

Introduction

Coconut oil is used in many personal care, homecare or food products. That is why its organoleptic properties must be strictly controlled to guarantee a consistent quality in the final product.

In this study, several samples of coconut oils previously assessed by a sensory panel were tested with a Fast Gas Chromatography based electronic nose, with an aim to further control the quality of the ingredient.

Equipment HERACLES Flash GC Electronic Nose

HERACLES Electronic Nose (Alpha MOS, France - Fig. 1) is based on ultra fast chromatography. It features 2 metal columns of different polarities (non polar RXT-5 and slightly polar RXT-1701, length = 10m, diameter = 180µm, Restek) in parallel and coupled to 2 Flame Ionization Detectors (FID). Two chromatograms are obtained simultaneously, allowing sharper а identification of the chemical compounds. It allows headspace or liquid injection modes.

The integrated solid adsorbent trap thermoregulated by Peltier cooler (0-260°C) achieves an efficient pre-concentration of light volatiles and shows a great sensitivity (in the pg range). With fast column heating rates (up to 600°C/min), results are delivered within seconds and the analysis cycle time is around 5 to 9 minutes.

Fig. 1: Ultra Fast GC based HERACLES Electronic Nose

The electronic nose is coupled to an autosampler (HS 100, CTC Analytics) to automate sampling and injection.

The instrument is operated through Alpha Soft software. In addition to classical chromatography functionalities, it provides chemometrics data processing tools such as sample fingerprint analysis and comparison, qualitative and quantitative models, quality control charts.

AroChembase: Kovats Index library for chemical & sensory characterization

HERACLES e-nose was additionally equipped with AroChembase module (Alpha MOS, France) that can be used within AlphaSoft E-Nose software. It consists of a library of chemical compounds with name, formula, CAS number, molecular weight, Kovats retention attributes Index. sensory and related bibliography. It allows pre-screening the chemical compounds and giving sensory clicking features by directly the on chromatograms' peaks.

Samples & Analytical Conditions

A total of 13 samples (table 1) were analyzed, among which 7 samples were used to build up the models and 6 were blind samples for which quality determination is needed. The samples were first evaluated by a sensory panel according to rancidity, sweetness and caramel notes intensities, from 0 (low intensity) to 3 (high intensity).

Sample Label	Rancidity	Sweetness	Caramel
R1 (reference)	0	1	1
R2	0	2	1
R3	0	2	2
R4	0	3	3
R5	0	0	0
R6	3	0	0
R7	1	1	1
A1 to A7	Blind samples		

Table 1: coconut oil samples list

Then, the samples were analyzed with HERACLES E-Nose (table 2). The analytical method was calibrated using an alkane mix (n-pentane to n-hexadecane) in order to convert

retention times in Kovats indices for further characterization of the molecules with AroChemBase module.

Table 2. HERACLES analytical parameters

Parameter	Value
Sample mass	2 ± 0.02 g
Vial volume	20 mL
Injected volume	5 mL
Incubation temperature	80°C
Incubation time	20 min
Columns temperature program	50 to 80°C by 1°C/s, then 80 to 250°C by 3°C/s and isothermal 250°C for 21s
Acquisition duration	110 s

Chromatograms

The comparison of chromatograms showed clear differences of volatile profiles between coconut oil samples (Figure 2). Rancid sample R6 contains higher concentration of multiple molecules compared to sample R4 or to blind sample A2.

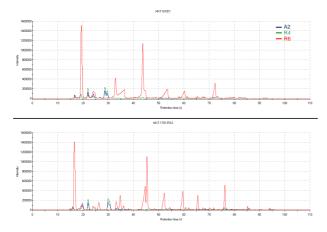


Fig.2: Volatile profile of three coconut oil samples obtained on HERACLES e-nose

Odor map

An odor map based on Principal Component Analysis (Figure 3) applied to HERACLES measurements, was generated by taking into account all chromatography data (retention times and peak areas for all compounds) for the set of known samples (R1 to R7).

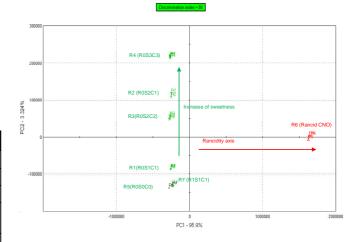


Fig. 3: Odor map of coconut oils R1 to R7 based on Principal Components Analysis (PCA) on all detected molecules

On this odor map, the most rancid sample (R6) is clearly discriminated from all others. This suggests that a horizontal rancidity axis can be defined on this map. All other samples are also clearly differentiated one from another.

Blind samples were then projected on the odor map in order to evaluate their odor profile (Figure 4).

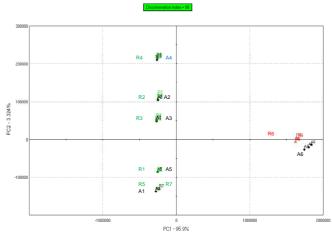


Fig. 4: Principal Components Analysis (PCA) of coconut oil samples with projection of blind samples (in black)

On the odor map, each blind sample is projected close to a sample from the training set:

- A1 to R5
- A2 to R2
- A3 to R3
- A4 to R4
- A5 to R1
- A6 to R6.
- A0 10 NO.

Characterization of volatile compounds

The nature of the most discriminant volatile compounds involved in coconut oil differences was investigated using Kovats indices and the AroChemBase database (Table 3).

RT MXT-5	KT-5 RT MXT-1701 KI MXT-5 KI MXT-1701 Possible identificatio		Deseriates			
(± 0.1s)	(±0.1s)	(± 20)	(± 20)	Possible identification	Descriptor	
19.3	16.6	505	505	pentane	akane	
19.2	19.8	501	600	2-propanol	ethereal	
22.0	22.1	560	637	2-methylpropanal	fruity, malty, spicy	
24.2	19.8	601	602	hexane	alkane, keros ene	
24.2	26.2	601	701	2-butanol	alcoholic	
28.8	30.1	655	742	2-methyl butanal	almond, cocoa, green	
29.6	30.1	666	745	3-methyl butanal	almond, malty, toas ted	
32.8	26.2	701	701	heptane	alkane, fruity, sweet	
32.8	34.7	701	789	pentanal	almond, malty, pungent	
36.4	-	736	-	3-methylbutanol	alcoholic, burnt, fermented	
43.7	36.0	804	802	octane	alkane, fruity, sweet	
43.7	45.3	804	895	hexanal	fatty, fis hy, fruity	
53.3	59.6	906	1070	pentanoic acid	cheese, pungent, sour	
60.3	65.7	994	1161	(E,E)-2,4-heptadienal	fatty, nutty, oily, rancid	
72.6	76.5	1185	1354	p-methylacetophenone	bitter almond, sweet	
78.5	85.3	1294	1547	(Z) whiskey lactone	coconut	

Table 3. Volatile compounds identified in coconut oil

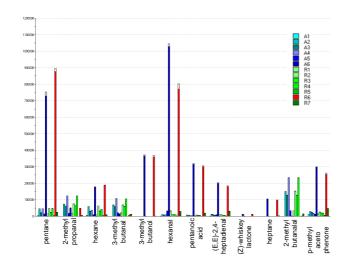


Fig. 5: Concentration (peak are) of the main volatile compounds from coconut oils

Figure 5 represents the proportion of the main volatile compounds in each coconut oil sample.

Correlation with sensory scores

AlphaSoft software allows to calculate the correlation coefficient between the sensory scores from the panel and the peaks detected with HERACLES instrument. This enables to define the molecules most correlated to each descriptor (Table 4).

RI*	Rancid	RI*	Sweet	RI*	Caramel	
994.58(1)	0.96	666.15(1)	0928	666.15(1)	0.784	
334.30(1)	0.30	000.13(1)	0320	000.13(1)	0.704	
1354.47(2)	0.954	742.42(2)	0.919	742.42(2)	0.769	
1161.11(2)	0.945	655.13(1)	0.908	637.92(2)	0.754	
906.11(1)	0.922	637.92(2)	0.905			
701.84(2)	0.915	*RI = Retention Index (number of the				
884.33(2)	0.902	column on which the Retention Index is				
804.77(1)	0.901	measured)				

Table 4. Correlation coefficients between molecules detected by e-nose and sensory attributes

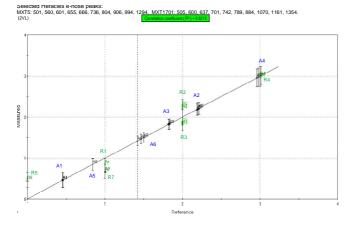


Fig.6: Sensory correlation model based on PLS algorithm for sweetness scoring of coconut oil (projection of unknown batches in black)

Table 5. Sensory scores of blind samples determined upon projecting on the PLS models

Sample Label	Rancidity	Sweetness	Caramel
A1	-0.07	0.46	0.36
A2	0.04	2.20	1.01
A3	0.10	1.83	1.84
A4	0.00	2.98	3.20
A5	0.17	0.84	0.93
A6	16.68	1.46	9.44

Conclusion

The analysis with HERACLES electronic nose proved to be very well correlated with sensory evaluation, since the scores obtained for the 3 attributes based on the instrumental models were confirmed by the panel.

In addition, the electronic nose allows a fast comparison of the overall odor profile of samples as well as a chemical characterization of the odorant compounds.