.00000 Extract MSIMS spectrum Separate MSIMS spectrum per CE Average MSIMS spectrum for all CEs Precursor tolerance: +/- 20.00 pom	

Exercise 2. Process the data (continued)

Figure 21 Results tab

- 2 Search the ForTox_Std.cdb library. As search criteria:
 - Add collision energy.
 - Set to use both a minimum forward score and a minimum reverse score.
- a In the Method Explorer, click Identify Compounds > Search Library.
- b In the Libraries tab, click Add Library to add ForTox_Std.cdb. See Figure 22.
- c In the Libraries tab, click the current
 Score (fwd) and Score (rev) values. Set
 the forward score to 25 and reverse score
 to 50. See Figure 22.

See "Forward vs. Reverse Library Search" on page 74 for more information.

The score settings can seem too low, but these settings let you detect any issues that can occur as you become familiar with these techniques. For real methods, a forward score of 50 and a reverse score of 70 are typical. For each analysis and matrix type, review and update the Matching criteria settings in the Results filters tab in the Find by Formula Options.

Exercise 2. Process the data

Step	Detailed Instructions Comments
	Method Editor: Search Library X
	🗄 💽 Search Library for Compounds 💌 🚮 🛛 🥙 🗠 🖓 Method Items 💌 😕 🗊
	Ubraries Search Criteria RT Scoring Peak Filters Tolerances
	Library selection
	Library Score (fwd) Score (rev)
	D:\MassHunter\PCDL\ForTox_Std.cdb 25.00 50.00
	Move Up Move Down Add Library Remove Library
	Multi-library search type
	Search all libraries
	Stop at first library match
	Number of hits
	Maximum hits per compound: 10

Exercise 2. Process the data (continued)

- d In the Search Criteria tab, mark the check boxes for Collision energy and Exclude precursor ion from Reverse Score. See Figure 23.
- e In the Peak Filters tab, set the Absolute height to 5 counts and the Relative height to 1% of largest peak. See Figure 24.

If you do not see **Exclude precursor ion from Reverse Score**, make sure that **Show advanced parameters** is selected in the MassHunter Qualitative Analysis program. See step 3 on page 29.

Familiarization Exercises - Targeted MS/MS Analysis with Identification by Library Search Exercise 2. Process the data

Step	Detailed Instructions	Comments
	Method Editor: Search Library	×
	Libraries Search Criteria RT Scoring Peak Filters To	Method Editor: Find Com lerances
	Search criteria (.cdb) Restrict spectral comparison based on	
	Inization mode Instrument type	
	Exclude precursor ion from Reverse Score when ratio of precursor intensity to total library MS/MS int	ensity
	exceeds 90.00 %	
	Enable screening V Adjust score	

Exercise 2. Process the data (continued)

Figure 23 Search Criteria tab.

Figure 24 Peak Filters tab.

Exercise 2. Process the data

Step	Detailed Instructions	Comments
 3 Set up the method to: Find all of the compounds in the Checkout Test Mix by Find by Formula. Do a library search. 	 a In the Method Explorer, click Compound Automation Steps > Find and Identify. b In the Options tab, select these options as shown in Figure 25: Find by Formula Search a library for each compound 	If they are not, make sure that the mix is prepared fresh and run within 4 hours of preparation, and that your system background has been reduced as much as possible. Note that setting the Matching criteria in the
	 Show only identified compounds 	Results filters tab in the Find by Formula options can prevent small impurities from being reported.

Exercise 2. Process the data (continued)

ions Additional Chrom	atograms BPC Exclusions
ompound mining	
ind by Formula	•
ompound identification	
Search a database	for each compound
Search a library for	each compound
Match sequences for	or each compound
Generate formulas	for each compound
All compound	ds 🔘 Only compounds without database hits
Compound results	
Chow only identifier	compounds

Figure 25 Options tab for Compound Automation Find and Identify

Familiarization Exercises - Targeted MS/MS Analysis with Identification by Library Search Exercise 2. Process the data

Step		Detailed Instructions	Comments
4	Set up report options to produce a report that shows the MS/MS peak table and spectra.	 a In the Method Editor, click Reports > Common Reporting Options. b For Compound report template, select CompoundReport.xltx. See Figure 26. c In the Method Explorer, click Compound Report Automation Steps > Compound Rep d Under Compound spectrum (MS/MS mark the check boxes for Show MS/spectrum and Show MS/MS peak t See Figure 27 	Figure 28 and Figure 29 shows the first two pages from the report for the Targeted MS/MS analysis on the ForTox_TestMix_TMSMS.d (found on the MassHunter Forensics and Toxicology PCD or PCDL disc). A copy of this report is also available in the report folder as a PDF file. S), MS able.

Exercise 2. Process the data (continued)

e Save the method.

method Eartor. Common Reporting Options	×
🕑 Print Analysis Report 🔹 🔛 🖛 🍽 👻 🖓 🕶 🕅 Method Items 🕶 🛛	- 1
emplates Options	
Report template folder	
:Hunter\Report Templates\Qual\B.07.00\en-US\Letter	
Report templates	
Analysis report template :	
Analysis Report xttx 🔹	
Compound report template:	
Compound Report xitx 🔹	
Qualitative method report template :	
QualitativeMethodReport xttx 🗸	
Acquisition method report template :	
AcaMethod Benort rdlc	

Figure 26 Template tab in Common Reporting Options.

Exercise 2. Process the data

Step	Detailed Instructions Commer	Comments			
	👯 📓 Method Editor: Compound Automation (3) Compound Report	×			
	🔅 💽 Print Compound Report 🔹 🚮 🖃 🗠 🐏 🗐 Method Items 🔹 🕖				
	Compounds ✓ Show compound table Sort by: Compound number Sort order: Increasing ✓ Exclude details for unidentified compounds Chromatograms Show user chromatogram(s) ✓ Show compound chromatogram(s) ✓ Overlay compound chromatogram(s)				
	Compound spectrum (MS) Show MS spectrum Show MS spectrum Show MS spectrum (zoomed in on special peaks) Zoom padding: - 10.0 + 10.0 m/z Overlay predicted isotope distribution				
	Compound spectrum (MS/MS) Show MS/MS spectrum				
	Library search results Show library spectrum Show difference spectrum				

Exercise 2. Process the data (continued)

Figure 27 Compound Report dialog box.

When the method is run, a report is generated that includes a summary (Figure 28) as well as details for each compound found in the library (Figure 29). Note that the isotope abundance and mass accuracy are taken from the single-MS spectra in the data and not the MS/MS. These values (isotope abundance and mass accuracy) come from molecular formula generation. In addition, Figure 29 shows the mass accuracy of each precursor. Again the MFG Diff (ppm) comes from the single-MS spectra and the DB Diff (ppm) comes from the precursor ion in the MS/MS spectrum.

You can use these reports to determine the presence of a specific compound in your sample. The data file can be inspected manually as well as to determine if anything was missed, or to get further supporting information that may be in the data but is not being reported.

			Qualitative	e Compound	Report			
Data File	ForTox_TestM	_TMSMS.d	Sample Name ForTox_To	stMix				
Sample Type Instrument Name	Sample Instrument 1		Position Vial 3 User Name					
Acq Method IRM Calibration Status	ForTox_TestM	_TMSMS.m	Acquired Time 5/23/2013	2:42:28 PM				
Comment	and an		on manual in the contraction					
Sample Group Info	r.							
Compound Table								
Compound Label	RT Mas	Abund	Name	Formula	Tgt Mass	Diff (ppm)	DB Formula	DB Diff (ppm) (D
Cpd 2: Methamphetamine	3.33 149.	202 1710	Methamphetamine	CIOHISN	149.1205	-0.19	C10H15N C10H15N	0.19
Cpd 3: MDMA / Methylendioxymethampheta	3.414 15	12132	MDMA / Methylendicxymethampheta	C11H15N02	193.1103	-1.22	C11H15N02	1.22
Cpd 4: PCP / Phencyclidine	5.216 243.	984 15202	PCP / Phencyclidine	C17H25N	243.1987	-1.1	C17H25N	1.1
Cpd 5: Carisoprodol Cpd 6: Diazeoam	7.262 260. 8.302 284.	715 11218	Canisoprodol Diazepam	C12H24N204 C16H13CIN20	260.1736	0.39	C12H24N2O4 C16H13CIN2O	-0.39 0.55
Cpd 7: Morphine	1.809 285.	364 40390	Morphine	C17H19NO3	285.1365	-0.22	C17H19NO3	0.22
Cpd 8: Hydromorphone	2.536 285.	366 5345	Hydromorphone	C17H19NO3	285.1365	-1.37	C17H19NO3	-0.25
Cpd 10: Hydrocodone	3.176 295	152 10375	Hydrocodone	C18H21N03	299.1521	-0.39	C18H21NO3	0.39
Cpd 11: Codeine	2.995 299.	521 11354	Codeine	C18H21NO3	299.1521	-0.14	C18H21NO3	0.14
Cpd 12: Aiprazolam Cpd 13: Trazodone	7.39 308. 5.464 371.	627 8083i 511 16203	Peprazólam Trazodone	C1/H1/UN4 C19H22CIN50	308.0829	-0.61	C1/H13UN4 C19H22CIN50	0.61
0.4	8 2 9 3 3.1 3.2 C	3.3 3.4 3.5 3.6 ints vs. Acquisiti	3.833 3.7 3.8 3.9 4 4.1 4.2 4.3 on Time (min)	3 4.4 4.5 4.6 4.7				
MS Zoaned Spectrum x10 4 Cpd 1: Phentermi 1.6 1.4 1.4 1.4 1.4 0.8 0.6 0.4 0.2 0 141 142 143 MS Spectrum Peak List	ine: + FBF Spectn 144 145 146 147 Cc	n (rt: 3.811-3.88 150122 ([C10H15N 148 149 150 units vs. Mass-to	5 min) ForTox_TestMix_TMS 5 ++++ +++ +++ +++ ++++ +++++++++++++	SMS.d Subtract				
MSI Zozenský Spectrum 104 104 104 104 104 104 104 104	ne: + FBF Spectri	n (rt. 3.811-3.88 150.92 ((C10H1N) 168 169 150 units vs. Mass-to 06 06 06 06 06 06 06 06	5 min Perfox_TestMo_TMS 5 min Perfox_TestMo_TS 5 min Perfox_TS 5 min Pe	MS & Subher				

Figure 28 Page 1 of the Test Mix Compound report.

Exercise 2. Process the data

Figure 29 Page 2 of the Test Mix Compound report

Exercise 3. Automate the process with worklist actions

The ability to automate the process and run these steps in a workflow can be very useful, especially when you need to analyze many samples.

Automation is done by the use of worklist actions.

Exercise	3	Automate	the	nrocess	with	worklist	actions
LACIDISC	υ.	Automate	LIIC	process	VVILII	WUIKIISL	actions

Step	Detailed Instruction	Comments	
1 Set up a worklist to create a compound report.	 a In Method Explorer, click Worklist Automation > Worklist Actions. b Select these Actions to be run: Compound Automation without Report Generate Compound Report 	The Compound Automation without Report action includes most of the other available actions, so they do not need to be selected. Some data files can require long processing time, so you may want to do the compound automation and report generation in separate steps.	

Exercise 3. Automate the process with worklist actions

Exercise	3.	Automate	the	process	with	worklist	actions	(continued)

Step	Detailed Instruction	Comments	
2 Set print options.	 a In the Method Explorer, click Worklist Automation > Reporting Options. b Select whether to print the report, save to a file (Excel file or PDF), or both. See Figure 31. c Save the method. 		

Method Editor:	Reporting Options X
🕑 - 🐴 🔊 - (🍽 🕤 Method Items 🕶 🛛 🛃 🏭
Print report Print report Printer name:	<default></default>
Save report Save report as E Inside data fi At specified	Excel file Save report as PDF file ile's reports subdirectory directory:
C:\MassHun If report file alread Overwrite ex Auto-generad	ter/veports dy exists xisting report te new report file name
Printer name: Save report Save report as E Inside data f At specified C:\MassHun ff report file alread Overwrite ex Overwrite ex Auto-general	<default> ▼ Excel file</default>

3	Attach the method to an acquisition method.	a	In the MassHunter Qualitative Analysis program, click Method > Save As .
		b c	Browse to the folder on your system that contains the Data Acquisition method that you want to automate. Click the name of the Data Acquisition method that you want to automate and click Save . The Qualitative Analysis method is now attached and is an integral part of the Data Acquisition method.

Exercise 3. Automate the process with worklist actions

Step	Detailed Instruction	Comments	
4 Check that the method will run correctly when you use it within worklist.	 a In Method Explorer, click W Automation > Worklist Ac b Click the green arrow to run worklist actions. c Check the report to make s the method options are cor set. 	forklist tions . In the ure that rectly	

Exercise 3. Automate the process with worklist actions (continued)

When you set up a worklist in Data Acquisition, add the data analysis method you just created under the column **Override DA Method**. Refer to the MassHunter Data Acquisition user guides and online Help for more information.

If you do not see the column for **Override DA Method** in the worklist, it may be hidden between the Method and Data File columns. Move the mouse pointer to the boundary between these two columns. When the pointer changes to a double-sided arrow, move the column boundary to the right until you see the **Override DA Method** column.

The use of Auto MS/MS has many advantages.

- Only one run is needed to both screen for compounds using accurate mass database search, and do a library search for identification.
- For a complex sample, a large database can result in a high number of hits, which is difficult for Targeted MS/MS to handle because of the burden on the duty cycle for the instrument, especially as two or three collision energies (10 and 20 or 10, 20 and 40 eV) are collected for each MS/MS peak. Auto MS/MS eliminates this problem because false positives are removed with the library search. However, lower library scores are expected because the collision energies do not exactly match those of the library spectra, which are measured at 10, 20 and 40 eV.
- Auto MS/MS can collect MS/MS spectra of potentially important compounds that are not currently in the PCDL. The ability to archive and retrieve these spectra can be useful, for example, in post-mortem analysis where time has passed and another toxin is now suspected to be present.

Refer to the MassHunter Data Acquisition online Help and user guides to learn more about how Auto MS/MS works.

Use the example data file **ForTox_TestMix_AMSMS.d** found in the **Example Data** folder on the MassHunter Forensics and Toxicology PCDL disc. If you have the G3876AA MassHunter Forensics and Toxicology PCDL Kit and you ran the test mix, you can use the data file that you acquired. Your results can differ slightly.

Exercise 1. Learn about the content of an Auto MS/MS data file

In this step, you use Find Compounds by Formula to screen the compounds by match to the accurate MS mass and isotope pattern in the PCDL.

Exercise 1. Learn about the content of an Auto MS/MS data file

Step	Detailed Instructions	Comments		
1 Open the ForTox_TestMix_AMSMS.d file.	 a Open the Agilent MassHunter Qualitative Analysis program. Click Cancel if you are asked to open a data file. b Load the data analysis method ForTox_TestMix_AMSMS_DA.m. c Open the data file ForTox_TestMix_AMSMS.d. See Figure 33. 	This chromatogram is different than for Targeted MS/MS. In Auto MS/MS mode, single-MS data is collected in a survey scan, and when an ion meets the criteria that you set, an MS/MS analysis is done under the conditions specified in the method. In this example the collision energy uses a collision energy calculation described below.		
		For an example of Auto MS/MS results, see ForTox_TestMix_AMSMS.d on the MassHunter Forensics and Toxicology PCDL disc. It was run with a linear fit of the collision energy to the <i>m/z</i> of the precursor ion.		
		Figure 32 shows the Collision Energy tab for Auto MS/MS. In this example, the actual collision energy is calculated as 6 * the m/z of the precursor ion divided by 100 plus the offset voltage. If the precursor is m/z 300, then the collision energy is 6*300/100 + 4 = 22 eV. The precursor m/z value is taken from the Auto list and both that value and the charge are recorded with the data file. Therefore, if z=2, the nominal mass of the compound is 598 (for a di-protonated molecule), but the collision energy would still be 22 eV. Note that the graph in Figure 32 reflects the last available settings for the Use Table function, and does not reflect the Use Slope function as marked in the figure		

Exercise 1. Learn about the content of an Auto MS/MS data file

Exercise 1. Learn about the content of an Auto MS/MS data file

Step **Detailed Instructions** Comments Spectral Parameters Collision Energy Targeted List 200 C Use Fixed Collision Energies 180-Collision Energy Collision Energy - 00 C Use Table Use Formula (Slope) * (m/z) / 100 + Offset Charge Slope Offset 6 ► All 4 40-20-0. 3000 1000 2000 m/z

2	Extract chromatograms to get a clearer picture of the data.	a	Right-click the chromatogram window, then click Extract Chromatograms .
		b	For Type, select TIC.
		C	In the MS Chromatogram tab, for
			MS level, select MS.
		d	For Polarity , select Positive .
		е	For Scans , select Scan . See
			Figure 34.
		f	Click OK .

Exercise 1. Learn about the content of an Auto MS/MS data file

collected. See Figure 36.

Step	Detailed Instructions	Comments
	Extract Chromatograms List of opened data files ForTox_TestMix_AMSMS.d	Type: TIC Integrate when extracted MS Chromatogram Advanced Excluded Masses MS level: MS A Polarity: Positive Scans: Scan Any MZ value(s):
	Figure 34 Extract Chro	OK Cancel matograms setting for MS.
3 Extract MS/MS data.	a Repeat step 2, but chang level to MS/MS. See Fig	e the MS When you compare the MS and MS/MS chromatograms, you can see that in MS mode, data across the peak is collected, while in MS/MS mode, data across specific points of the peak based on the acquisition settings are

Exercise 1. Learn about the content of an Auto MS/MS data file (continued)

Exercise 1. Learn about the content of an Auto MS/MS data file

Step	Detailed Instructions	Comments
	Extract Chromatograms List of opened data files ForTox_TestMix_AMSMS.d	Type: TIC Integrate when extracted MS Chromatogram Advanced Excluded Masses MS level: MS/MS A Polarity: Positive Scans: Product ion Precursor ion m/z: Any m/z value(s):
		OK Cancel

Exercise 1. Learn about the content of an Auto MS/MS data file (continued)

Exercise 1. Learn about the content of an Auto MS/MS data file

Figure 36 The top chromatogram shows all of the data points for single-MS and MS/MS. Note that MS/MS data points have lower total signal because ions in a narrow mass range are isolated for fragmentation. The middle chromato-gram shows the single-MS only and it is clear that the Q-TOF LC/MS is collecting mostly single-MS data. The bottom chromatogram is created by connecting all points where MS/MS spectra were acquired.

Exercise 2. Optimize the number of data points

Exercise 2. Optimize the number of data points

The number of data points for the single-MS and the MS/MS in Auto MS/MS mode depend on the acquisition settings. The more spectra per second that are collected, the fewer transients per spectrum, and the lower the signal. Spectral parameters can be adjusted in the MassHunter Data Acquisition program, in the Acquisition tab. You want to find the balance between missing compounds due to low sensitivity, or missing compounds because of slow cycle time.

Figure 37 shows the spectra parameters that are typically used for Auto MS/MS.

pectral Parameters Collision Energy Precursor Select	ction I Precursor Selection II Preferred/Exclude
MS	MS/MS
Mass Range Min Range 50 Max Range 1000 Maximum Range 1000 Max Range 1000	Mass Range Min Range 40 m/z Max Range 500 m/z Acquisition Rate/Time Rate 5 spectra/s
Time 100 ms/spectrum Transients/spectrum 1285	Time 200 ms/spectrum Transients/spectrum 2615 Isolation Width Narrow (**1.3 m/z) +

Figure 37 Spectral parameters for Auto MS/MS

- 1 In the Data Acquisition program, click the **Acquisition** tab.
- **2** In the **Precursor Selection I** tab, select the conditions for acquisition of MS/MS spectra. See Figure 38.
 - **Max Precursor Per Cycle** determines how many co-eluting ions are selected for MS/MS. Too many will negatively affect the cycle time. Too few will cause ions to be missed.
 - **Precursor Threshold** selection depends on the background of the system and how sensitive you want the analysis to be. Lower settings will find more spectra, but compounds can be missed because the system is burdened with MS/MS collection for low level ions while an ion of interest is eluting. Also, lower settings can increase the collection of lower quality spectra because of weak precursor ion signal.

- Active Exclusion causes the ions to be selected as a peak elutes only *n* times (in Figure 38, *n* = 2). If *not* enabled, lower level ions can be missed. If enabled with too long a time before release, spectra near the top of the peak can be missed and the quality of the MS/MS can suffer.
- **Static Exclusion Range List** excludes the range of ions that you specify. In Figure 38, reference ions and *m/z* above 600 are excluded. Use this setting if you expect only smaller molecules to be in your sample.

Refer to the Data Acquisition program online Help and user guides for detailed explanation of these parameters.

Spectral Parameters Collision Energy Precurso	or Selection I Precursor Selection I Preferred/Exclude
Spectral Parameters Collision Energy Precurso 3 Max Precurso Per Cycle Precursor Threshold Abs. Threshold (2) 1000 counts Rel Threshold (2) 0.05 2 Active Exclusion Ir# Enabled	ar Selection Precursor Selection Preferred/Exclude Static Exclusion Range List Static Exclusion Range Table Statit m/z / End m/z 50 125 \$ 600 1000
Excluded after 2 Spectra Released after 0.05 min	

Figure 38 Precursor Selection I tab

3 In the **Precursor Selection II** tab, select the charge states to include.

The inclusion of only charge state of 1 is used for the test mix and applies to most small molecule drugs and toxins. The other parameters in this tab are useful for more advanced data-dependent operation. Please see the MassHunter Data Acquisition online Help and user guides for more information.

4 In the **Preferred/Exclude** tab, define the ions that you want to include or exclude in the search.

The ions in the list of preferred or excluded ions must have an associated mass window (in ppm), retention time and retention time window. For example, if you have peaks that elute in your blank, you may want to exclude them when collecting MS/MS. No ions were preferred or excluded for the test mix analysis.

Familiarization Exercises - Auto MS/MS Analysis with Identification by Library Search Exercise 3. Process the data and automate

Exercise 3. Process the data and automate

Before you finalize the data processing method to run as an automated worklist, you manually process the data first.

Data processing for Auto MS/MS is the same as for that of Targeted MS/MS.

The steps for Auto MS/MS analysis include:

- Find compounds by "Find by Formula".
- Identify compounds by "Search Accurate Mass Library".
- Generate Compound Report.
- Print Compound Report.

Exercise 3. Process the data and automate

Steps	Detailed Instructions	Comments		
 Process data for Auto MS/MS as you would for Targeted MS/MS, except that you omit the collision energy in the library search options. Update settings for Find Compounds by Auto MS/MS so that all compounds will be found. 	 a Start the MassHunter Qualitative Analysis program. b Open the Method Editor. c In Compound Automation Steps > Find and Identity, select only these options: Find by Formula Search a library for each compound Show only identified compounds See Figure 39. d In Identify Compounds > Search Library, in the Search Criteria tab, clear the check box for Collision energy. See Figure 40. To automate the process, do the steps in "Exercise 3. Automate the process with worklist actions" on page 51. 	Note that MS/MS peaks triggered on adduct ion species will produce spectra that will not match to the library spectra, as these spectra are not present in ForTox_Std.cdb, and will result in a library score of zero. An auto MS/MS acquisition by its very nature is an untargeted process. It can examine only a relatively few precursors at any one instant, and can select adducts which do not fragment well under the conditions selected. As a result, an auto MS/MS analysis can produce library search results in which some compounds are missed in certain circumstances. For these cases, place entries on the auto MS/MS preferred/exclude list during specific elution time ranges to increase the chances of selecting the desired precursors. Refer to the MassHunter Q-TOF Acquisition documentation or online Help for more information. The first two pages form the results report for the Auto MS/MS analysis on ForTox_TestMix_AMSMS.d (found on the MassHunter Forensics and Toxicology PCD or PCDL disc) is shown in Figure 41 and Figure 42. A copy of this report is also available		

Exercise 3.	Process	the data	and	automate	continued)
-------------	---------	----------	-----	----------	-----------	---

teps	Detailed Instructions Comments
	E Method Editor: Compound Automation (2) Find and Identify
	🗄 💽 Run Compound Automation Steps 🔹 🔀 🖃 🕶 🦉
	Options Additional Chromatograms BPC Exclusions
	Compound mining
	Find by Formula
	Compound identification
	Search a database for each compound
	V Search a library for each compound
	Match sequences for each compound
	Generate formulas for each compound
	 All compounds Only compounds without database hits
	Compound results
	Show only identified compounds

Figure 39 Find and Identify options for Auto MS/MS.

Method Editor: Search Lib	rary X
Search Library for Comp	ounds 🔹 🚮 🖃 🗙 Method Items 🔹 🕞 🙀
Libraries Search Criteria RT S	coring Peak Filters Tolerances
Search criteria (.cdb)	
Restrict spectral compariso	n based on
Ionization mode	
Instrument type	
Collision energy	+/- 2.00 eV
	D
Exclude precursor ion fr ratio of precursor inten	om Reverse Score when
ratio of precursor milen	sity to total library MS/MS intensity
exceeds	90.00 %
Search criteria (.L, xml)	
Enable screening	☑ Adjust score

Figure 40 Search Criteria tab with Collision energy check box cleared.

Data File Sample Type	ForTax_ Sample	TestMix_AMSMS.	.d Samp Positi	le Name ForTox_To on Val 3	stMx				
Instrument Name Acq Method IRM Calibration Statu Comment Sample Group	Instrum ForTox_ is Success Info.	ent 1 TestMix_AMSMSJ	User I Im Acqui DA M	Name red Time 5/23/2013 sthod ForTox_Te	3:54:33 PM stMix_AMSMS_DA.m				
Compound Table	RT	Mass /	Abund	Name	Formula	Tot Mass	Diff (ppm)	DB Formula	DB Diff (com) (D
Cpd 1: Phente	mine 3.826	149.1203	19746 Phente	mine	C10H15N	149.1205	-0.9	C10H15N C10H15N	0.9
Cpd 3: M	MA / 3.419	193.11	111229 MDMA	/	C11H15NO2	193.1103	-1.67	C11H15NO2	1.85
Methylendioxymetham Cpd 4: PCP / Phenovo	idine 5.209	243.1986	Methy 158762 PCP /	endicxymethampheta Phencyclidine	C17H25N	243.1987	-0.58	C17H25N	0.58
Cpd 5: Carisop	rodol 7.251	260.1738	33720 Cariso	lobore	C12H24N2O4	260.1736	0.55	C12H24N2O4	-0.55
Cpd 6: Diaz Cpd 7: Mor	epam 8.305 phine 1.777	284.0717 285.1365	110065 Diazep 33028 Momb	am	C16H13CIN2O C17H19N03	284.0716	0.04	C16H13CIN2O C17H19N03	-0.04
Cpd 8: Hydromory	hone 2.531	285.1364	41463 Hydro	norphone	C17H19NO3	285.1365	-0.42	C17H19NO3	0.42
Cpd 9: Benzoyleog Cpd 10: Hwtmo	onine 3.959 idone 3.166	289.1313 299.152	111747 Benzo 88246 Hurkov	riecgonine odone	C16H19NO4 C18H21NO3	289.1314 299.1521	-0.4	C16H19NO4 C18H21NO3	0.4
Cpd 11: Co	deine 2.996	299.152	20746 Codeir	e	C18H21NO3	299.1521	-0.34	C18H21N03	0.34
Cpd 12: Alpra Cpd 13: Trazi	tolam 7.394 idone 5.458	308.0828 371.1511	76931 Alpraz 147037 Trazoc	olam Ione	C17H13CIN4 C19H22CIN50	308.0829 371.1513	-0.16	C17H13CIN4 C19H22CIN5O	0.16
0.25 0 2.5 2.6 MS Zoamed Spectrum x10 4 Cpd 1: Phen 1.75 1.5	2.7 2.8 2.9 3 3	i1 32 33 34 Counts vs./ pectrum (rt: 3.7 [[C1	3.5 3.6 3.7 3. Acquisition Tim 789-3.876 min) 1 150.1276 10H15N]+H)+	ал 8 <u>3 9 </u> 3 <u>4</u> <u>4</u> 1 <u>4</u> 2 <u>4</u> 2 е(min) гогтох_Теевик АМS H3C	MS.d Subtract CH3 NH2				
1 0.75 0.5 0.25 0 141 142	43 144 145 14	6 147 148 14 Counts vs. I	19 150 151 15 Mass-to-Charg	2 153 154 155 156 9 (m/z)	157 158 159				
1 0.75 0.5 0.25 141 142 MS Spectrum Pake 151.1327 1 152.1327 1 MSH5 Spectrum	43 144 145 14 List III Formul 19745.4 C10H15 93.8 C10H15	6 147 148 14 Counts vs. 1 a N N N	9 150 151 15 Mass-to-Charge (M+H)+ (M+H)+ (M+H)+	2 153 154 155 156 (m2)	157 158 159				

Figure 41 Page 1 of Auto MS/MS analysis report

Figure 42 Page 2 of Auto MS/MS analysis report

Reference

Checkout Mix Content

The content of the Checkout Mix is listed here.

Table 1	LC/MS Forensic/Toxicology Checkout Test Mix (p/n 5190-0556)
Table 1	LC/MS Forensic/Toxicology Checkout Test Mix (p/n 5190-0556)

#	Chemical Name/CAS #	Concentration / Units	Tolerance (+/-)	Formula	Mass
1	PCP/Phencyclidine/77-10-1	100.0 µg/mL	0.5%	C ₁₇ H ₂₅ N	243.1987
2	Methamphetamine/537-46-2	100.0 µg/mL	0.5%	C ₁₀ H ₁₅ N	149.12045
3	MDMA/Methylendioxymethampheta mine/69610-10-2	100.0 µg/mL	0.5%	C ₁₁ H ₁₅ NO ₂	193.11028
4	Phentermine/122-09-8	100.0 µg/mL	0.5%	C ₁₀ H ₁₅ N	149.12045
5	Benzoylecgonine/519-09-5	100.0 µg/mL	0.5%	C ₁₆ H ₁₉ NO ₄	289.32636
6	Alprazolam/28981-97-7	100.0 µg/mL	0.5%	C ₁₇ H ₁₂ CIN ₄	308.08287
7	Diazepam/439-14-5	100.0 µg/mL	0.5%	C ₁₆ H ₁₂ CIN ₂ O	284.07164
8	Codeine/76-57-3	100.0 µg/mL	0.5%	C ₁₇ H ₂₁ NO ₂	299.15214
9	Morphine/57-27-2	100.0 µg/mL	0.5%	C ₁₇ H ₁₉ NO ₃	285.33766
10	Hydrocodone/125-29-1	100.0 µg/mL	0.5%	C ₁₇ H ₂₁ NO ₂	299.15214
11	Hydromorphone/466-99-9	100.0 µg/mL	0.5%	C ₁₇ H ₁₉ NO ₃	285.33766
12	Carisoprodol/78-44-4	100.0 µg/mL	0.5%	$C_{12}H_{24}N_2O_4$	260.32996
13	Trazodone/19794-93-5	100.0 µg/mL	0.5%	C ₁₉ H ₂₂ CIN ₅ O	371.15129
	Acetonitrile	Solvent		C ₂ H ₃ N	41.05192

Forensics and Toxicology LC Parameters

Binary Pump

Binary Pump

Name		BinPump		Model	G1312B
Ordinal #		1		Options	SSV
Stop Time (min)		10		Post Time (min)	3.5
Flow (ml/min)		0.4		Pressure Min (bar)	0
Pressure Max (bar)		600		Max Flow Gradient (ml/mi	n) 100
Solvent A		5mM AF +0.01% F	Α	Solvent B	0.01% FA
Solvent Ratio A		95		Solvent Ratio B	5
Solvent Type A1				Solvent Type B1	
Solvent Type A2				Solvent Type B2	
Compress. A (*10-6	/bar)	100		Compress. B (*10-6/bar)	115
Stroke A (μl)		Auto		Stroke Β (μl)	Auto
Stroke Syncronizati	on				
Contact 1		Off			
Contact 2		Off			
Contact 3		Off			
Contact 4		Off			
Pump Time Table					
Tin	ne	Flow	Pressure	Solv Ratio B	
0	.5	0.4	No Change	5	
1	5 N	lo Change	No Change	30	
5	.5 N	lo Change	No Change	60	
2	11	0.4	No Change	95	
Signals					
Description					
FIESSUIE					

Solvent% B

Well Plate Sampler parameters

Wellplate Sampler

Name	h-ALS-SL	Model	G1367C
Ordinal #	1	Options	THM
Stop time (min)	As Pump	Post Time (min)	Off
Injection Type	Needle Wash	Injection Volume (μl)	2
Overlap Time (min)	Disable Overlapped Injection	Draw Position (mm)	0
Draw Position Detection	0	Draw Speed (µl/min)	100
Eject Speed (μl/min)	100	Flush Out Factor	5
Automatic Delay Volume	No	Equilibration Time (sec)	0
Reduction			
Wash Vessel	N/A	Wash Location	FlushPort
Wash Time (sec)	10	Wash Cycles	N/A
Contact 1	Off		
Contact 2	Off		
Contact 3	Off		
Contact 4	Off		

Column Compartment parameters

Thermostated Column Compartment

Name	Column-SL	Model	G1316B
Ordinal #	1	Options #	10Port2Pos
Stop time (min)	No Limit	Post Time (min)	Off
Left Temp. (°C)	60	Right Temp. (°C)	60
Left Ready (°C)	When Temp Within Set Point +/- 0.8	Right Ready (°C)	When Temp Within Set Point
Valve Position	1		
Contact 1	Off		
Contact 2	Off		
Contact 3	Off		
Contact 4	Off		

Forensics and Toxicology LC/MS Parameters

Source parameters

Source Parameters					
Parameter Gas Temp (°C) Gas Flow (I/min) Nebulizer (psi)	Value 350 12.0 30				
Scan Segments					
Scan Seg #	Ion Pola	rity			
1	Positive				
Scan Segment 1					
Scan Source Parameter	rs				
Parameter	Value				
VCap	3500				
Fragmentor	120				
Skimmer1	65.0				
OctopoleRFPeak	750				
ReferenceMasses					
Ref Mass Enabled Use Bottle A RefNebulizer Ref Nebulizer	r	Enabled True 7			
AutoRecalibration					
Average Scans		1			
Detection Window		100			
Min Height		1000			
Reference Masses <positive> 121.05087300 922.00979800</positive>					
Chromatograms					
Chrom Type TIC EIC		Label TIC EIC	C)ffset 15 15	Y-Range 50000000 5000000

LC/MS parameters for MS acquisition

TOF/Q-TOF Mass Spectrometer

Component Name	MS Q-TOF	Component Model	G6520A
Ion Source	Dual ESI	Tune File	AutoTune.tun
Stop Mode	NoLimit	Stop Time	30.00
Can wait for temp.	Enable	Fast Polarity	N/A
MS1CentroidDataAbsThreshold	500	MS1CentroidDataRELThreshold	0.010
MS2CentroidDataAbsThreshold	5	MS2CentroidDataRELThreshold	0.010
Time Segments			
Time Segment #	Start Time Diverter Valve State	Storage Mode Ion Mode	
1	0.0 MS	Both Dual ESI	
Time Segment 1 Acquisition Mode MS1			

Min Range	50
Max Range	1000
Scan Rate	3.00

LC/MS parameters for Targeted MS/MS analysis

TOF/Q-TOF Mass Spectrometer

Component Name	MS Q-TO	F	Compo	onent Model	G6520A
Ion Source	Dual ESI		Tune F	ile	AutoTune.tun
Stop Mode	NoLimit		Stop T	ime	30.00
Can wait for temp.	Enable		Fast Po	plarity	N/A
MS1CentroidDataAbsThreshold	200		MS1Ce	entroid Data RELThreshold	0.010
MS2CentroidDataAbsThreshold	5		MS2Ce	entroid Data RELThreshold	0.010
Time Segments					
Time Segment #	Start Time	Diverter Valve State	Storage Mode	Ion Mode	
1	0.0	MS	Centroid	Dual ESI	

Reference Forensics and Toxicology LC/MS Parameters

LC/MS parameters for Targeted MS/MS analysis (continued)

Time Segment 1

Acquisition Mode TargetedMS2

MS Min Range	50
MS Max Range	1000
MS Scan Rate	10.00
MS/MS Min Range	40
MS/MS Max Range	1000
MS/MS Scan Rate	5.00
Max Time Between MS	0.0
Use Fixed Collision Energies	10.00,20.00,40.00

Targeted Mass List

Mass	Z	Ret. Time	Delta ret. time	Isolation width	Collision energy	Acquisition Time
286.143777	1	1.78	0.50	Narrow (~1.3 amu)		
286.143777	1	2.52	0.50	Narrow (~1.3 amu)		
300.159377	1	2.99	0.50	Narrow (~1.3		
300.159377	1	3.16	0.50	Narrow (~1.3		
150.127677	1	3.39	0.50	Narrow (~1.3		
194.117577	1	3.41	0.50	Narrow (~1.3		
150.127677	1	3.82	0.50	Narrow (~1.3		
290.138677	1	3.96	0.50	Narrow (~1.3		
244.205977	1	5.21	0.50	Narrow (~1.3		
372.158577	1	5.41	0.50	Narrow (~1.3		
261.180877	1	7.20	0.50	Narrow (~1.3		
309.090177	1	7.38	0.50	Narrow (~1.3		
285.078877	1	8.29	0.50	Narrow (~1.3 amu)		
LC/MS parameters for Auto MS/MS analysis

TOF/Q-TOF Mass Spectrometer

Component Name	MS Q-TO	F			Componer	nt Model	G6520A
lon Source	Dual ESI				Tune File		AutoTune.tun
Stop Mode	NoLimit				Stop Time		30.00
Can wait for temp.	Enable				Fast Polari	ty	N/A
MS1CentroidDataAbsThreshold	200				MS1Centro	oid Data RELThreshold	0.010
MS2CentroidDataAbsThreshold	5				MS2Centro	oid Data RELThreshold	0.010
Time Segments							
Time Segment #	Start Time	Diverter	Valve State	Storage N	/lode	Ion Mode	
Time Segment 1	0.0	IVIS		Centrold		Dual ESI	
Acquisition Mode AutoMS2							
MS Min Range			50				
MS Max Range			1000				
MS Scan Rate			10.00				
MS/MS Min Range			40				
MS/MS Max Range			500				
MS/MS Scan Rate			5.00				
Isolation Width MS/MS			Narrow (~1.	3 amu)			
Ramped Collision Energy							
Slope			6.000				
Offset			4.00				
Ramped Collision Energy							
Charge Slo	pe c	Offset					
Precursor Selection	0	4					
			2				
Threshold (Abs)			5 1000				
Threshold (Pol)			1000				
Precursor abundance based	scan sneed		0.050 No				
Durity Stringency (%)	scan spece		100 000				
Purity Stringency (%)			30,000				
Isotone Model			Common				
Active exclusion enabled			Yes				
Active exclusion excluded a	fter (spectra	a)	2				
Active exclusion released at	ter (min)		0.05				
Sort precursors			By abundan	ce only			
Static Exclusion Ranges							
StartMZ EndMZ							
50.00 125.00							
600.00 1000.00							
Static Exclusion Ranges							
Charge State							
Preference							
2							
1							

Forward vs. Reverse Library Search

The forward search compares the Target spectrum to the library. The reverse search compares the library spectra to the Target spectrum. Scores depend on which search is done. High scores are achieved when the bulk of the ion signal is assigned.

In a *forward* search, peaks in Target spectrum are compared to peaks in Library spectrum. Forward search penalizes peaks that are in Target but not in Library AND the peaks that are in Library but not in Target.

A low score for a forward search indicates noise and/or impurities.

In a *reverse* search, peaks in Library spectrum are compared to peaks in Target spectrum. Reverse search only penalizes peaks that are in Library but not in Target.

A reverse search works well for weak or noisy signals if all library ions are included at the approximate correct abundance.

A low reverse search indicates a bad match. Table 2 shows examples of product ion conditions and results.

The Exclude ion from Reverse Score when ratio of precursor intensity to total library MS/MS intensity exceeds (percent) check box prevents a very high intensity precursor ion from distorting the reverse score (Score (Rev)). The default value for this check box has been set to 90%. See Figure 43.

Reference Forward vs. Reverse Library Search

Libraries Search Criteria F	Method Editor: F RT Scoring Peak Filters Tolerances
earch criteria (.cdb)	
Restrict spectral compariso	on based on
Ionization mode	
Instrument type	
Collision energy	+/- 2.00 eV
Exclude precursor ion fr ratio of precursor inten exceeds	sity to total library MS/MS intensity
Exclude precursor ion fraction of precursor inten exceeds	rom Reverse Score when sity to total library MS/MS intensity 90.00 %
 Exclude precursor ion fr ratio of precursor inten exceeds erch criteria (.L, xml) 	rom Reverse Score when sity to total library MS/MS intensity 90.00 %

Figure 43 Search Criteria tab with the Exclude precursor... check box marked.

If you mark this check box:

- A high intensity precursor ion will not distort the reverse score (Score (Rev)).
- The reverse score is calculated as usual unless the precursor ion is more than the given percentage of the total MS/MS intensity. If the precursor ion is the only ion in the spectrum, the hit is reported but the reverse score is blank and is not rolled into the Score (Lib). If the score is blank, then the Flags column is set to Precursor ion only match.

Search	Condition			Score
Forward	Target Spectrum		Library	High
		—		
		\longrightarrow		
	All of the product ion library and vice versa	s in the sample spectr	um are found in th	Ie
Forward	Target Spectrum		Library	Low
		>		
	All of the product ion	e		
	library, but only some	ınd in		
	the sample spectrum.	•	,	

Table 2 Example product ion conditions and search results

Search	Condition		Score		
Reverse	Target Spectrum	Library	Low		
	Only some of the product ions in the library are found in the sample spectrum.				
Reverse	Target Spectrum	Library	High		

 Table 2
 Example product ion conditions and search results (continued)

All of the product ions in the library are found in the sample spectrum.

www.agilent.com

In This Guide

This Quick Start Guide describes how to use the MassHunter Forensics and Toxicology PCD or PCDL.

This guide is valid for the B.07.00 revision or higher of the MassHunter Forensics and Toxicology PCD or PCDL, until superseded.

This information is subject to change without notice. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages with the furnishing, performance or use of this material. Agilent specifically disclaims any warranties for any implied warranties of merchantability or fitness for a particular purpose.

© Agilent Technologies, Inc. 2015

Revision A, January 2015

G6855-90010