

Product Information Bulletin

Bulletin Number PT0801

Analytical Trap Choices for Stratum PTC and Velocity XPT Purge and Trap Concentrators.

www.teledynetekmar.com

Background

Purge and Trap concentration is a typical technique used for the analysis of Volatile Organic Compounds (VOCs). The major component of any Purge and Trap system is the analytical trap. It is responsible for retaining the VOCs during the extraction or purge step and then releasing them upon heating. An analytical trap choice for Purge and Trap concentration offers specific challenges for end users. While most standard methods define the dimensions of the trap as well as recommended packing materials, there are multiple packing choices that can be substituted, provided they meet the analytical requirements of the method. This bulletin is intended to describe the characteristics of the traps, compounds they retain, and the ideal operating conditions for the particular trap. In some cases a trap choice can be as specific as a single agent for one particular class of compounds or as diverse as multiple agents for several compound classes.

Trapping and Adsorption

An analytical trap is a short gas chromatography column. Compounds entering the trap will slowly elute with a measurable retention volume. Retention volume is the amount of purge gas that passes through the trap before elution of the analytes begins to occur.

The requirements of a trap are as follows:

- 1. At low temperatures, it must retain the analytes while allowing oxygen and water to pass through unimpeded.
- 2. Upon heating, it must release the analytes quickly and efficiently.
- 3. When heated, it must show stability and not contribute any volatiles.
- 4. It must operate without causing any catalytic reactions.
- 5. It should have a reasonable price and lifetime.

At lower trap temperatures, retention volumes are high. At higher desorption temperatures, retention volumes are much smaller, allowing rapid transfer to the GC. In this context, the use of retention time is not correct. The correct parameter is retention volume.

When elution does occur it is usually referred to as breakthrough, and the retention volume at which breakthrough occurs is often referred to as breakthrough volume. Sorbent materials are usually chosen so that the breakthrough volume is high for analytes and low for water. Care must be taken so that the sorbent chosen does not retain the analytes too strongly or efficient desorption may not be possible. Traps containing combinations of sorbents are often used to enhance performance.

The trap is packed with the weaker sorbent on top. The stronger sorbent is placed below the weaker sorbent. Less volatile analytes that are not effectively desorbed by the stronger sorbent are retained by the weaker sorbent. In other words, the less volatile analytes fail to reach the stronger sorbent, only the more volatile analytes reach the stronger sorbent. Because of their volatility, these analytes can be efficiently desorbed. Desorption is carried out by backflushing the trap, ensuring that heavier compounds never come into contact with the stronger sorbent.

Common Purge and Trap Terms

- 1. Purge Ready Achieved when the trap is at the temperature required to start analysis.
- 2. **Purge Time** The amount of time used to extract the analytes from the sample matrix and deposit them onto the trap via an inert gas stream.
- 3. **Purge Temperature** The desired temperature of the trap during the purging process. This is typically set as low as the ambient environment allows.
- 4. **Purge Flow** The flow rate at which the inert gas is controlled for extraction and compound delivery.
- 5. Dry Purge Time The time after analytes have been deposited onto the trap that dry gas, which has not been passed through the sample, is delivered to the trap. This is used to remove any excess water that has been pushed through the trap during the extraction process.
- 6. **Dry Purge Temperature** The trap temperature setpoint during the Dry Purge step.

- 7. Dry Purge Flow The flow rate at which the inert gas is controlled for the Dry Purging process.
- Desorb Preheat Temperature Trap temperature setting prior to desorption. This is usually 10 degrees below the actual desorption temperature. The function of this mode is to release the analytes from the sorbents prior to sweeping them to the GC system.
- 9. **Desorb Temperature** The temperature required to backflush the trap with GC carrier gas and deliver analytes to the column for separation and detection.
- 10. Bake Temperature Trap temperature required for clean up and reconditioning of the trap.
- 11. Bake Time Time during which the trap is cleaned up and conditioned.
- 12. Bake Flow Amount of inert gas flow that is passed through the trap during the Bake Cycle.

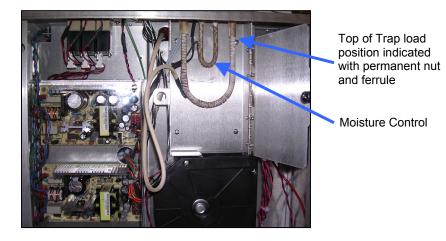
EPA Methods and Tekmar Recommended Trap Choices

EPA Method	Stratum Preferred	Stratum optional	Velocity Preferred	Velocity optional
502.1	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
502.2	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
503.1	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
<mark>524.2</mark>	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
601	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
602	#9	Vocarbs, #10,	Vocarb 3000	#9, #10, Vocarb 4000,
		BTEX		BTEX
603	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
624	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
1624	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
8010	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
8015	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
8020	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
8021	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
8030	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
8031	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
8240	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
<mark>8260</mark>	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000
CLP (Contract Laboratory Program)	#9	Vocarbs and #10	Vocarb 3000	#9, #10, Vocarb 4000

Preferred Method Parameters for Stratum PTC (Trap #9) and Velocity XPT (Trap Vocarb 3000)

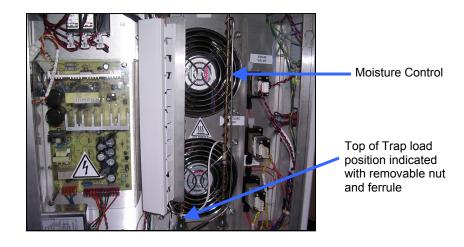
Parameter	Stratum PTC	Velocity XPT				
Purge Ready Temperature	35	35				
Purge Temperature	Ambient	Ambient				
Purge Time	11 minutes	11 minutes				
Purge Flow	40 ml/min	40 ml/min				
Dry Purge Temperature	Ambient	Ambient				
Dry Purge Time	1-3 minutes (matrix dependant)	2-5 minutes (matrix dependant)				
Dry Purge Flow	100 ml/min	100 ml/min				
Desorb Preheat Temperature	245 degrees C	245 degrees C				
Desorb Temperature	250 degrees C	250 degrees C				
Desorb Time	2 minutes	2 minutes				
Desorb Flow (Controlled by GC or external	10-100 ml/min (Column	10-100 ml/min (Column				
regulator and flow controller)	dependant)	dependant)				
Bake Temperature	260 degrees C	260 degrees C				
Bake Time	4 minutes	4 minutes				
Bake Flow	400 ml/min	400 ml/min				

Trap Selection Table


•												
Velocity XPT PN	Stratum PTC PN	Trap No.	What adsorbents it contains	What it traps	Able to be dry purged	Desorb preheat temp	Desorb temp	Bake temp	Conditi on time & temp for new traps	Common problems with trap		
12-0083- 003	12-0083- 403	1	Tenax	Everything from methylene chloride and heavier	Yes	220° C	225° C	230° C	225° C 180 min	-Low response on brominated compounds -High back pressure -Outgassing of benzene, toluene and ethyl benzene		
12-0084- 003	12-0084- 403	2	Tenax Silica Gel	Everything except freons	No	220° C	225° C	230° C	225° C 180 min	-Low response on brominated compounds -High back pressure -Outgassing of benzene, toluene and ethyl benzene		
14-0124- 003	14-0124- 403	3	Tenax Silica Gel Charcoal	Everything including freons	No	220° C	225° C	230° C	225° C 180 min	-Low response on brominated compounds -High back pressure -Outgassing of benzene, toluene and ethyl benzene		
14-2366- 003	14-2366- 403	5	OV-1 Tenax Silica Gel Charcoal	Everything including freons	No	220° C	225° C	230° C	225° C 180 min	-Low response on brominated compounds -High back pressure -Outgassing of benzene, toluene and ethyl benzene		
14-3347- 003	14-3347- 403	7	OV-1 Tenax	Everything from methylene chloride and heavier	Yes	220° C	225° C	230° C	225° C 180 min	-Low response on brominated compounds -High back pressure -Outgassing of benzene and toluene		
14-3928- 003	14-3928- 403	8	Carbopak B Carbosieve S III	Everything including freons	Yes	245° C	250° C	260° C	260° C 90 min	-Loss of carbon tetrachloride -Trap may need up to 11 min of dry purge time to remove water		
14-9908- 003	14-9908- 403	9	Proprietary	Everything including freons	Yes	245° C	250° C	260° C	260° C 90 min	-Unknown		
14-9909- 003	14-9909- 403	10	Tenax Silica Gel Carbo Sieve III	Everything including freons	Yes	245° C	240° C – 250° C	260° C	270° C 120 min	-Unknown		
14-5864- 003	14-5864- 403	Supelco Vocarb 3000	Carbopak B Carboxen 1000 Carboxen 1001	Everything including freons	Yes	245° C	240° C – 250° C	260° C	270° C 120 min	-Decomposition of bromoform can occur -To prevent this, reduce desorb temp to 240° C		
14-5865- 003	14-5865- 403	Supelco Vocarb 4000	Carbopak C Carbopak B Carboxen 1000 Carboxen 1001	Everything except 2-chloro-ethyl- vinyl-ether	Yes	245° C	250° C	260° C	270° C 120 min	-High back pressure -Low response on chlorinated compounds		
14-5866- 003	14-5866- 403	Supelco BTEX	Carbopak B Carbopak C	Everything down to benzene (does not trap MeOH)	Yes	245° C	250° C	260° C	270° C 120 min	-Unknown		

VOC Property Table

		_				Cyclohexane	0.779	80.7	56	41,84	110-85-7	Isopropylbenzene	0.862	152	105	120	98-82-8
Compoun	d Der	nsity	& Ro	iling	Point	Cyclopentane	0.746	49.3	42	55,70	287-92-3	p-lsopropyltoluene	0.862	152	105	91,134	98-82-8 99-87-6
Compoun		isity		''''''''''''''''''''''''''''''''''''''		Dibromochloromethane	2.42	150.2	129	127	124-48-1	Methanol	0.8373	64.7	31	28,32	67-56-1
						1,2-Dibromo-3 chloropropane	1.553	196	75	155,157	96-12-8	2-Methoxyethanol	0.791	124.6	45	20,32	111-77-3
Compound	Density	Boiling	Primary	Secondary	CAS #	1,2-Dibromoethane	2.18	131	107	109	106-93-4	2-Methoxyethyl Acetate	1.005	124.0	43	29,13	110-49-6
Compound		Pt. (°C)			CAS#	Dibromomethane	1.5419	97	174	172,176	74-95-3	Methylene Chloride	1.326	39.8	43 84	86	75-09-2
	(g/ml)	Fl.(°C)	lon	lons		m-Dichlorobenzene	1.306	173	146	111,148	95-50-1	Methyl Ethyl Ketone	0.805	79.6	43	72	78-93-3
	0 700		10	50	(7 ())	p-Dichlorobenzene	1.241	174.1	146	111,148	541-73-1	Methyl Isobutyl Ketone	0.803	116.5	43	45	108-10-1
Acetone	0.788	56.3	43	58	67-64-1	o-Dichlorobenzene	1.306	180.5	146	111,148	106-46-7	4-Methyl-2-pentanone	0.801	117	43	58,85	108-10-1
Acetonitrile	0.786	81.6	41	40	75-05-8	Dichlorodifluoromethane	N/A	-29.8	85	50,101	75-71-8	Methyl n-Propyl Ketone	0.801	102.4	43	38,85 86	107-87-9
Acetophenone	1.03	202.1	105	120,77,51	98-86-2	1,1-Dichloroethane	1.168	57.3	63	65	75-34-3	n-Methylpyrrolidone	0.809	202	99	44,98	872-50-4
Acrolein	0.839	52.5	27	56,55	107-02-8	1,2-Dichloroethane	1.256	83.5	62	64	107-06-2	Naphthalene	1.162	202	128	129	91-20-3
Acrylonitrile	0.806	77.4	53	26,52	107-13-1	1,1-Dichloroethene	1.2129	31.7	96	98	75-35-4	Nonane	0.718	150.8	43	57	91-20-3 111-84-2
Benzaldehyde	1.044	178.9	77	51,105,106	100-52-7	cis-1,2-Dichloroethene	1.4435	60	96	98	156-59-4	Pentane	0.718	36.1	43	86	109-66-0
Benzene	0.879	80.1	78	77	71-43-2	trans-1,2-Dichloroethene	1.28	47.2	96	98	156-60-5	beta-Phenethylamine	0.828	194.5	43 91	00 148	64-04-0
Benzyl Alcohol	1.042	205.5	79	91,107,108	100-51-6	1,2-Dichloropropane	1.159	95	63	65	78-87-5	Phenol	1.071	194.5	94	39,66	108-95-2
Bromobenzene	1.49	156.2	77	156,158	108-86-1	1,3-Dichloropropane	1.156	96	76	78	142-28-9	1-Propanol	0.804	97.2	31	27,29	71-23-8
Bromochloromethane	1.991	67.8	130	128	74-97-5	2,2-Dichloropropane	1.143	87	77	97,99	590-20-7	2-Propanol	0.804	82.3	45	27,29	67-32-0
Bromodichloromethane	1.98	89.2	83	85	75-27-4	1,1-Dichloropropene	1.22	108	75	77,110	563-58-6	n-Propylbenzene	0.8621	159.2	43 91	120,121	103-65-1
Bromofluorobenzene	1.6302	196	192	111	1073-06-9	cis-1,3-Dichloropropene	1.224	104.3	75	77,110	10061-01-5	Pvridine	0.0021	115.3	79	52	110-86-1
Bromoform	2.894	149	173	171,175	75-25-2	trans-1,3-Dichloropropene	1.217	112	75	77,110	10061-01-6	Styrene	0.9059	145	104	78,103	100-42-5
Bromomethane	1.73	3.6	94	96	74-83-9	Diethyl Carbonate	0.976	126.8	29	45	105-58-8	1,1,1,2-Tetrachloroethane	1.5406	130.5	131	119,133	630-20-6
Butanol-2	0.807	99.6	45	59.73	78-92-2	Dimethyl Acetamide	0.937	165.5	44	87	127-19-5	1,1,2.2 Tetrachloroethane	1.587	146.3	83	85	79-34-5
n-Butyl Acetate	0.883	126.1	43	56,73	123-86-4	Dimethyl Formamide	0.945	153	73	44	68-12-2	Tetrachloroethene	1.6311	121	166	168,170	127-18-4
n-Butylbenzene	0.8604	183.1	91	92,134	104-51-8	Dimethyl Sulfoxide	1.1	189	63	45,78	77-78-1	Tetrahvdrofuran	0.889	66	42	41.71.72	109-99-9
sec-Butylbenzene	0.8608	173.5	105	134	135-98-8	1,3-Dioxane 1.4-Dioxane	1.033	101.3	87	28	505-22-6	Toluene	0.867	110.6	91	92	108-88-3
tert-Butylbenzene	0.8669	168.5	105	91,134	98-06-6	2-Ethoxyethanol	1.0329 0.93	101.1 135.6	88	58 59	123-91-1 110-80-5	1.2.3-Trichlorobenzene	1.5776	221	180	145,182	87-61-6
n-Butyl Chloride	0.887	78.4	56	27,41	109-69-3	2-Ethoxyethanol Ethyl Acetate		77.1	31		110-80-5 141-78-6	1,2,4-Trichlorobenzene	1.454	214	180	145,182	120-82-1
Carbon Disulfide	1.2632	78.4 46.5	76	27,41	75-15-0	Ethyl Acetate Ethylbenzene	0.901 0.867	136.2	43 91	29 106	141-78-6	1,1,1-Trichloroethane	1.3376	74.1	97	61,99	71-55-6
Carbon Disulide Carbon Tetrachloride	1.2632	40.5 76.8	76 119		75-15-0 56-23-5	Ethyl Ether	0.867	34.6	31	45,59,74	60-29-7	1,1,2-Trichloroethane	1.4416	113	132	134	79-00-5
				117,121		Fluorobenzene	1.022	54.0 84.7	96	45,59,74 70	462-06-6	Trichloroethene	1.338	87.2	132	95,97	79-01-6
Chlorobenzene	1.107	131.7	112	77,114	108-90-7	Heptane	0.684	04.7 98.4	90 43	70 57,72	402-00-0	1,2,3-Trichloropropane	1.3889	157	75	61,110	75-01-4
Chloroethane	0.9214	12.3	64	66	75-00-3	Hexachlorobutadiene	1.556	96.4 215	43 225	223,227	87-68-3	1,2,4-Trimethylbenzene	0.8761	169	105	120	95-63-6
2-Chloroethylvinylether	1.053	109	63	27,43	110-75-8	Hexadecane	0.773	215	57	43,71	544-76-3	1,3,5-Trimethylbenzene	0.8637	164.7	105	120	108-67-8
Chloroform	1.484	61.2	83	47,85	67-66-3	Hexanal	0.773	131	44	41,56	66-25-1	Trimethylpentane	0.692	99.2	57	56	540-84-1
Chloromethane	1.3712	-23.7	50	52	74-87-4	Hexane	0.814	68.7	57	41,30	110-54-3	Vinvl Chloride	0.9106	-13.4	62	64	75-01-4
2-Chlorotoluene	1.0826	159	91	126,128	95-49-8	2-Hexanone	0.907	127	43	58	591-78-6	o-Xylene	0.9100	144.4	91	106	95-47-6
4-Chlorotoluene	1.0697	162	91	126,128	106-43-4	Hexvl Alcohol	0.814	127	56	43	111-27-3	m-Xylene	0.8684	139.3	91	105,106	108-38-3
Crotonaldehyde	0.853	104.1	41	70,39	4170-30-3	Isobutyl Alcohol	0.806	107.7	43	31	78-83-1	p-Xylene	0.861	139.5	91	105,100	106-42-3
						1305 atym Alconor	0.000	107.7		51	70 05 1	p Ayrene	0.001	130.4	71	105,100	100 72 3


Stratum PTC Model and Trap Location

Velocity XPT Model and Trap Location:

