

LC/MS Applications for Drug Residues in Foods

Solutions Guide

General Description

Agilent Technologies has developed some key liquid chromatography/mass spectrometry (LC/MS) applications for the analysis of drug residues in foods.

This guide provides an overview of the analysis of these residues using LC/MS, including single quadrupole (SQ), triple quadrupole (QQQ), time-of-flight (TOF), and hybrid quadrupole time-of-flight (Q-TOF). The guide will be useful as a starting point for application development and as a way to easily order the LC/MS system. Application examples include detailed chromatographic and mass spectrometer conditions, MS performance data, and representative chromatograms. An appendix provides some general sample preparation procedures.

Table of Contents

_		
Int	roduction	
	Major classes of veterinary drugs	3
4	Analytical challenges in drug residue analysis	4
	Overview of LC/MS technologies – which technique to use	5

Applications

-	· · · · ·		
	1.	Determination, confirmation, and quantitation of trace B-lactam antibiotics in milk using the Agilent 6410 LC/MS/MS	6
	2.	Structure elucidation of degradation products of amoxicillin by LC/TOF	9
	3.	Chloramphenicol in honey, shrimp, and chicken using the Agilent 6410 LC/MS/MS	11
	4.	Using LC/MS/MS 6410 for Analysis of Chloramphenicol, Thiamphenicol, and Florfenicol in Fish Samples	14
	5.	Chloramphenicol in fish meat by LC/APPI/MS	16
	6.	Determination of the metabolites of nitrofurans in chicken tissue using the Agilent 6410A LC/MS/MS	18
	7.	Analysis of nitrofuran metabolites in tilapia by LC/MS/MS	21
	8.	Detection of sulfonamides in pork by LC/APCI MS source	23
	9.	Screening, determination, and quantitation of sulfonamides in meat using the Agilent 6410A LC/MS/MS	25
	10.	Rapid multi-residue screening for fluoroquinolones in beef using the Agilent 6410A LC/MS/MS	28
	11.	Determination of malachite green and leucomalachite green in food by LC/MS/MS	31
	12.	Rapid confirmation and multi-residue quantitation of β_2 -agonist in animal food using the Agilent 6410A LC/MS/MS	34
	13.	Determination of multi-residues of tetracyclines and their metabolites in milk by high-performance liquid chromatography and an Agilent 6410A LC/MS/MS	37
A	ppe	ndix	
	Ger	neral Sample Preparation Procedures	41

Introduction

Major Classes of Veterinary Drugs

Veterinary drugs are used in animal husbandry to cure diseases or prevent sickness. They can also promote growth, enhance feed efficiency, and keep animals calm during transport. However, all drugs that are administered to food-producing animals may lead to residues in the edible tissues, milk, or eggs. The presence of these residues may pose potential health risks, including allergic reactions, direct toxic effects, and a change in the resistance of bacteria exposed to antibiotics.

During the last several decades, many veterinary drugs were used around the world and some can still be detected in the food chain. The list below shows the major classes of veterinary drugs.

- 1. Antimicrobial drugs
 - · Aminoglycosides and aminocyclitols
 - Amphenicols
 - β-Lactams (penicillins and cephalosporins)
 - Fluoroquinolones
 - · Macrolides and lincosamides
 - Nitrofurans
 - Sulfonamides
 - Tetracyclines
- 2. Anthelmintic drugs
 - Benzimidazoles
 - Imidazothiazoles
 - Organophosphates
 - Tetrahydropyrimidines
 - Salicylanilides
 - · Substituted phenols
 - Macrocyclic lactones
 - Piperazine derivatives

- 3. Antiprotozoal (anticoccidial) drugs
 - Benzamides
 - Carbanilides
 - · Nitroimidazoles
 - · Polyether ionophores
 - · Quinolone derivatives
 - Triazines
- 4. Antimicrobial growth promoters
 - Organic arsenicals
 - Peptide antibiotics
 - Quinoxaline-1,4-dioxides
- 5. Hormonal-type growth promoters
 - · Endogenous sex steroids
 - · Synthetic steroidal compounds
 - · Synthetic nonsteroidal compounds
 - Polypeptide hormones
- 6. Other drugs
 - Antifungal drugs
 - β-Adrenergic agonists
 - Corticosteroids
 - Diuretic drugs
 - Dye drugs
 - Nonsteroidal anti-inflammatory drugs (NSAIDs)
 - Sedatives and β-blockers
 - Thyreostatic drugs

Many countries, such as the United States and those in the European Union, have set maximum residue limits (MRLs) for different foods. Japan also has set up MRLs for compounds included in the Japanese Positive List. Recently, China has defined some new national standards to monitor banned antibiotics in foods.

Analytical Challenges in Drug Residue Analysis

There are two main challenges analysts face when testing for drug residues in food matrices:

1. Analyte Diversity

Because the list of possible residues that must be analyzed is so long, there are significant differences in their characteristics, which impact the chromatographic separation and detection.

- Physical-chemical properties (for example, polarity and pKa)
- Stability
- 2 Matrix Diversity

Veterinary drugs are more difficult to analyze than pesticides using a single method, and tissues are more difficult matrices than fruits and vegetables. The matrix may be muscle, kidney, liver, milk, eggs, urine, blood, etc.

- Matrix composition (for example, lipids, proteins, carbohydrates, water, and salts)
- Analyte-matrix interactions
- Matrix coextractives

The growing number of veterinary drug residues to be tested in food laboratories is hastening the search for high-throughput techniques that are more effective in tackling large numbers of samples in a limited time. Several liquid chromatography/mass spectrometry (LC/MS) methods have been developed for the analysis of multi-class veterinary drug residues in different food matrices such as eggs, shrimp, and animal muscle. Because sample extraction and cleanup are the ratedetermining steps in drug analyses, the combination of solidphase extraction (SPE) with chromatography coupled with mass spectrometry or other spectroscopic techniques is widely used in modern food analysis.

Overview of LC/MS Technologies – Which Technique to Use

Sample preparation	Instrument options	Screening	Confirmation	Quantitation
SPE or QuEChERs	LC/QQQ Target, trace analysis in the "dirty" or complex matrix	 Highly selective, sensitive detection of a large number of compounds in a single injection Low detection limits in complex matrices Novel Agilent Jet Stream technology improves sensitivity 	 MRM provides positive confirmation and low detection limits to meet all regulatory requirements One-run screening and confirmation 	 Routine, high-accuracy MS/MS quantification Batch-at-Glance for fast view of quantifica- tion results
 Extraction Cleanup 	LC/Q-TOF or LC/TOF Nontarget, unknown compounds analysis	 High resolution reduces noise and matrix interference Accurate mass pro- vides added com- pound selectivity and unlimited screening using exact mass databases Novel Agilent Jet Stream technology improves sensitivity 	 Automated, accurate mass searches against public and private databases Molecular Formula Generator feature reduces data interpre- tation time 	 Very narrow mass win- dow for extracted ion Chromatograms pro- vide precise MS and MS/MS quantification High dynamic range to quantitate a wide range of concentra- tions
	LC/SQ Screening and quantification in the clean matrix	 Selective detection of a large number of compounds in a single injection Low detection limits in simple matrices Complementary structure information with DAD and FLD 		 High dynamic range to quantitate a wide range of concentra- tions

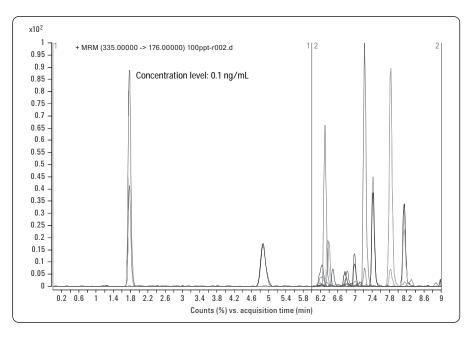
1 Determination, confirmation, and quantitation of trace ß-lactam antibiotics in milk using the Agilent 6410 LC/MS/MS

Abstract

The β-lactam antibiotics are widely used in veterinary medicine for the treatment and prevention of disease. This use can result in the presence of residues in milk and edible tissues which can lead to problems in the fermentation processes and to health problems for individuals who are hypersensitive to β-lactams.

Sample Preparation Procedure

- 1. Pipet 2 mL milk and mix with 4 mL acetonitrile.
- 2. Vortex to complete protein precipitation.
- 3. Centrifuge at 500 rpm for 10 min and filter (0.45 µm).
- 4. Inject 20 µL.


Instrument Settings

LC Conditions	
Column	Agilent ZORBAX SB-C18, 2.1 \times 150 mm, 3.5 μm
Mobile phase	A: water/0.3% acetic acid B: acetonitrile/0.3% acetic acid
Flow rate	0.3 mL/min
Gradient	0–2 min/A 90% 2.01–8 min/A 35% 8.01–9/A 5%
Column compartment temperature	30 °C
Stop time	9 min
Post time	6 min
Injection volume	10 µL
MSD Conditions	
Instrument Source	Agilent 6410 triple quadrupole LC/MS system ESI +

TS	Compound	Precursor	Product	Dwell (ms)	Frag (V)	CE (V)
0	Amoxicillin	366	114	100	110	15
			208	100	110	5
	Ampicillin	350	160	100	100	5
			192	100	110	10
6	Dicloxacillin	470	311	70	110	10
			160	70	110	10
	Nafcillin	415	256	70	110	15
				70	110	10
	Oxacillin	402	243	70	110	10
			160	70	110	10
	Penicillin V	351	192	70	100	5
			160	70	100	10
	Penicillin G	335	176	70	100	10
			160	70	100	5

MRM Settings

Results

LC/MS/MS Method Performance

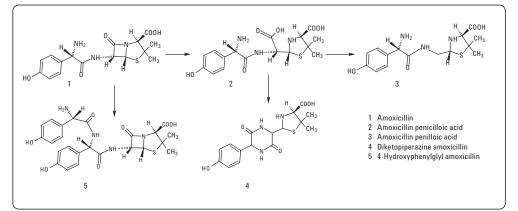
Compounds	S/N*	R ²	
Amoxicillin 366-114	224	0.992	
Ampicillin 350-160	61.6	0.984	
Dicloxacillin 470-160	48.5	0.981	
Nafcillin 415-199	52.6	0.998	
Oxacillin 402-160	70.9	0.993	
Penicillin V 351-160	225.9	0.998	
Penicillin G 335-160	33.2	0.981	

* These results were obtained in the real milk matrix spiked at 0.1 ppb each.

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410A or G6460AA
Agilent ZORBAX SB-C18, 2.1 × 150 mm, 3.5 µm	830990-902
13mm, 45 µm PTFE syringe filter	5185-5836

References


Agilent Technologies publication 5990-3722EN, "Determination, Confirmation, and Quantification of Trace β -Lactam Antibiotics in Milk by 6410 LC/MS/MS"

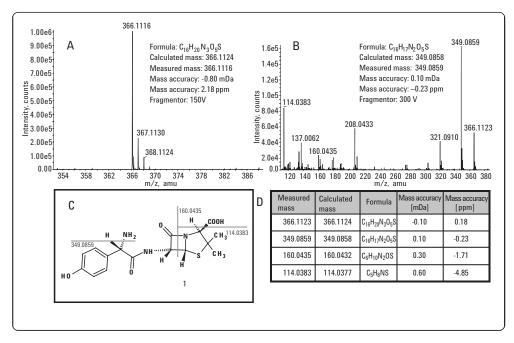
Agilent Technologies publication 5990-3364EN, "Determination of Penicillins in Meat by HPLC/UV and HPLC/MS/MS"

2 Structure elucidation of degradation products of amoxicillin by LC/TOF

Abstract

The confirmation of degradation products from a final dosage of the antibiotic drug amoxicillin obtained under stress conditions is demonstrated by accurate mass measurement and molecular formula confirmation for the molecular ions and their insource CID fragments by LC/ESI TOF.

Sample Preparation Procedure


The antibiotic amoxicillin was stressed under acidic conditions.

- 1. Add approximately 1 mL of amoxicillin solution (25 mg/mL in DMSO) to 1 mL 0.1 M HCl solution.
- 2. Stir the sample for 1 hour at room temperature (RT = 25 °C).
- 3. Dilute 1:10 with 20 mL of DMSO.

Instrument Settings

LC Conditions	
Agilent 1100 Series capillary pump	
Solvent A	Water, 10 mM ammonium formate, pH 4.1
Solvent B	ACN
Column flow	8 μL/min
Primary flow	500 – 800 μL/min
Gradient	0 min 0% B
	1 min 0% B
	13 min 25% B
	23 min 25% B
Stop time	23 min
Post time	15 min
MSD Conditions	
Source	ESI(+)
Drying gas	7.0 L/min @ 300 °C
Nebulizer	15 psi
Fragmentor	150 V or 300 V for CID

Results

Note: Amoxicillin penicilloic acid (2), ($C_{16}H_{21}N_3O_6S$), [M+H]⁺ = 384.1229 m/z

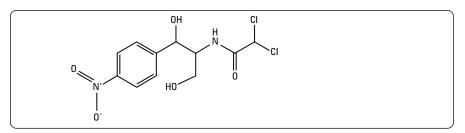
A) Accurate mass measurement of the molecular ion of amoxicillin penicilloic acid

- B) Accurate mass measurement of the CID fragment ions of amoxicillin penicilloic acid
- C) Structural CID fragmentation of amoxicillin penicilloic acid
- D) Mass accuracy of all CID fragments of amoxicillin penicilloic acid

Ordering Information

Description	Part number
Agilent LC/MS TOF	G6224AA or A6230AA

References


Agilent Technologies publication 5989-2348EN, "Structure Elucidation of Degradation Products of the Antibiotic Drug Amoxicillin Part 2: Identification and Confirmation by Accurate Mass Measurement With ESI TOF of the Compound Ions and the Fragments After CID"

Agilent Technologies publication 5989-3561EN, "Statistic Evaluation of Mass Accuracy Measurements by ESI-TOF with a Sample of Degradation Products from the Antibiotic Drug AmoxicIlin"

3 Chloramphenicol in honey, shrimp, and chicken using the Agilent 6410 LC/MS/MS

Abstract

A method for chloramphenicol in honey, shrimp, and chicken was developed using the Agilent 6410A triple quadrupole (QQQ) LC/MS System. The sensitivity obtained exceeds the minimum required performance level (MRPL) established by the European Union regulation for food monitoring programs. Using a deuterated internal standard and one simple solid phase extraction (SPE) procedure can provide a limit of detection of 10 ppt in the sample matrix.

Sample Preparation Procedure

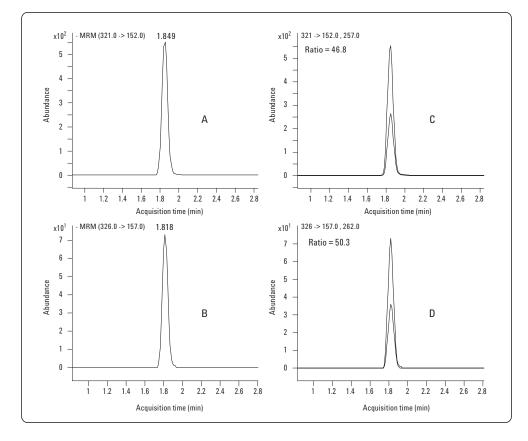
1. Internal Standard

Prepare standard solutions: 1, 0.2, 0.1, 0.02, and 0.01 ppb, with IS (CAP-d5) at 0.25 ppb level.

Honey

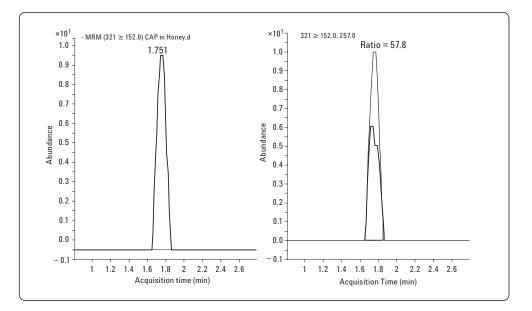
- 1. Dilute 1 g of sample to 5 mL with water. Add 25 μL of 10 ppb IS.
- 2. Load the solution onto the SPE cartridge and allow to stand for 5 min.
- 3. Elute the sample with 10 mL ethyl acetate.
- 4. Collect the eluate and evaporate the solvent under a nitrogen stream at 40 °C.
- 5. **Dissolve** the residue in 1 mL of methanol and put in an ultrasonic bath for 1 minute.
- 6. Filter the solution for injection.

Instrument Settings


LC Conditions	
Column	Agilent ZORBAX SB-C18, 2.1 × 50 mm, 1.8 μm (p/n 827700-902)
Flow rate	0.4 mL/min
Mobile phase	A: water; B: methanol
Gradient	0–5 min, 30~70% B
	5–6 min, 70~100% B
	8 min, 100% B
Post time	4 min
Temperature	45 °C
Injection	5 µL

MSD Conditions

Source
lon polarity
Drying gas
Nebulizer
V _{cap}
Fragmentor
Collision energy


ESI Negative 10 L/min @ 350 °C 45 psi 3500 V 100 V 10 V for *m/z* 257 (qualifier ion) 15 V for *m/z* 152 (quantitation ion)

Results

Sensitivity

Standard in water and 10 ppt/10 µL injection

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410B or G6460AA
Agilent ZORBAX SB-C18, 2.1 × 50 mm, 1.8 µm	827700-902
Agilent AccuBond SPE ENV PS DVB Cartridges	188-3060

Reference

Agilent Technologies publication 5989-5975EN, "Detection, Confirmation, and Quantification of Chloramphenicol in Honey, Shrimp, and Chicken Using the Agilent 6410 LC/MS Triple Quadrupole"

4 Using LC/MS/MS 6410 for Analysis of Chloramphenicol, Thiamphenicol, and Florfenicol in Fish Samples

Abstract

Chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FF) are detected in a single run with very high sensitivity and selectivity using the Agilent 6410A triple quadrupole LC/MS system in negative ion mode.

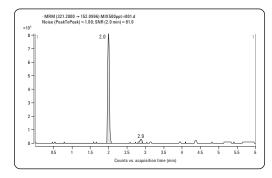
Sample Preparation

See Chloramphenicol Sample Preparation on page 11.

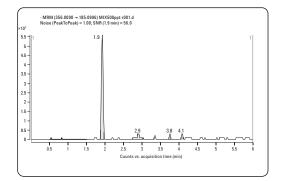
Instrument Settings

LC Conditions	
Column Mobile phase	Agilent ZORBAX Eclipse Plus C18, 2.1 × 50 mm, 1.8 μm A: water;
Flow rate Gradient	B: acetonitrile 0.4 mL/min 0–2min/B 10–90% 2–3min/B 90% 3.01/B 10%
Stop time Column compartment temperature Injection volume MSD Condition 6410A ESI (–)	6 min 45 °C 5 μL

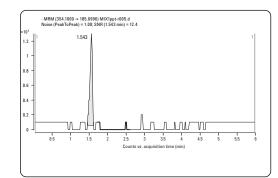
MRM Setting


Name	Precursor ion	Product ion	Frag (V)	CE (V)	Dwell (ms)
ТАР	354.1	185.1*	120	20	60
	354.1	289.9	120	10	60
	354.1	227.1	120	10	60
FF	356	185.1*	120	20	60
	356	335.8	120	5	60
	356	219.1	120	5	60
САР	321.2	152.1*	120	10	60
12	321.2	176.2	120	10	60
	321.2	257.1	120	5	60
D5-CAP (ISTD)	326.2	157.2	130	15	60
	326.2	262.2	130	5	60

Results


Name	Linearity (0.5-20 ppb)
TAP	0.994
FF	0.992
CAP	0.994

Sensitivity


1. CAP: 0.5 ppb S/N = 81

2. FF: 0.5 ppb S/N = 56

3. TAP: 1 ppb, S/N = 12

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410A or G6460AA
Agilent ZORBAX Eclipse Plus C18, 2.1 \times 50 mm, 1.8 μ m	959741-902
Agilent AccuBond SPE ENV PS DVB Cartridges	188-3060

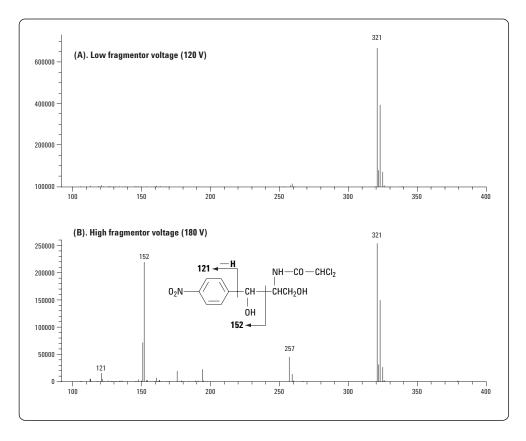
Reference

Agilent Technologies publication 5990-3734EN, "Using LC/MS/MS 6410 for Analysis of Chloramphenicol, Thiamphenicol, and Florfenicol in Fish Samples"

5 Chloramphenicol in fish meat by LC/APPI/MS

Abstract

This example shows the determination of chloramphenicol in fish meat by liquid chromatography/atmospheric pressure photoionization/mass spectrometry (LC/APPI/MS).


Sample Preparation

- 1. Weigh 5 g fish meat and 5 g anhydrous sodium sulfate.
- 2. Add 10 mL ethyl acetate.
- 3. Homogenize the sample for 20 seconds.
- 4. Centrifuge the sample for 5 min at 6000 rpm.
- 5. Remove supernatant and repeat steps 2 to 4.
- 6. Combine the two ethyl acetate extracts and take to dryness with a rotovap at 40 $^\circ\text{C}.$
- 7. **Reconstitute** with 1 mL acetonitrile, add 1 mL hexane, shake and discard the hexane layer.
- 8. Add another 1 mL hexane, shake, and discard the hexane layer.
- 9. Take the acetonitrile to dryness and reconstitute with 10 % acetonitrile in 10 mM aqueous ammonium acetate.
- 10.Filter into autosampler vial.

Instrument Settings

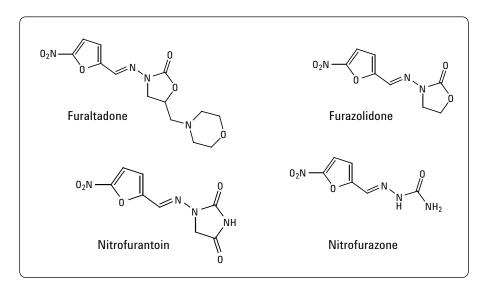
LC Conditions	
Column	Agilent ZORBAX Eclipse XDB C18, 3 × 150 mm, 5 µm
Solvent A:	Water with 10 mM ammonium acetate
Solvent B:	Methanol
Dopant:	Acetone at 0.05 mL/min
Gradient:	90/10 A/B 15 min to 70/30 A/B
Column temperature:	40 °C
Sample volume:	20 μL
Flow rate:	0.5 mL/min
MSD Conditions	
Ionization:	APPI (Negative)
Scan range:	100–400 m/z for optimization
SIM ion:	321 <i>m/z</i> , (M-H)⁻
Drying gas:	Nitrogen, 7 L/min @ 350 °C
Nebulizer gas:	Nitrogen, 50 psi
Fragmentor:	120 V
Capillary:	3500 V
Vaporizer temperature:	350 °C

Recovery of Chloramphenicol for Spiked Fish Meat

Spiking levels	Recovery [±RSD (%)]		
(ng/g)	Young yellowtail	Flatfish	
0.1	89.3 ± 5.1	87.4 ± 6.1	
0.5	102.5 ± 4.9	94.8 ± 6.7	
2.0	96.1 ± 4.3	91.8 ± 4.9	

Ordering Information

Description	Part number
Agilent LC/MSD	G6120AA, G6130AA, or G6140AA
APPI source	G1971B
Agilent ZORBAX Eclipse Plus C18, 3 \times 150 mm, 5 μ m	993967-302


Reference

Agilent Technologies publication 5988-8999EN, "Determination of Chloramphenicol in Fish Meat by Liquid Chromatograph-Atmospheric Pressure Photo Ionization-Mass Spectrometry (LC-APPI-MS)"

6 Determination of the metabolites of nitrofurans in chicken tissue using the Agilent 6410A LC/ESI/MS

Abstract

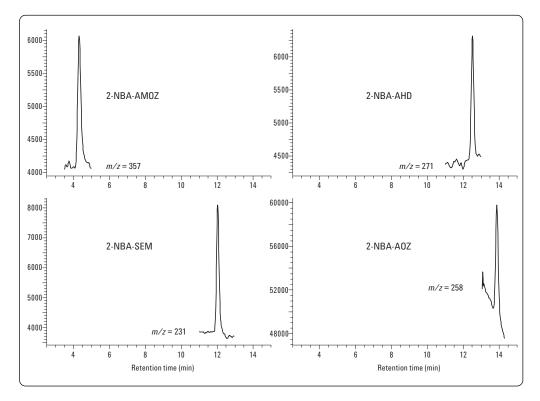
The metabolites of nitrofuran antibacterial drugs in chicken tissue are measured by liquid chromatrograph/electrospray ionization/mass spectrometry (LC/ESI/MS). (Shown below are the nitrofuran drugs, not their metabolites.)

Sample Preparation

- 1. **Prepare** four metabolite solutions in water (12.5, 25.0, 37.5, and 50 μ L at 100 ng/mL).
- 2. Transfer the samples to separate 40-mL glass vials with screw-top caps.
- 3. Add 10 mL of 125 mM HCl in water, and 200 μL of 50 mM 2-NBA in DMSO to each vial cap.
- 4. Maintain the reaction mixtures in a water bath at 37 °C for 16 hours.
- 5. **Cool** the solutions to room temperature.
- 6. Adjust the pH 7.4 by adding 0.1 M aqueous KHPO₄ and 0.8 M aqueous NaOH.
- 7. Extract the samples with ethyl acetate and dry with a nitrogen stream.
- 8. Reconstitute the samples in 1.0 mL initial mobile phase and inject.

Instrument Settings

LC Conditions	
LC	Agilent 1100 Series LC
Column	Inertsil ODS3, 2.1 × 150 mm, 5 µm
	(GL Science, Tokyo, Japan)
Solvent A	Acetonitrile
Solvent B	Aqueous 0.5% formic acid
Gradient	20/80A/B to 70/30 A/B in 20 min
Column temperature	20 °C
Sample volume	30 µL
Flow rate	200 μL/min
MSD Settings	
MS	Agilent 1100 MSD, SL
Ionization	ESI (positive)
Scan range	100–500 m/z for optimization
SIM ion	Base peak for quantitation
Drying gas	Nitrogen, 10 L/min @ 350 °C
Nebulizer gas	Nitrogen, 50 psi
Fragmentor	120 or 140 V
V _{cap}	2000 V


Results

Linearity, LOD, and Instrument Precision of Metabolites in Aqueous Solutions

		LOD	R	SD	
Metabolites	R ²	(ng/mL)	1 day	3 day	
AMOZ	0.9999	0.04	5.0	7.3	
SEM	0.9998	0.02	4.7	8.1	
AHD	0.9989	0.06	4.9	7.9	
AOZ	0.9997	0.06	3.1	8.2	

Results

SIM chromatograms of aqueous 2-NBA nitrofuran metabolites solution at 0.25 ng/mL

Ordering Information

Description	Part number
Agilent LC/MSD	G6110AA, G6120AA, G6130AA, or G6140AA

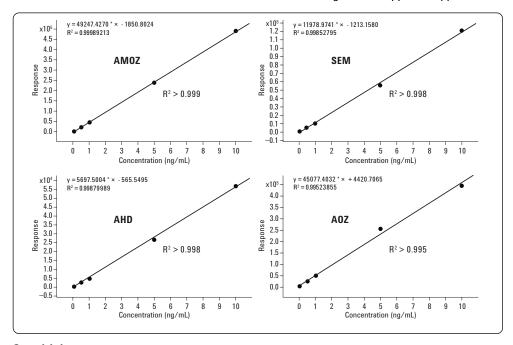
Reference

Agilent Technologies publication 5988-8903EN, "Determination of the Metabolites of Nitrofuran Antibacterial Drugs in Chicken Tissue by Liquid Chromatograph/Electrospray Ionization/Mass Spectrometry (LC/ESI/MS)"

7 Analysis of nitrofuran metabolites in tilapia by LC/MS/MS Abstract

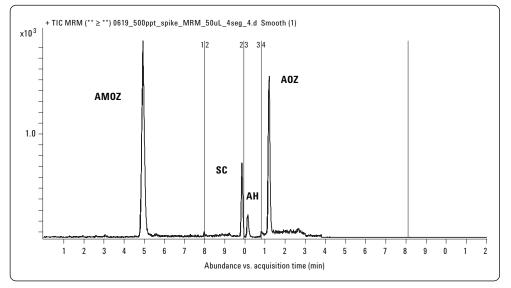
The metabolites of nitrofuran antibiotics banned in meat and meat products are analyzed by LC/MS/MS with the new Agilent 6410 triple quadrupole. The method is shown to be highly sensitive, to 0.01 ppb (10 ppt), for each of the four analytes. Calibration from 0.1 ppb to 10 ppb is presented with all criteria for confirmation as set by the European Union decisions for analytical method performance.

Instrument Settings


LC Conditions	
Column	Agilent ZORBAX C18, 2.1 × 150 mm, 3 µm
Column temperature	40 °C
Mobile phase	A: 0.1% formic acid in water
	B: acetonitrile
Gradient	22% B at 0 min
	99% B at 6 min
	99% B at 9 min
Flow rate	0.3 mL/min
Injection volume	50 μL
MSD Conditions	
Ionization mode	Positive ESI
Drying gas	10 L/min @ 350 °C
Nebulizer	35 psig
V _{cap}	5000 V

MRM Method Setup

Name	Transitions	Dwell time (ms)	Frag (V)	CE
AMOZ	335.1→291.4	60	100	
	335.1→262.4	60	100	5
SC	209.1→192.3	60	100	5
	209.1→166.3	60	100	5
AH	249.1→134.2	60	100	5
	249.1→104.2	60	100	5
AOZ	236.0→134.1	60	100	5
	236.0→104.1	60	100	5


Results

Calibration curves of nitrofuran metabolites show a linear range from 10 ppt to 10 ppb.

Sensitivity

Spiked tilapia sample extract at 500 ppt each

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410BA or G6460AA

Reference

Agilent Technologies publication 5989-5808EN, "Analysis of Nitrofuran Metabolites in Tilapia Using Agilent 6410 Triple Quadrupole"

8 Detection of sulfonamides in pork by LC/MSD with the APCI source

Abstract

A simple LC/MS method is described for the detection of sulfonamides in pork using the Agilent single-quadrupole LC/MSD with an APCI source.

- 1. Weigh 3-g samples of pork muscle directly into 50-mL polypropylene centrifuge tubes.
- 2. Homogenize 3 minutes with 10 mL of acidified methanol.
- 3. Centrifuge 10 minutes.
- 4. Extract 10 mL of acidified methanol, filter and inject.

Instrument Settings

Sample Preparation

LC Conditions

Column

Solvent A Solvent B Gradient

Flow rate Injection volume Column temperature

MSD Conditions

Source Ion dwell time Fragmentor Drying gas Nebulizer pressure Vaporizer temperature Capillary voltage Corona current Agilent ZORBAX Eclipse XDB-C8, 4.6 × 150 mm, 5 μm (p/n 993967-906) 0.1% formic acid in water 0.1% formic acid in acetonitrile 0 min 20% B 1 min 20% B 3 min 90% B 6.5 min 90% B Post time = 1.5 min 1.0 mL/min 50 μL 30 °C

APCI (positive ion mode) 8 ions at 63 ms each 70 V 6.0 L/min @ 350 °C 60 psi 400 °C 3000 V 4 μA

Results

MSD1 256, EIC=255.7:256.7	(SULFAINISD\SSS_CID.D)	APCI, Pos, SIIVI, Frag: 70 ∧ 3.051 -	STZ		
1 MSD1 251, EIC=250.7:251.7	2 (SULFAMSD\SSS_CI5.D)	APCI, Pos, SIM, Frag: 70 3.084 -	sdz	5	mi
1 MSD1 250, EIC=249.7:250.7	2 (SULFAMSD\SSS_CI5.D)		4 332 - SPY	5	mi
1 MSD1 265, EIC=264.7:265.7	2 (SULFAMSD\SSS_CI5.D)	3 APCI, Pos, SIM, Frag: 70	4 	5 //R	mi
1 MSD1 279, EIC=278.7:279.7	2 (SULFAMSD\SSS_CI5.D)	3 APCI, Pos, SIM, Frag: 70	4.050	5 5 - SMZ	mi
1 MSD1 285, EIC=284.7:285.7	2 (SULFAMSD\SSS_CI5.D)	3 APCI, Pos, SIM, Frag: 70	4	5 4.314 - SCPD (IS)	mi
1 MSD1 301, EIC=300.7:301.7	2 (SULFAMSD\SSS_CI5.D)	3 APCI, Pos, SIM, Frag: 70	4	4.514 - SQ	mi
1 MSD1 311, EIC=310.7:311.7	2 (SULFAMSD\SSS_CI5.D)	3 APCI, Pos, SIM, Frag: 70	4	√4.537 - SDMX	mi
· · · · · · · · · · · · · · · · · · ·	2	3	4	5	mi

Amount recovered (ng)

		00010104 (
Description	STZ	SDZ	SPY	SMR	SMZ	SCPD(IS)	SQ	SDMX
Pork spike 1	161	157	132	273	149	2,000	139	126
Pork spike 2	154	156	132	293	157	2,000	153	131
Pork spike 3	149	158	124	267	155	2,000	132	113
Pork spike 4	145	152	122	279	144	2,000	119	111
Pork spike 5	151	162	127	294	149	2,000	127	121
Pork spike 6	136	147	127	274	136	2,000	116	108
Pork spike 7	148	161	128	275	155	2,000	124	116
Amount spiked (ng)	150	150	150	300	150	2,000	150	150
Mean	149	156	127	279	149	2,000	130	118
SD (Precision)	8	5	4	10	7	-	13	8
MDL (SD × t-stat) ng	24	17	11	33	23	-	40	26
LOQ (SD × 10) ng	76	53	36	104	73	-	128	82
RSD (SD × 100/Mean)	5	3	3	4	5	-	10	7
Accuracy (%)	99	104	85	93	100	100	87	79
Linearity (R ²)	0.9994	0.9994	0.9997	0.9979	0.9998	1.0000	0.998	9 0.9989
t-stat (N = 7)	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14

Ordering Information

Description	Part number
Agilent LC/MSD	G6110AA, G6120AA, G6130AA, or G6140AA
Agilent ZORBAX Eclipse XDB-C8,	
4.6 × 150 mm, 5 μm	993967-906

Reference

Agilent Technologies publication 5989-0182EN, "A Validated Atmospheric Pressure Chemical Ionization Method for Analyzing Sulfonamides in Pork Muscle"

9

Screening, determination, and quantitation of sulfonamides in meat using the Agilent 6410A LC/MS/MS

Abstract

An Agilent 6410A LC/MS/MS is used to detect, monitor, and quantitate trace sulfonamides in pork with high sensitivity results.

Sample Preparation

- 1. Weigh 3-g samples of pork muscle directly into 50-mL polypropylene centrifuge tubes.
- 2. Homogenize 3 minutes with 10 mL acidified methanol.
- 3. Centrifuge 10 minutes.
- 4. Extract 10 mL acidified methanol, filter and inject.

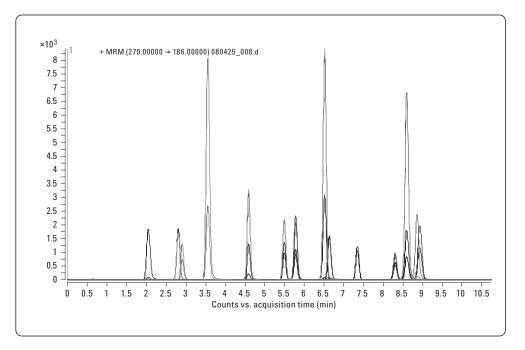
Instrument Settings

LC Conditions LC Column Gradient

Stop time Column temperature Injection volume Flow rate

MSD Conditions

lonization Drying gas Nebulizer gas Agilent 1200 Series LC Agilent ZORBAX SB-C18, 2.1 × 50 mm, 1.8 μm A: 0.1% TFA, B: Acetonitrile 0 min – 5% B; 6 min – 23% B; 9 min – 23% B; 9.01 min – 90% B 10 min 30 °C 1 μL 0.3 mL/min


ESI (Positive) 7 L/min @ 350 °C 30 psi

MRM Settings

Compound	MRM	Frag	CE (V)
Sulfachlororyridazine (SCP)	285–156	100	15
	285–108		20
Sulfadiazine (SD)	251–156	120	10
	251–185		10
Sulfamethazine (SDM)	311–156	140	15
	311–218		15
Sulfamethoxypyridazine (SMP)	281–156	120	10
	281–215		15
Sulfamerazine (SM1)	265–156	120	15
	265–172		15
Sulfamethazin (SM2)	279–156	140	15
	279–204		15
Sulfafurazole (MSZ)	254-156	120	15
	254–147		20
Sulfamonomethoxine (SMM)	281–156	120	10
	281–126		20
Sulfathiazole (ST)	256–156	120	15
	256–107		15
Sulfaquinoxaline (SQX)	301–156	140	15
	301–208		15
Sulfadoxine (SDM)	311–156	140	15
	311–108		20
Sulfaphenazole (SPP)	315–156	140	20
	315–160		20
Sulfachlorpyridazine	285–156	100	15
	285–131		20
Sulfafurazole (SIZ)	268–156	120	5
	268–113		10

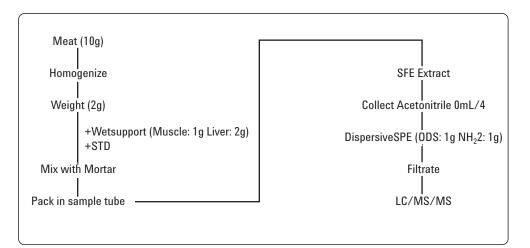
Results

The resulting chromatogram illustrates good separation and response.

Ordering Information

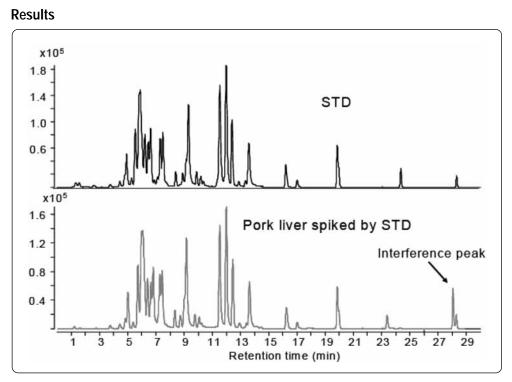
Description	Part number
Agilent LC/MS/MS	G6410BA or G6460AA

Reference

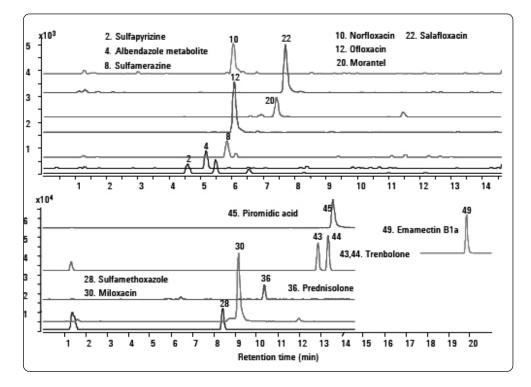

Agilent Technologies publication 5990-3761EN, "Detection, Monitoring, and Quantitation of Trace Sulfonamides in Pork Muscle Using the Agilent 6410A LC/MS/MS"

10 Rapid multi-residue screening for fluoroquinolones in beef using the Agilent 6410A LC/MS/MS

Abstract


This example highlights a rapid multi-residue screening method for veterinary drugs in meat by supercritical fluid extraction combined with liquid chromatography/tandem mass spectrometry (LC/MS/MS).

Sample Preparation



Instrument Settings

LC Conditions	
Column	Agilent ZORBAX Extend-C18, 2.1 mm × 100 mm, 1.8 µm
Oven temperature Mobile temperature	40 °C A: Acetonitrile, B: 0.1% formic acid/10 mM HCOONH ₄ 10% A – (30 min) – 100% A
Flow rate Injection	0.2 mL/min 1 μL
MSD Conditions Ionization Nebulizer gas Drying gas Fragmentor	ESI (+)(-) 345 kPa 10L/min @ 350 °C 100 V

MRM chromatogram of veterinary drugs in pork liver at 100 ppb

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410BA or G6460AA
Agilent ZORBAX Extend C18, 2.1 × 100 mm, 1.8 µm	

Reference

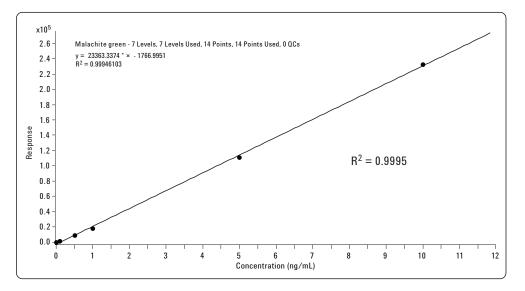
Agilent Technologies poster ASMS07-25, "Rapid Multiresidue Screening for the Veterinary Drugs in Meat by Supercritical Fluid Extract Combined With Liquid Chromatography-Tandem Mass Spectrometry"

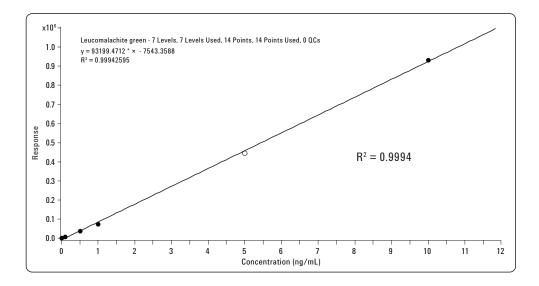
11 Determination of malachite green and leucomalachite green in food by Agilent 6410A Series LC/MS/MS

Abstract

This example uses a method to rapidly and precisely determine residue levels of malachite green and leucomalachite green in fish with the new Agilent 6410 LC/MS triple quadrupole system. Using positive mode electrospray ionization (ESI+) and multiple reaction monitoring (MRM), qualification and quantification were accomplished without the traditional tedious PbO₂ oxidation process.

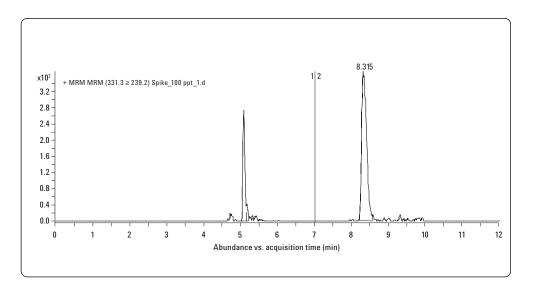
Sample Preparation


- 1. Add to 5 g tilapia tissue 1 mL (0.25 mg/mL) hydroxylamine, 2 mL 1 M toluene sulfonic acid, 2 mL of 0.1 M ammonium acetate buffer (pH 4.5), and 40 mL acetonitrile.
- 2. Extract using acetonitrile and methylene chloride.


Instrument Settings

LC Conditions	
Column Agilent ZORBAX C18, 2.1 × 150 mm, 5 µm	
Column temperature 40 °C	
Mobile temperature A: 10 mmol/L ammonium acetate (adjust to pH 4.5 with acetic acid) B: acetonitrile	
Flow rate 0.3 mL/min	
Gradient %B 0 min, 30	
1 min, 50	
2 min 95	
8 min 95	
8.01 min, 30	
Injection 10 µL	
MS Conditions	
Ionization ESI (+)	
Capillary 4000 V	
Nebulizer pressure 35 psi	
Drying gas 11 L/min @ 350 °C	
Skimmer 15 V	

Results


Linearity: 10 ppt - 10 ppb

Sensitivity

100 ppt level

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410BA or G6460AA

Reference

Agilent Technologies publication 5989-5807EN, "Determine Malachite Green and Leucomalachite Green in Food by LC/MS/MS"

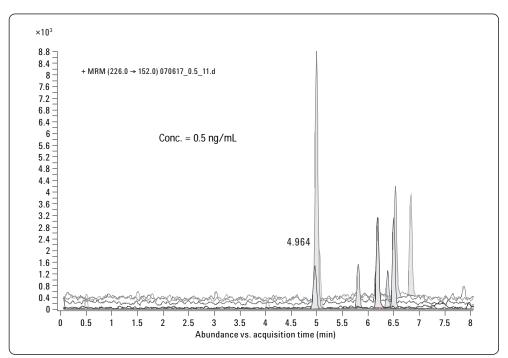
12 Rapid confirmation and multi-residue quantitation of β_2 -agonist in animal food using the Agilent 6410A LC/MS/MS

Abstract

 β_2 -agonist acts as a growth promoter and also influences lypolysis, transferring fat to muscle. In this analysis, liver and urine were selected as suitable matrices. Molecular imprinted polymers were used for the isolation of the β_2 -agonists from the matrices and an Agilent 6410A LC/MS/MS was used for quantitation and confirmation. Eleven β_2 -agonists are included in this example. The aim of the study was to develop a method suitable for both screening and confirmation of the β_2 -agonists at the proposed minimum required performance level (MRPL) or lower.

Sample Preparation

- 1. **Transfer** 5 mL of urine or 5 g of ground animal liver tissue sample into a centrifuge tube.
- 2. Add 10 mL of 0.1 M HCl solution to the tube.
- 3. Shake vigorously for 5 min, stir for 3 min, ultrasound for 10 min and centrifuge for 5 min at 12000r/min.
- 4. Decant and repeat the above two steps twice, combining all the supernatant.
- 5. Rinse a C18 SPE tube with 6 mL of methanol and then 6 mL de-ionized water.
- 6. Load the extract onto the C18 tube and rinse with 5 mL de-ionized water.
- 7. Wash the tube with 0.8 mL of methanol and 0.8 mL of de-ionized water, and collect the effluent.
- 8. **Dry** the effluent under a stream of nitrogen and re-constitute in initial mobile phase.
- 9. Pass the sample through a 0.45-µm membrane filter and into an autosampler vial.


Instrument Settings

LC Conditions	
LC Conditions	
Column	Agilent ZORBAX SB-C18, 2.1 × 100 mm, 1.8 µm
Column temperature	40 °C
Mobile temperature	A: 10 mmol/L ammonium formate plus
	0.1% formic acid; B: acetonitrile
Flow rate	0.3 mL/min
Gradient	0–5 min, B% 1% to 90%
	5–8 min, B% 90%
	8.1–14 min B% 1% at 0.5 mL/min
Injection	5 μL
MS Conditions	
Ionization	ESI (+)
Capillary	4000 V
Nebulizer pressure	35 psi
Drying gas	11 L/min @ 350 °C

MRM	Settings
-----	----------

Time	Compound	Precursor	Product	Dwell (ms)	Fragmentor (V)	Collision energy (V)
4.95	Terbutaline	226	152 170	10 10	100 100	15 30
4.98	Zilpaterol	262	244 185	10 10	100 100	10 25
4.98	Salbutemol	240	222 148	10 10	100 100	5 15
5.04	Cimaterol	220	202 160	10 10	80 80	5 15
5.80	Ractopamine	302	284	10	100	10
6.15	Tulobuterol	228	119 172	10 10	100 100	30 10
6.18	Clenbuterol	277	203 259	10 10	100 100	10 5
6.37	Bromobuterol	367	349 293	10 10	100 100	10 15
6.49	Clenpenterol	291	203 273	10 10	100 100	15 5
6.52	Mabuterol	311	237 293	10 10	100 100	15 10
6.83	Mapenterol	325	237 217	10 10	100 100	15 25

Results

Compound	S/N (p-p)
Terbutaline	374.6
Zilpaterol	39.0
Sabutemol	1759.8
Cimaterol	48.8
Ractopamine	1539.0
Tulobuterol	7.1
Clenbuterol	30.2
Bromobuterol	53.8
Clenpenterol	43.0
Mabuterol	15.8
Mapenterol	58.5

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410BA or G6460AA
C18 ODS – 6 mL tubes, 500 mg SampliQ	5982-1165

Reference

Inspection and Quarantine Science, Vol. 18 No. 5, pp 39-41

13

Determination of multi-residues of tetracyclines and their metabolites in milk by high-performance liquid chromatography (HPLC) and an Agilent 6410A LC/MS/MS

Abstract

Tetracyclines are probably the most frequently used antibiotics in animal husbandry. In this paper, a high-performance liquid chromatograph/tandem mass spectrometric (HPLC /MS/MS) method is developed for the simultaneous determination of 10 antibiotic residues (minocycline, 4-epioxytetracycline, 4-epitetracycline, tetracycline, 4-epichlortetracycline, demeclocycline, chlortetracycline, methacycline, doxycycline, and oxytetracycline) in milk and animal tissue.

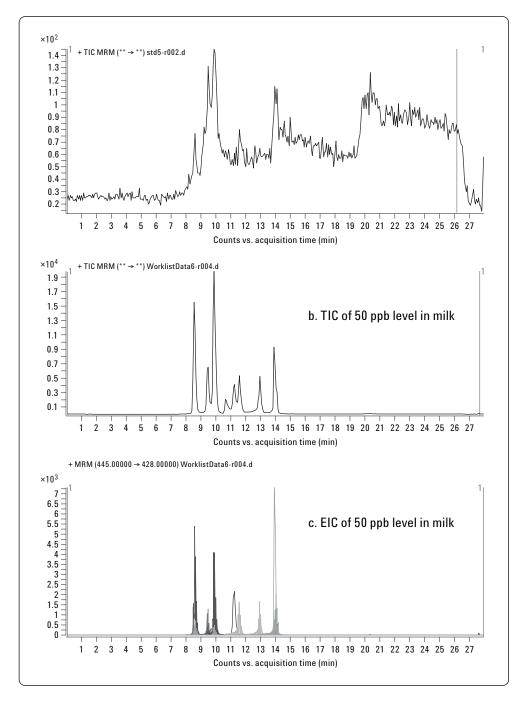
Sample Preparation

Extraction

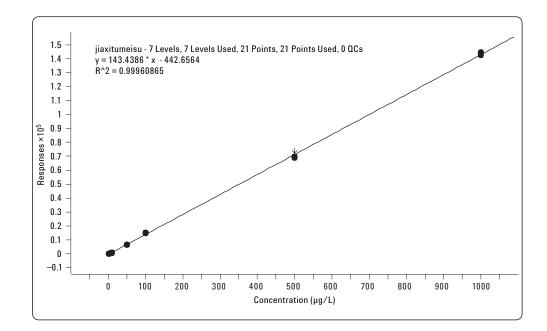
- 1. Weigh a 5-g milk sample (accurate to 0.01 g) into a 50-mL colorimetric tube.
- 2. **Dissolve** with 0.1 mol/L Na2EDTA-McIlvaine buffer solution, and adjust the volume to 50 mL.
- 3. Vortex mix for 1 min.
- 4. **Ultrasonically** extract in an ice water bath for 10 min, then transfer to a 50-mL polypropylene centrifugal tube.
- 5. Cool down to 0~4 °C.
- 6. Centrifuge at a rotate speed of 5000 r/min for 10 min (below 15 °C) and filter with fast filter paper.

Purification

- 1. **Draw** 10 mL extract (equivalent to 1 g sample) and put it through the Agilent SampliQ cartridge at a speed of 1 drop/s.
- 2. Clean the cartridge with 5 mL water and 5 mL methanol and water after the sample effuses completely.
- 3. Discard the effluent fluid.
- 4. **Drain** the cartridge for 5 min. under a negative pressure below 2.0 kPa.
- 5. **Elute** with 10 mL of 10 mmol oxalic acid in methanol.
- 6. Collect the eluent and dry under nitrogen below 40 °C.
- 7. **Dissolve** the residue with mobile phase to 1.0 mL (LC/MS/MS), filter with 0.45 μ m filter membrane, and inject.


Instrument Settings

LC Conditions	
Column	Agilent ZORBAX RX-C8, 2.1 × 150 mm, 5 μm (p/n 883700-906)
Flow rate	0.3 mL/min
Mobile phase	A: water/0.1% formic acid
	B: methanol
Gradient	0–10 min, B from 5% to 30%
	10-12 min, B from 30% to 40%
	12.5–18 min, B 65%
	18.5–25 min, B 95%
	25.5 min, B 5.0%
Total run	28 min
Post time	5 min
Temperature	30 °C
Injection	5 µL
MS Source Settings	
Source	ESI
lon polarity	Positive
Drying gas	10 L/min @ 350 °C
Nebulizer	45 psi
V _{cap}	4000 V


MRM Settings

Name	Fragment	Precursor ion	Product ion	CE	Rt. (min)
Minocycline	120	458	352	35	8.58
			441	20	
4-Epitetracycline	120	445	410	20	8.60
			427	10	
4-Epioxytetracycline	120	461	426	20	9.47
			444	15	
Tetracycline	120	445	410	20	9.90
			427	15	
Oxytetracycline	120	461	426	20	9.95
			443	10	
Demethylclocycline	120	465	430	25	11.25
			448	15	
4-Epichlortetracycline	120	479	444	22	11.59
			462	15	
Chlortetracycline	120	479	444	22	12.95
			462	15	
Methacycline	120	443	381	25	13.98
			426	15	
Doxycycline	120	445	154	30	14.08
			428	15	

Results

Name	R ²	Standards in so LOQ (S/N = 20) pg on column	lvent* LOD (S/N = 3) pg on column	Standar R ²	ds in Milk matrix* LOD (S/N = 3) pg on column
Minocycline	0.999	41.5	6.2	0.990	16.3
4-Epitetracycline	0.991	10.8	1.6	0.994	8.7
4-Epioxytetracycline	0.996	14.7	2.2	0.996	12.8
Tetracycline	0.998	9.4	1.4	0.994	10.2
Oxytetracycline	0.996	10.7	1.6	0.991	8.6
Demethylclocycline	0.999	22.8	3.4	0.993	8.1
4-Epichlortetracycline	0.986	38.2	5.7	0.987	11.9
Chlortetracycline	0.986	8.1	1.2	0.994	7.6
Methacycline	0.999	20.8	3.1	0.994	12.3
Doxycycline	0.999	32.2	4.8	0.995	11.2

Ordering Information

Description	Part number
Agilent LC/MS/MS	G6410BA or G6460AA
Agilent ZORBAX RX-C8, 2.1 x 150 mm, 5 µm	883700-906
SampliQ OPT SPE Cartridge 3mL 60 mg	5982-3036

Reference

Agilent Technologies publication 5990-3816EN, "Determination of Multi-Residue Tetracyclines and their Metabolites in Milk by High Performance Liquid Chromatography- Tandem Mass Spectrometry"

Appendix

General Sample Preparation Procedure for Reference

- Nitrofuran and its metabolites
 - 1. Weigh a 2-g tissue sample and add 5 mL of 0.2 N HCl and 50 μL of 50 mM 2-NBA.
 - 2. Vortex the sample for 1 min.
 - 3. Place in a water bath and shake for 16 hr (Note: lightproof).
 - 4. Add 0.3 mL of 0.3 M Na_3PO_4 and stir.
 - 5. Adjust pH to 7.4 (\pm 0.2) using 1M NaOH.
 - 6. Extract using 5 mL of acetate.
 - 7. Vortex 10 min, then centrifuge 3 min at 4000 rpm.
 - 8. Repeat Steps 6 and 7.
 - 9. Combine acetate extracts and dry using nitrogen at 40 °C. Reconstitute in 1 mL initial mobile phase.
 - 10. Filter 1 mL of the mobile phase for injection.
- Chloramphenicol
 - 1. Weigh a 10-g sample and extract twice with 50 mL ethyl acetate.
 - 2. Combine the two supernatants and concentrate at 40 °C to almost dry.
 - 3. Add 2 mL of methanol and 50 mL of 4% NaCl to dissolve the residue.
 - 4. Extract twice with 20 mL n-hexane. Discard the hexane.
 - 5. Extract twice with 20 mL acetate, collecting the ethyl acetate.
 - 6. Combine two ethyl acetate extracts, concentrated at 40 °C to almost dry.
 - 7. Dissolve using 5 mL of water.
 - 8. Activate Agilent ZORBAX C18 SPE cartridge using 5 mL of methanol, 5 mL of chloroform, 5 mL of methanol, and 10 mL of water.
 - 9. Load the 5 mL of sample onto the SPE cartridge.
 - 10. Using 5 mL acetonitrile/ $H_2O(5:95, V/V)$ and 3 mL acetonitrile, elute the analyte from the SPE cartridge.
 - 11. Dry the eluant using nitrogen at 40 °C.
 - 12. Dissolve the dried extract in 1-mL mobile phase and filter for injection.
- Glucocorticoid
 - 1. Weigh a 3-g sample.
 - 2. Add 15 mL of acetate.
 - 3. Vortex 15 min and centrifuge for 5 min at 16,000 rpm.
 - 4. Repeat and combine two acetate layers.
 - 5. Evaporate until almost dry at 40 °C.
 - 6. Activate a Silica SPE column using 6 mL n-hexane.
 - 7. Load samples.
 - 8. Wash with 6 mL of n-hexane.
 - 9. Elute with 6 mL of n-hexane/acetone (6:4).
 - 10. Using N₂ to dry at 40 °C, dissolve in 1 mL and filter for injection.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

 $^{\mbox{\scriptsize C}}$ Agilent Technologies, Inc., 2009 Printed in the USA April 9, 2009 5990-3677EN

Agilent Technologies