

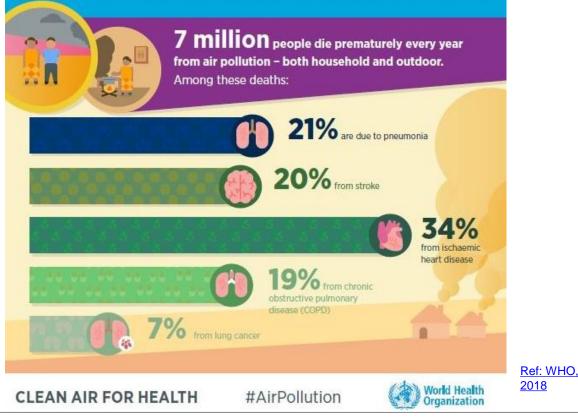
Thermal Desorption:

Solutions for 'seeing the stars'

A company of the SCHAUENBURG International Group

Seeing the stars.....

New Delhi, December 2018


Shanghai, Good day vs Bad day

<u>The WHO estimates</u> that 7 million people a year die prematurely from exposure to air pollution globally, with <u>the World Bank calculating</u> the cost to the world economy in lost labour as \$225bn.

Why carryout air monitoring?

DEATHS LINKED TO OUTDOOR AND HOUSEHOLD AIR POLLUTION



Where should we be monitoring?

WHAT ARE THE SOURCES OF AIR POLLUTION?

Outdoor air pollution affects urban and rural areas and is caused by multiple factors:

Ref: WHO,

2018

MARKES

What do we need to monitor?

ENVIRONMENTAL POLLUTION CENTERS

Air Monitoring of VOCs

How?

• Environmental and public health \Rightarrow regulations \Rightarrow standard methods

Example legislative methods

Key compound lists

- PAMS (Photochemical Assessment Monitoring Stations)
 - Ozone precursors
 - On-line monitoring for VVOCs

• TO-15

- Air toxics
- Canister sampling
- 65-component list
- TO-17
 - Air toxics
 - Tube sampling
 - Same as TO-15
- OVOC's
 - Oxygenated VOCs becoming more of an interest
 - Compounds in list fit into both categories

Key monitoring activities and locations

- Environmental air monitoring
 - Ambient Air
 - Industrial Air
 - Fence-line monitoring
 - Odorous emissions
- Emissions from Products and Materials
 - Consumer goods
 - Air Fresheners
 - Toys
 - Construction products effecting indoor air
 - Medical device testing

Simultaneous analysis of PAMS, TO-15 and OVOCs from humid air:

117 compounds with no liquid nitrogen

The next step for air monitoring?

A company of the **SCHAUENBURG** International Group

Simultaneous analysis of PAMS, TO-15 and OVOCs from humid air: *117 compounds with no liquid nitrogen*

• Automated canister analysis using CIA Advantage-xr with GC-MS

Method Requirements

- Target compounds
 - 109 compounds from PAMS & TO15 compound lists
 - 8 OVOCs not in PAMS or TO15 compound lists
 - 1. Formaldehyde
 - 2. Acetaldehyde
 - 3. Crotonaldehyde
 - 4. Methacrylaldehyde
 - 5. Butyraldehyde
 - 6. Benzaldehyde
 - 7. Pentanal
 - 8. m -Tolualdehyde
- Canister sampling
 - Manual sampling method requires the analysis of samples collected in canisters.
 - Canisters must be inert coated stainless steel
- Pre-concentration
 - To reach low detection limits large sample volumes are required
 - The pre-concentration device must be capable of quantitatively retaining all compounds up to 600 mL, including very volatile C2 hydrocarbons.
- Analysis
 - Separation, identification and quantitation of all target compounds by GC or GC MS

Successful PAMS, TO-15 & OVOC analysis....

This method requires pre-concentration and chromatographic separation of a high number of compounds ranging widely in volatility and polarity which presents significant challenges for many instruments:

- Quantitative retention of very volatile to volatile organic compounds in a single analysis
 - Trapping of the full compounds list up to 600 mL for maximum sensitivity
 - Fast desorption of all compounds for shape peaks aiding GC separation
- Automated unattended analysis
 - With enough sample capacity to run all night without user intervention
- Water removal with no loss of polar compounds
 - Allows larger sample volumes for maximum sensitivity
 - Protects GC columns and detectors from wear due to water
- Automated internal standard addition
 - Provides an independent check of system performance with every sample
- Ability to sample from pressurised or unpressurised sources
 - No sample dilution saves time, reduces human error / risks of contamination and reduces reporting limits.
 - Allows the same instrumentation to be used for on-line or canister samples
- Trapping and separation of 117 compounds with < 60 minute cycle times
 - Ensures sampling is started at the same time every hour.

Preconcentration: Introducing the CIA Advantage-xr

UNITY-xr; Efficient cryogen-free trapping

Electrically-cooled focusing trap eliminates the cost of liquid nitrogen and ensures fast sample throughput.

> Trap all 117 compounds

Outstanding productivity

Up to 27 samples at high and low concentrations can be analysed in one unattended sequence

 Automated, unattended analysis

Platform-neutral

Compatible with all major makes of GC and GC–MS.

Accurate MFC controlled sampling

 Sample from pressurised or unpressurised samples

Unparalleled analyte range

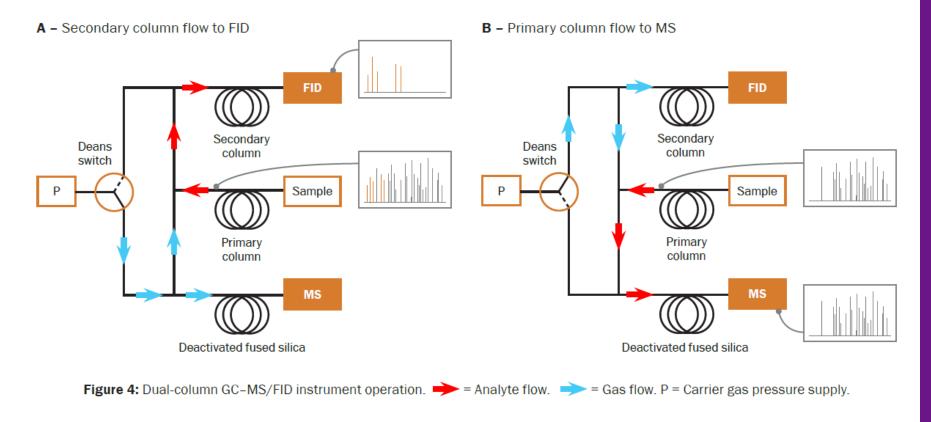
Inert, optimised flow paths allow quantitative recovery of C_2 to C_{44} , including reactive and thermally labile species .

Dry-Focus3™: Troublefree sampling of humid air

- Remove water with no loss of polar compounds
- Utilising Kori-xr

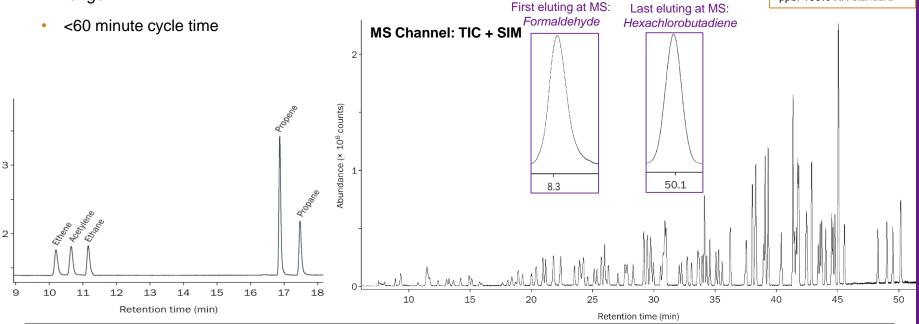
Precise quantitative analysis

Automated Internal standard capability is compliant with international methods


Overlap mode

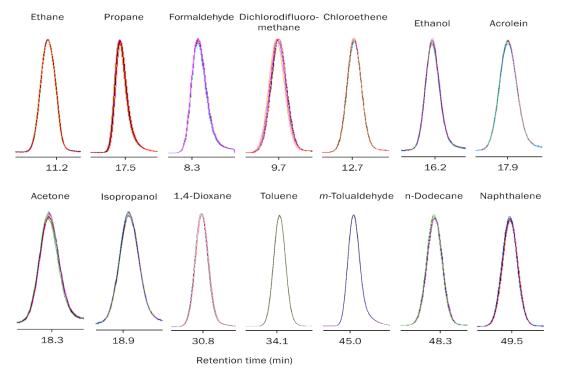
Prepare one sample while the previous analysis is running

 Fast sample – to sample cycle times


Whole system configuration

PAMS, TO-15 & OVOC in a single analysis with no liquid cryogen

- Dual column system with Deans switch
- Cryogen free pre-concentration AND cryogen free chromatography oven start temp +35°C
- Excellent peak shape for VVOC at FID, as well as VOC & OVOCs across the full compound range


Total Ion Chromatogram

(TIC) of 400 mL of the 10

ppb, 100% RH standard

PAMS, TO-15 & OVOC in a single analysis with no liquid cryogen

- Highly reproducible data
 - < 7.5% RSD on response across 10 replicates for all compounds
 - < 2.1% RSD for internal standard compounds
 - Very stable retention times
 - < 0.17% RSD across 16 replicates for all compounds

Example compounds covering the polarity and volatility range of the target list: 10 replicate analysis of 10 ppb standard at 100% RH overlay perfectly for all compounds

PAMS, TO-15 & OVOC in a single analysis with no liquid cryogen

Excellent linearity at 100% relative humidity

- 1.25 to 15 ppb equivalent
- All R² values > 0.990
- Relative response factors highly reproducible
 - % RSD of RRF ≤ 12 % (method limit 30%)
 - 76: Toluene • 37: Vinyl acetate 111: Naphthalene 107: m-Tolualdehyde (×0.5) 6: Formaldehyde (×12) 7: Dichlorodifluoromethane (×0.5) 24: Isopropanol 12: Chloroethene 2 5: Propane Abundance (× 10⁶ counts) 109: n-Dodecane 1: Ethene (×1.2) 2: Acetylene 20: Ethanol 21: Acrolein 63: 1,4-Dioxane 1 0 100 200 300 400 500 600 0 Sample volume (mL)

Low method detection limits

- All MDLs < 200 ppt
- Average MDL ~ 50 ppt

Compounds	MDL (ppt)
Toluene	8
Vinyl acetate	72
Naphthalene	26
m-Tolualdehdye	70
Formaldehyde	105
Dichlorodifluoromethane	22
Isopropanol	114
Chloroethene	47
Propane	22
N-Dodecane	73
Ethene	92
Acetylene	99
Ethanol	43
1,4-Dioxane	120

Summary

Markes cryogen-free CIA Advantage-xr solution provides:

- Analysis of VVOCs, OVOCs and VOCs simultaneously with no liquid nitrogen
- Excellent peak shape and retention of VVOCs, OVOCs and VOCs
- Low method detection limits
- Automated sequencing of up to 27 canister/on-line samples, standards and blanks
- Superior water removal: no loss of polar compounds
- Maximum productivity with sample overlap function
- Linearity from 1.25 to 15ppb and beyond
- High precision (low %RSD)
- Negligible carryover from high concentration samples
- Long-term retention time and response stability for high confidence data.

From outdoor to indoor...

- Potential health risks that arise from poor indoor air quality have prompted regulation of a wide range of materials
- The average American spends 93% of their time indoors...
- 86% in houses, offices, etc...
- ... and 7% in automobiles.
- The majority of items which can effect the air quality in these locations are now regulated

Standard methods

The evolution of materials testing

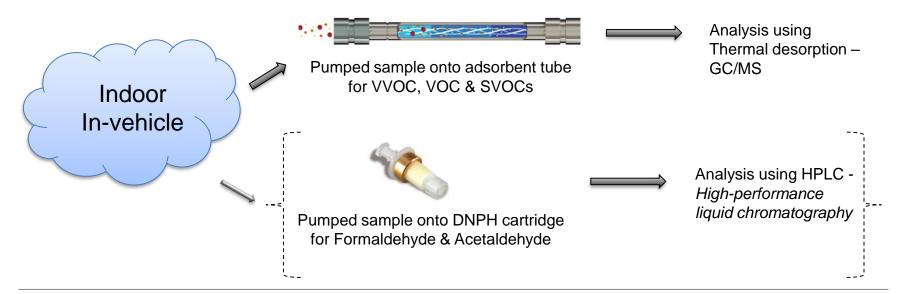
- VIAQ Whole cabin testing
 - (ISO12219-1, HJ 400, New UN specification -ECE/TRANS/WP.29/GRPE/2017/1, VDA)
- Material emission testing typically carried out using:

Assembly testing

 Small chambers (ISO12219-4 & 6) and Tedlar bags ~2000L for sampling assemblies (ISO 12219-9).

Screening

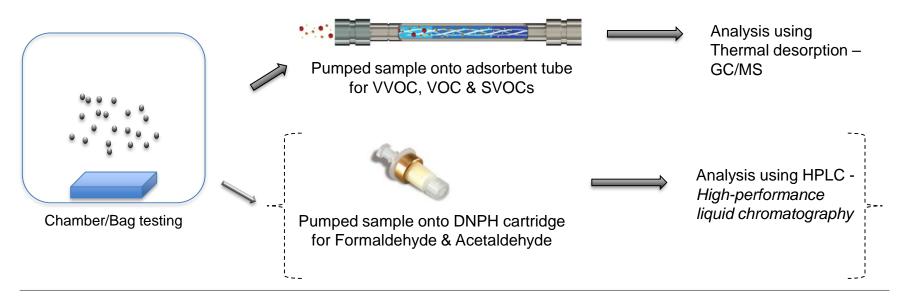
- Direct desorption (VDA278)
- Micro-Scale Chambers (ISO12219-3)
- ~20L Tedlar Bag Sampling (ISO12219-2)



How to comply with standard methods

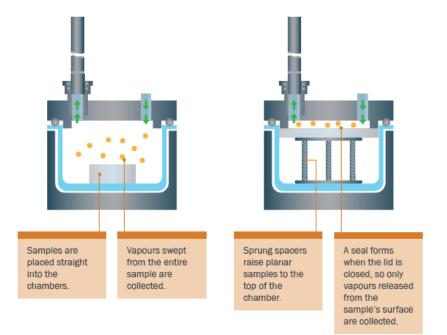
Emission testing methods based on the same principles/instrumentation

Whole Air testing (ISO 16000-6, EN16516, HJ400, ISO12219-1, UN (ECE/TRANS/WP.29/GRPE/2017/))



How to comply with standard methods

Emission testing methods based on the same principles/instrumentation

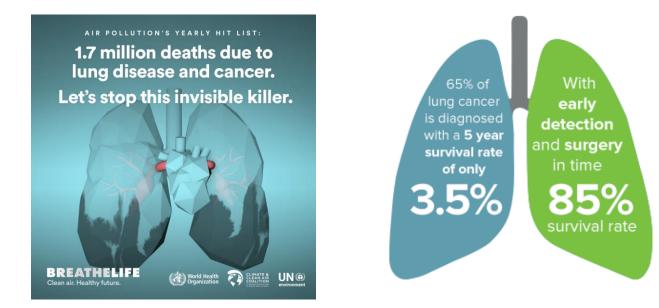

Materials testing (ISO16000-9, ISO 12219- 2,3,4,6, EN16516, ASTM D7706-11, ASTM D7859)

Product screening for manufacturers

Bulk emissions testing is valuable for profiling odours and emissions, and for testing of raw materials and foods. Surface emissions testing: This approach is suitable for determining area-specific emission rates from flat samples.

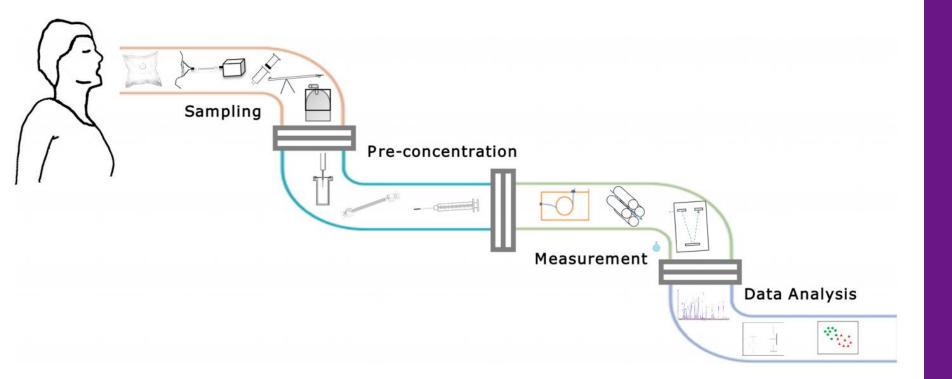
Why screen materials?

- Predict results of longer, more expensive tests
- To show uniformity across a range
- Trouble shoot customers complaints
- Compare products with competitors
- Determine new formulations for lower emitting products
- Odour profiling



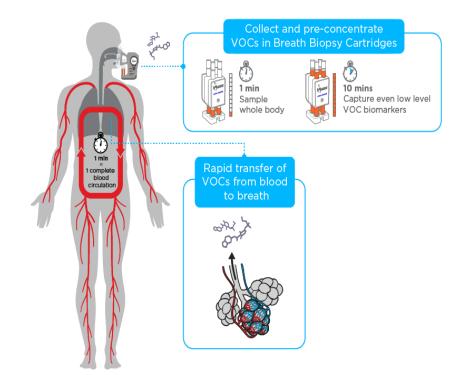
Breath Analysis

A company of the SCHAUENBURG International Group


The detrimental health effects of Air Pollution - early detection saves lives

Source: http://www.who.int/airpollution/infographics/who-lunggraphic.jpg?ua=1

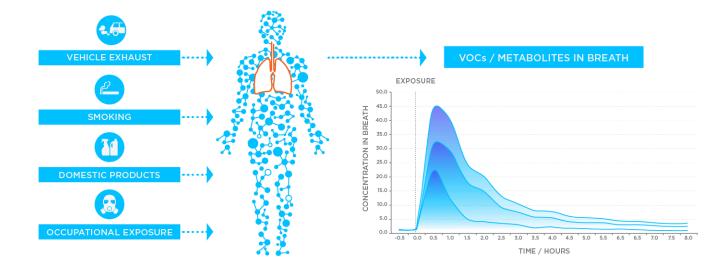
Analytical challenges in breath analysis



Source: Lawal et al., Exhaled breath analysis: a review of 'breath-taking' methods for off-line analysis (2017) Metabolomics, 13:110

What is breath analysis?

- VOC biomarkers in breath are relevant for a wide range of diseases
- Breath VOCs can also be used to monitor exposure to harmful VOCs
- Breath enables whole body blood sampling
- Non-invasive sampling


•

- No specialist medical training required
- Samples can easily be stored and transported

Monitoring chemical exposure

- VOCs can be absorbed through the lungs and skin and are often metabolised by the liver.
- These VOCs and their metabolites can be measured on exhaled breath, providing an opportunity for non-invasive biomonitoring.

Breath sampling

How it works

- Alveolar ('end-tidal') breath collected and transferred onto sorbent tube
 - Provides information on VOC levels in blood (Pollutants and metabolites)

Markes' Bio-VOC

ReCIVA breath sampler (Owlstone Medical)

Contact Markes

enquiries@markes.com

+44 (0)1443 230935

www.markes.com

@MarkesInt

www.linkedin.com/company/markes-international

