

Agilent 1260 Infinity Fluorescence Detector

User Manual

Notices

© Agilent Technologies, Inc. 2010-2012, 2013

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G1321-90014 Rev. B

Edition

11/2013

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

This product may be used as a component of an in vitro diagnostic system if the system is registered with the appropriate authorities and complies with the relevant regulations. Otherwise, it is intended only for general laboratory use.

Warranty

The material contained in this document is provided "as is," and is subiect to being changed, without notice. in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will

receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide

This manual covers

- the Agilent 1260 Infinity Fluorescence Detector (G1321B SPECTRA),
- · the Agilent 1260 Infinity Fluorescence Detector (G1321C) and
- the Agilent 1200 Series Fluorescence Detector (G1321A) (obsolete).

1 Introduction to the Fluorescence Detector

This chapter gives an introduction to the detector and instrument overview.

2 Site Requirements and Specifications

This chapter provides information on environmental requirements, physical and performance specifications.

3 Installing the Module

This chapter gives information about the preferred stack setup for your system and the installation of the module.

4 Using the Fluorescence Detector

This chapter guides you how to start the work with the detector.

5 Optimizing the Detector

This chapter provides information on how to optimize the detector.

6 Troubleshooting and Diagnostics

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

7 Error Information

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

8 Test Functions

This chapter describes the detector's built in test functions.

9 Maintenance

This chapter provides general information on maintenance of the detector.

10 Parts for Maintenance

This chapter provides information on parts for maintenance.

11 Identifying Cables

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

12 Hardware Information

This chapter describes the detector in more detail on hardware and electronics.

13 Appendix

This chapter provides safetey and other general information.

Contents

1	Introduction to the Fluorescence Detector 9
	Introduction to the Detector 10 How the Detector Operates 12 Raman Effect 15 Optical Unit 16 Analytical Information From Primary Data 24 System Overview 29 Bio-inert Materials 32
2	Site Requirements and Specifications 35
	Site Requirements 36 Physical Specifications 39 Performance Specifications 40
3	Installing the Module 49
	Unpacking the Module 50 Optimizing the Stack Configuration 52 Installation Information on Leak and Waste Handling 57 Installing the Module 61 Flow Connections to the Module 64 Installing Capillaries 68
4	Using the Fluorescence Detector 75
	Leak and Waste Handling 76 Before You Start 77 Getting Started and Checkout 78 Method Development 82 Example: Optimization for Multiple Compounds 99 How to collect spectra with modes SPECTRA ALL IN PEAK and APEX SPECTRA ONLY 109 Solvent Information 113

5	Optimizing the Detector 119
	Optimization Overview 120 Design Features Help Optimization 122 Finding the Best Wavelengths 123 Finding the Best Signal Amplification 125 Changing the Xenon Flash Lamp Frequency 131 Selecting the Best Response Time 133 Reducing Stray Light 135
6	Troubleshooting and Diagnostics 137
	Overview of the Module's Indicators and Test Functions 138 Status Indicators 139 User Interfaces 141 Agilent Lab Advisor Software 142
7	Error Information 143
	What Are Error Messages 145 General Error Messages 146 Detector Error Messages 151
8	Test Functions 157
	Introduction 158 Diagram of Light Path 159 Lamp Intensity Test 160 Raman ASTM Signal-to-Noise Test 162 Using the Built-in Test Chromatogram 166 Wavelength Verification and Calibration 168 Wavelength Accuracy Test 171

9 Maintenance 183

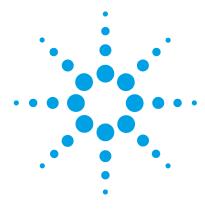
Introduction to Maintenance 184 Warnings and Cautions Overview of Maintenance 187 Cleaning the Module 188 Exchanging a Flow Cell 189 How to use the Cuvette 193 Flow Cell Flushing 195 Correcting Leaks Replacing Leak Handling System Parts 196 Replacing the Interface Board Replacing Module Firmware 198 Tests and Calibrations

10 Parts for Maintenance 201

Overview of Maintenance Parts 202
Cuvette Kit 203
Accessory Kit 204

11 Identifying Cables 207

Cable Overview 208
Analog Cables 210
Remote Cables 212
BCD Cables 215
CAN/LAN Cables 217
External Contact Cable 218
Agilent Module to PC 219


12 Hardware Information 221

Firmware Description 222
Optional Interface Boards 225
Electrical Connections 229
Interfaces 232
Setting the 8-bit Configuration Switch (without On-board LAN) 239
Early Maintenance Feedback 243
Instrument Layout 244

Contents

13 Appendix 245

General Safety Information 246
The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) 249
Lithium Batteries Information 250
Radio Interference 251
Sound Emission 252
UV-Radiation (UV-lamps only) 253
Solvent Information 254
Installation of Stainless Steel Cladded PEEK Capillaries 256
Agilent Technologies on Internet 262


```
Introduction to the Detector 10

How the Detector Operates 12

Raman Effect 15

Optical Unit 16

Reference System 23

Analytical Information From Primary Data 24

Fluorescence Detection 24

Phosphorescence Detection 25

Processing of Raw Data 25

System Overview 29

Leak and Waste Handling 29

Bio-inert Materials 32
```

This chapter gives an introduction to the detector and instrument overview.

Introduction to the Detector

Detector Versions

Table 1 Detector versions

Version	Description Introduced as 1260 Infinity FLD without spectra and multi-signal capabilities in June 2013. Maximum data rate is 74 Hz Instrument firmware is A.06.54. Controlled by Instant Pilot with firmware B.02.16, Driver A.02.08, Agilent OpenLAB CDS ChemStation Edition C.01.05, OpenLAB EZChromEdition EE A.04.05, ICF A.02.01 and Lab Advisor B.02.04. The G1321C cannot be converted to G1321A/B.	
G1321C		
G1321B SPECTRA	Introduced as 1260 Infinity FLD with spectra and multi-signal capabilities in June 2010. Maximum data rate is 74 Hz. The G1321B can be converted to G1321A (emulation mode). With the introduction of the G1321C the data rate was increased to maximum 144.9 Hz (instrument firmware A.06.54).	
G1321A	Introduced as 1100 Series FLD with spectra and multi-signal capabilities in August 1998. Maximum data rate is 18 Hz. Obsoleted with introduction of the G1321B FLD.	

The detector is designed for highest optical performance, GLP compliance and easy maintenance. It includes the following features:

- · flash lamp for highest intensity and lowest detection limit
- multi-wavelength mode for on-line spectra (G1321B SPECTRA)
- spectra acquisition and simultaneous multi-signal detection (G1321B SPECTRA)
- · optional cuvette is available and can be used for off-line measurements
- easy front access to flow cell for fast replacement and
- built-in wavelength accuracy verification.

For specifications, see "Performance Specifications" on page 40

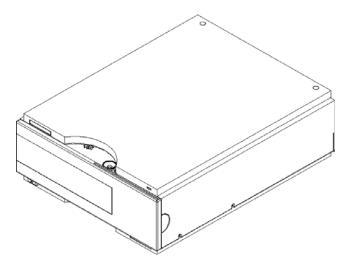


Figure 1 The Agilent 1260 Infinity Fluorescence Detector

How the Detector Operates

Luminescence Detection

Luminescence, the emission of light, occurs when molecules change from an excited state to their ground state. Molecules can be excited by different forms of energy, each with its own excitation process. For example, when the excitation energy is light, the process is called *photoluminescence*.

In basic cases, the emission of light is the reverse of absorption, see Figure 2 on page 12. With sodium vapor, for example, the absorption and emission spectra are a single line at the same wavelength. The absorption and emission spectra of organic molecules in solution produce bands instead of lines.

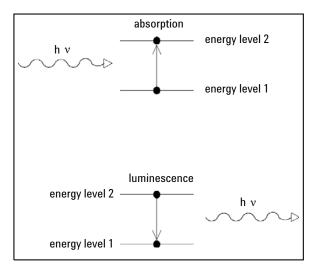


Figure 2 Absorption of Light Versus Emission of Light

When a more complex molecule transforms from its ground energy state into an excited state, the absorbed energy is distributed into various vibrational and rotational sub-levels. When this, same molecule returns to the ground state, this vibrational and rotational energy is first lost by relaxation without any radiation. Then the molecule transforms from this

energy level to one of the vibrational and rotational sub-levels of its ground state, emitting light, see Figure 3 on page 13. The characteristic maxima of absorption for a substance is its λ_{EX} , and for emission its λ_{EM} .

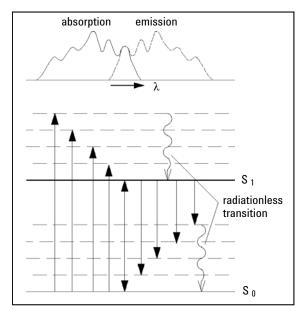


Figure 3 Relationship of Excitation and Emission Wavelengths

Photoluminescence is the collective name for two phenomena, *fluorescence* and *phosphorescence*, which differ from each other in one characteristic way--the delay of emission after excitation. If a molecule emits light 10^{-9} to 10^{-5} seconds after it was illuminated then the process was fluorescence. If a molecule emits light longer than 10^{-3} seconds after illumination then the process was phosphorescence.

Phosphorescence is a longer process because one of the electrons involved in the excitation changes its spin, during a collision with a molecule of solvent, for example. The excited molecule is now in a so-called triplet state, T, see Figure 4 on page 14.

How the Detector Operates

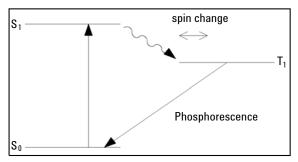


Figure 4 Phosphorescence Energy Transitions

The molecule must change its spin back again before it can return to its ground state. Since the chance of colliding with another molecule with the necessary spin for change is slight, the molecule remains in its triplet state for some time. During the second spin change the molecule loses more energy by relaxing without radiation. The light which is emitted during phosphorescence therefore has less energy and is at a longer wavelength than fluorescence.

Formula:

$E = \frac{nc}{\lambda}$	
where	
E	Energy
h	Planck's constant
λ	Wavelength
\mathbf{c}	speed of light

Raman Effect

The Raman effect arises when the incident light excites molecules in the sample which subsequently scatter the light. While most of this scattered light is at the same wavelength as the incident light, some is scattered at a different wavelength. This inelastically scattered light is called Raman scatter. It results from the molecule changing it's molecular motions.

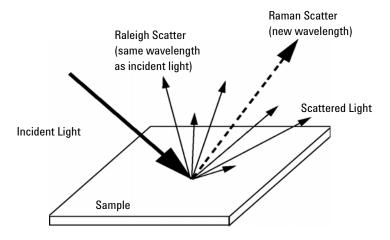


Figure 5 Raman

The energy difference between the incident light (E_i) and the Raman scattered light (E_s) is equal to the energy involved in changing the molecule's vibrational state (i.e. getting the molecule to vibrate, E_v). This energy difference is called the Raman shift.

$$E_v = E_i - E_s$$

Several different Raman shifted signals will often be observed; each being associated with different vibrational or rotational motions of molecules in the sample. The particular molecule and its environment will determine what Raman signals will be observed (if any).

A plot of Raman intensity versus Raman shift is a Raman spectrum.

1 Introduction to the Fluorescence Detector Optical Unit

Optical Unit

All the elements of the optical system, shown in Figure 6 on page 17, including Xenon flash lamp, excitation condenser lens, excitation slit, mirror, excitation grating, flow cell, emission condenser lens, cut-off filter, emission slit, emission grating and photo-multiplier tube are housed in the metal casting inside the detector compartment. The fluorescence detector has grating/grating optics, enabling the selection of both excitation and emission wavelengths. The flow cell can be accessed from the front of the fluorescence detector.

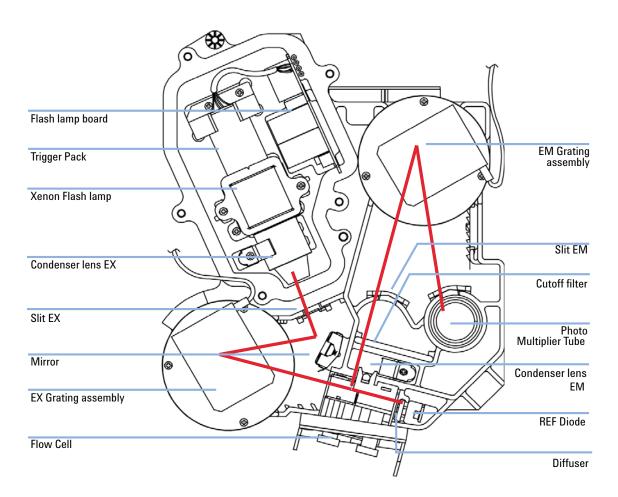


Figure 6 Optical Unit

The radiation source is a xenon flash-lamp. The 3 µs flash produces a continuous spectrum of light from 200 nm to 900 nm. The light output distribution can be expressed as a percentage in 100 nm intervals, see Figure 7 on page 18. The lamp can be used for some 1000 hours depending on the sensitivity requirements. You can economize during automatic operation using keyboard setpoints, so the lamp flashes during your analysis only. The lamp can be used until it no longer ignites, but the noise level may increase with usage.

Optical Unit

UV degradation, especially below 250 nm is significantly higher compared to Visible wavelength range. Generally the "LAMP ON during run" - setting or using "economy mode" will increase lamp life by a magnitude.

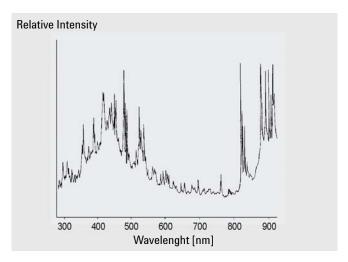


Figure 7 Lamp Energy Distribution (vendor data)

The radiation emitted by the lamp is dispersed and reflected by the excitation monochromator grating onto the cell entrance slit.

The holographic concave grating is the main part of the monochromator, dispersing and reflecting the incident light. The surface contains many minute grooves, 1200 of them per millimeter. The grating carries a blaze to show improved performance in the visible range.

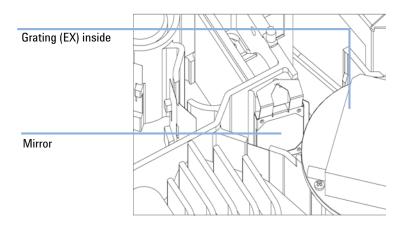


Figure 8 Mirror Assembly

The geometry of the grooves is optimized to reflect almost all of the incident light, in the $1^{\rm st}$ order and disperse it with about 70 % efficiency in the ultra-violet range. Most of the remaining 30 % of the light is reflected at zero order, with no dispersion. Figure 9 on page 20 illustrates the light path at the surface of the grating.

Optical Unit

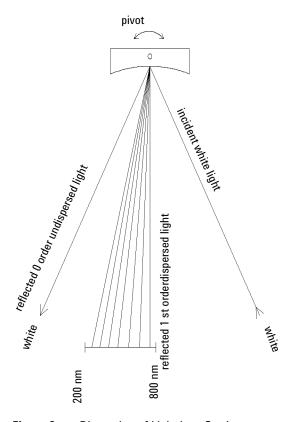


Figure 9 Dispersion of Light by a Grating

The grating is turned using a 3-phase brushless DC motor, the position of the grating determining the wavelength or wavelength range of the light falling onto the flow cell. The grating can be programmed to change its position and therefore the wavelength during a run.

For spectra acquisition and multi-wavelength detection, the grating rotates at 4000 rpm.

The excitation and emission gratings are similar in design, but have different blaze wavelengths. The excitation grating reflects most 1st order light in the ultra-violet range around 250 nm, whereas the emission grating reflects better in the visible range around 400 nm.

The flow cell is a solid fused silica body with a maximum back pressure of 20 bar. Excessive back pressure will result in destruction of the cell.

Operating the detector close to waste with low back pressure is recommended. A slit is integrated to the body.

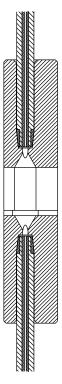


Figure 10 Cross-Section of Flow Cell

The luminescence from the sample in the flow cell is collected at right angles to the incident light by a second lens, and passes through a second slit. Before the luminescence reaches the emission monochromator, a cut-off filter removes light below a certain wavelength, to reduce noise from 1st order scatter and 2nd order stray light, see Figure 9 on page 20.

The selected wavelength of light is reflected onto the slit in the wall of the photo-multiplier compartment of the optical unit. The bandwidth of the emitted light is 20 nm.

Optical Unit

On the photocathode, Figure 11 on page 22, incident photons generate electrons. These electrons are accelerated by an electrical field between several arc-shaped dynodes. Depending on the voltage difference between any pair of dynodes, an incident electron may spark-off further electrons which accelerate onto the next dynode. An avalanche effect results: finally so many electrons are generated that a current can be measured. The amplification is a function of the voltage at the dynodes and is microprocessor controlled. You can set the amplification using the PMTGAIN function.

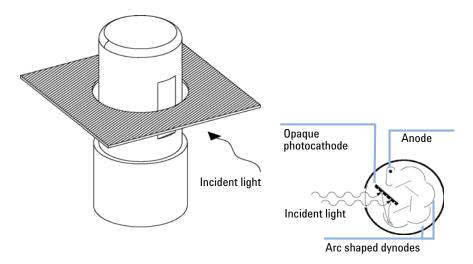


Figure 11 Photo-multiplier Tube

This type of so-called side-on photo-multiplier is compact ensuring fast response, conserving the advantages of the short optical path shown in Figure 6 on page 17.

PMTs are designed for specific wavelength ranges. The standard PMT offers optimum sensitivity from 200 to 600 nm. In the higher wavelength range a red-sensitive PMT can improve performance.

Reference System

A reference diode, located behind the flow cell, measures the excitation (EX) light transmitted by the flow cell and corrects flash lamp fluctuations and long-term intensity drift. Because of a non-linear output of the diode (depending on the EX-wavelength), the measured data are normalized.

A diffuser is located in front of the reference diode (see Figure 6 on page 17). This diffuser is made of quartz, reduces light and allows integral measurement of the light.

Analytical Information From Primary Data

We now know how the primary data from your sample is acquired in the optical unit. But how can the data be used as information in analytical chemistry? Depending on the chemistry of your application, the luminescence measured by the fluorescence detector will have different characteristics. You must decide, using your knowledge of the sample, what mode of detection you will use.

Fluorescence Detection

When the lamp flashes, the fluorescing compounds in your sample will luminesce almost simultaneously, see Figure 12 on page 24. The luminescence is short-lived, therefore the fluorescence detector need only measure over a short period of time after the lamp has flashed.

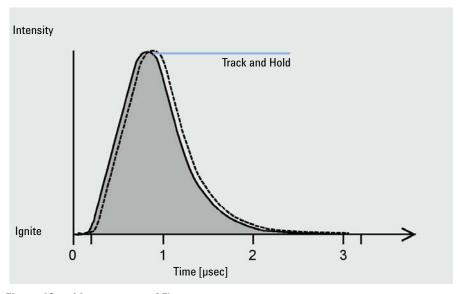


Figure 12 Measurement of Fluorescence

Phosphorescence Detection

An appropriate parameter set will be specified as soon as you chose the phosphorescence detection mode (special setpoints under FLD parameter settings).

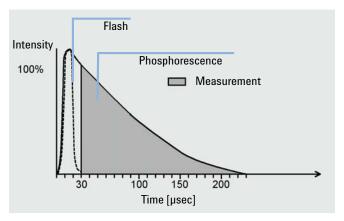


Figure 13 Measurement of Phosphorescence

Processing of Raw Data

If the lamp flashes at single wavelength and high-power, then the fluorescence data rate is 296 Hz. That means that your sample is illuminated 296 times per second, and any luminescence generated by the components eluted from the column is measured 296 times per second.

If the "economy" or multi-wavelength mode is set, then the flash frequency is 74 Hz.

Analytical Information From Primary Data

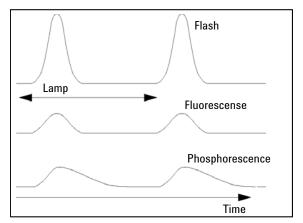


Figure 14 LAMP: Frequency of Flash, Fluorescence, and Phosphorescence

You can improve the signal-to-noise characteristics by disabling the "economy" mode.

NOTE

Disabling the "economy" mode will shorten the lifetime of the lamp significantly. Consider lifetime saving by switching off the lamp after the run is completed.

The data resolution is 20 bit at a response time of 4 s (default, which is equivalent to a time constant of 1.8 s and appropriate for standard chromatographical conditions). Weak signals may cause errors in quantification because of insufficient resolution. Check your proposed PMTGAIN. If it is significantly distant from your setting, change your method or check the purity of your solvent. See also "Finding the Best Signal Amplification" on page 125.

You can amplify the signal using PMTGAIN. Depending on the PMTGAIN you have set, a multiple of electrons is generated for every photon falling on the photomultiplier. You can quantify large and small peaks in the same chromatogram by adding PMTGAIN changes during the run into a timetable.

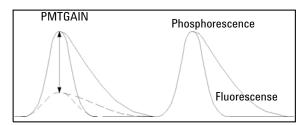


Figure 15 PMTGAIN: Amplification of Signal

Check proposed PMTGAIN. Deviations of more than 2 PMT gains should be corrected in the method.

Each PMTGAIN step is increased approximately by a factor of 2 (range 0 - 18). To optimize your amplification for the peak with the highest emission, raise the PMTGAIN setting until the best signal-to-noise is achieved.

After the photons are converted and multiplied into an electronic signal, the signal (at present analog) is tracked and held beyond the photo-multiplier. After being held, the signal is converted by an A-to-D converter to give one raw data point (digital). Eleven of these data points are bunched together as the first step of data processing. Bunching improves your signal-to-noise ratio.

The bunched data, shown as larger black dots in Figure 16 on page 28, is then filtered using a boxcar filter. The data is smoothed, without being reduced, by taking the mean of a number of points. The mean of the same points minus the first plus the next, and so on, is calculated so that there are the same number of bunched and filtered points as the original bunched points. You can define the length of the boxcar element using the RESPONSETIME function: the longer the RESPONSETIME, the greater the number of data points averaged. A four-fold increase in RESPONSETIME (for example, 1 sec to 4 sec) doubles the signal-to-noise ratio.

Analytical Information From Primary Data

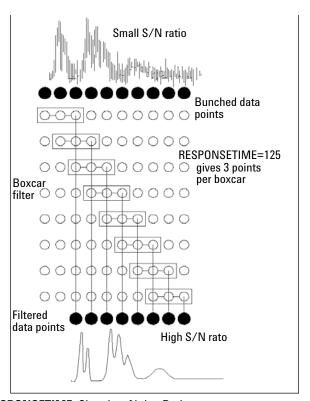


Figure 16 RESPONSETIME: Signal-to-Noise Ratio

System Overview

Leak and Waste Handling

The 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

System Overview

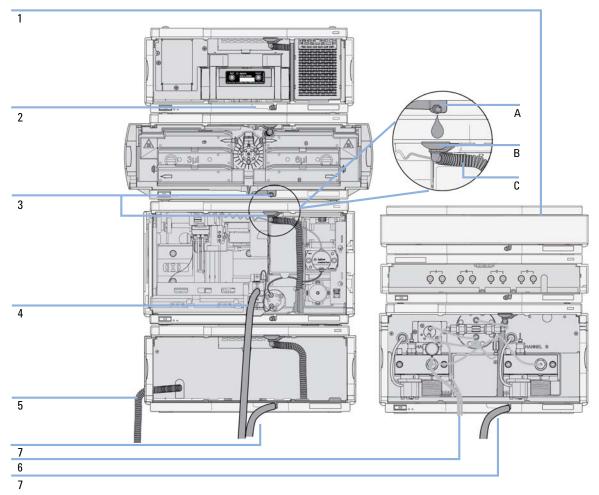


Figure 17 Leak and waste handling concept (overview - typical stack configuration as an example)

The solvent cabinet (1) is designed to store a maximum volume of 6 L solvent. The maximum volume for an individual bottle stored in the solvent cabinet should not exceed 2.5 L. For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets (a printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet).

The leak pan (2) (individually designed in each module) guides solvents to the front of the module. The concept covers also leakages on internal parts (e.g. the detector's flow cell). The leak sensor in the leak pan stops the running system as soon as the leak detection level is reached.

The leak pan's outlet port (3, A) guides excessive overfill from one module to the next, as the solvent flows into the next module's leak funnel (3, B) and the connected corrugated waste tube (3, C). The corrugated waste tube guides the solvent to the next lower positioned module's leak tray and sensor.

The waste tube of the sampler's needle wash port (4) guides solvents to waste.

The condense drain outlet of the autosampler cooler (5) guides condensate to waste.

The waste tube of the purge valve (6) guides solvents to waste.

The waste tube connected to the leak pan outlet on each of the bottom instruments (7) guides the solvent to a suitable waste container.

Bio-inert Materials

Bio-inert Materials

For the Agilent 1260 Infinity Bio-inert LC system, Agilent Technologies uses highest quality materials in the flow path (also referred to as wetted parts), which are widely accepted by life scientists, as they are known for optimum inertness to biological samples and ensure best compatibility with common samples and solvents over a wide pH range. Explicitly, the complete flow path is free of stainless steel and free of other alloys containing metals such as iron, nickel, cobalt, chromium, molybdenum or copper, which can interfere with biological samples. The flow downstream of the sample introduction contains no metals whatsoever.

 Table 2
 Bio-inert materials used in Agilent 1260 Infinity Systems

Module	Materials
Agilent 1260 Infinity Bio-inert Quaternary Pump (G5611A)	Titanium, gold, platinum-iridium, ceramic, ruby, PTFE, PEEK
Agilent 1260 Infinity Bio-inert High-Performance Autosampler (G5667A)	Upstream of sample introduction: • Titanium, gold, PTFE, PEEK, ceramic
	Downstream of sample introduction: • PEEK, ceramic
Agilent 1260 Infinity Bio-inert Manual Injector (G5628A)	PEEK, ceramic
Agilent 1260 Infinity Bio-inert Analytical Fraction Collector (G5664A)	PEEK, ceramic, PTFE
Bio-inert Flow Cells:	
Standard flow cell bio-inert, 10 mm, 13 μ L, 120 bar (12 MPa) for MWD/DAD, includes Capillary Kit Flow Cells BIO (p/n G5615-68755) (G5615-60022) (for Agilent 1260 Infinity Diode Array Detectors DAD G1315C/D)	PEEK, ceramic, sapphire, PTFE
Max-Light Cartridge Cell Bio-inert (10 mm, V(s) 1.0 μL) (G5615-60018) and Max-Light Cartridge Cell Bio-inert (60 mm, V(s) 4.0 μL) (G5615-60017) (for Agilent 1200 Infinity Series Diode Array Detectors DAD G4212A/B)	PEEK, fused silica
Bio-inert flow cell, 8 μ L, 20 bar (pH 1–12) includes Capillary Kit Flow Cells BIO (p/n G5615-68755) (G5615-60005) (for Agilent 1260 Infinity Fluorescence Detector FLD G1321B)	PEEK, fused silica, PTFE

 Table 2
 Bio-inert materials used in Agilent 1260 Infinity Systems

Module	Materials
Bio-inert heat-exchanger G5616-60050 (for Agilent 1290 Infinity Thermostatted Column Compartment G1316C)	PEEK (steel-cladded)
Bio-inert Valve heads	G4235A, G5631A, G5639A: PEEK, ceramic ($\mathrm{Al_2O_3}$ based)
Bio-inert Connection capillaries	Upstream of sample introduction: • Titanium
	Downstream of sample introduction: • Agilent uses stainless-steel-cladded PEEK capillaries, which keep the flow path free of steel and provide pressure stability to more than 600 bar.

NOTE

To ensure optimum bio-compatibility of your Agilent 1260 Infinity Bio-inert LC system, do not include non-inert standard modules or parts to the flow path. Do not use any parts that are not labeled as Agilent "Bio-inert". For solvent compatibility of these materials, see "Material Information" on page 113.

Bio-inert Materials

This chapter provides information on environmental requirements, physical and performance specifications.

Site Requirements

Site Requirements

A suitable environment is important to ensure optimal performance of the instrument.

Power Considerations

The module power supply has wide ranging capability. It accepts any line voltage in the range described in Table 3 on page 39. Consequently there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING

Hazard of electrical shock or damage of your instrumentation can result, if the devices are connected to a line voltage higher than specified.

→ Connect your instrument to the specified line voltage only.

WARNING

The module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. electrical shock, when the cover is opened and the module is connected to power.

- → Always unplug the power cable before opening the cover.
- → Do not connect the power cable to the instrument while the covers are removed.

CAUTION

Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- → Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING

Absence of ground connection or use of unspecified power cord

The absence of ground connection or the use of unspecified power cord can lead to electric shock or short circuit.

- → Never operate your instrumentation from a power outlet that has no ground connection.
- → Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Unintended use of supplied power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

→ Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.

Site Requirements

Bench Space

The module dimensions and weight (see Table 3 on page 39) allow you to place the module on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench shall carry a complete HPLC system, make sure that the bench is designed to bear the weight of all modules.

The module should be operated in a horizontal position.

Condensation

CAUTION

Condensation within the module

Condensation will damage the system electronics.

- → Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

Physical Specifications

 Table 3
 Physical Specifications

Туре	Specification	Comments
Weight	11.5 kg (26 lbs)	
Dimensions (height × width × depth)	140 x 345 × 435 mm (7 x 13.5 × 17 inches)	
Line voltage	100 – 240 VAC, ± 10 %	Wide-ranging capability
Line frequency	50 or 60 Hz, ± 5 %	
Power consumption	180 VA / 70 W / 239 BTU	Maximum
Ambient operating temperature	0 - 40 °C (32 - 104 °F)	
Ambient non-operating temperature	-40 – 70 °C (-40 – 158 °F)	
Humidity	< 95 % r.h. at 40 °C (104 °F)	Non-condensing
Operating altitude	Up to 2000 m (6562 ft)	
Non-operating altitude	Up to 4600 m (15091 ft)	For storing the module
Safety standards: IEC, CSA, UL	Installation category II, Pollution degree 2	For indoor use only.

Table 4 Performance Specifications Agilent 1260 Infinity Fluorescence Detector (G1321B)

Туре	Specification	Comments
Detection type	Multi-signal fluorescence detector with rapid on-line scanning capabilities and spectral data analysis	
Performance specifications	Single wavelength operation: RAMAN (H ₂ 0) > 500 (noise reference measured at signal) Ex=350 nm, Em=397 nm, dark value 450 nm, standard flow cell RAMAN (H ₂ 0) > 3000 (noise reference measured at dark value) Ex=350 nm, Em=397 nm, dark value 450 nm, standard flow cell Dual wavelength operation: RAMAN (H ₂ 0) > 300 Ex 350 nm, Em 397 nm and Ex 350 nm, Em 450 nm, standard flow cell.	see note below this table see Service Manual for details
Light source	Xenon Flash Lamp, normal mode 20 W, economy mode 5 W, lifetime 4000 h	
Pulse frequency	296 Hz for single signal mode 74 Hz for economy mode	
Maximum data rate	74 Hz, 145 Hz	145 Hz with firmware A.06.54 and above
Excitation monochromator	Range: settable 200 nm - 1200 nm and zero-order Bandwidth: 20 nm (fixed) Monochromator: concave holographic grating, F/1.6, blaze: 300 nm	

Table 4 Performance Specifications Agilent 1260 Infinity Fluorescence Detector (G1321B)

Туре	Specification	Comments
Emission monochromator	Range: settable 200 nm - 1200 nm and zero-order Bandwidth: 20 nm (fixed) Monochromator: concave holographic grating, F/1.6, blaze: 400 nm	
Reference system	in-line excitation measurement	
Timetable programing	up to 4 signal wavelengths, response time, PMT Gain, baseline behavior (append, free, zero), spectral parameters	
Spectrum acquisition	Excitation or Emission spectra Scan speed: 28 ms per datapoint (e.g. 0.6 s/spectrum 200 – 400 nm, 10 nm step) Step size: 1 – 20 nm Spectra storage: All	
Wavelength characteristic	Repeatability +/- 0.2 nm Accuracy +/- 3 nm setting	
Flow cells	Standard: 8 µL volume and 20 bar (2 MPa) pressure maximum, fused silica block Optional: • Fluorescence cuvette for offline spectroscopic measurements with 1 mL syringe, 8 µL volume • Bio-inert: 8 µL volume and 20 bar (2 MPa) pressure maximum, (pH 1–12) • Micro: 4 µL volume and 20 bar (2 MPa) pressure maximum	
Control and data evaluation	Agilent ChemStation for LC, Agilent Instant Pilot G4208A with limited spectral data analysis and printing of spectra	

Table 4 Performance Specifications Agilent 1260 Infinity Fluorescence Detector (G1321B)

Туре	Specification	Comments
Analog outputs	Recorder/integrator: 100 mV or 1 V, output range > 100 LU, two outputs	100 LU is the recommended range, see "FLD Scaling Range and Operating Conditions"
Communications	Controller-area network (CAN), RS-232C, LAN, APG Remote: ready, start, stop and shut-down signals	
Safety and maintenance	Extensive support for troubleshooting and maintenance is provided by the Instant Pilot, Agilent Lab Advisor, and the Chromatography Data System. Safety-related features are leak detection, safe leak handling, leak output signal for shutdown of pumping system, and low voltages in major maintenance areas.	
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of lamp burn time with user-settable limits and feedback messages. Electronic records of maintenance and errors. Verification of wavelength accuracy, using the Raman band of water.	
Housing	All materials recyclable.	
Environment	$0-40~^{\circ}\text{C}$ constant temperature at <95 % humidity (non-condensing)	
Dimensions	140 mm x 345 mm x 435 mm (5.5 x 13.5 x 17 inches) (height x width x depth)	
Weight	11.5 kg (25.5 lbs)	

Table 5 Performance Specifications Agilent 1260 Infinity Fluorescence Detector (G1321C)

Туре	Specification	Comments
Detection type	One signal wavelength (excitation and emission)	Programmable single wavelength (excitation and emission) fluorescence detector
Performance specifications	Single wavelength operation: RAMAN (H ₂ 0) > 500 (noise reference measured at signal) Ex=350 nm, Em=397 nm, dark value 450 nm, standard flow cell RAMAN (H ₂ 0) > 3000 (noise reference measured at dark value) Ex=350 nm, Em=397 nm, dark value 450 nm, standard flow cell	see note below this table see Service Manual for details
Light source	Xenon Flash Lamp, normal mode 20 W, economy mode 5 W, lifetime 4000 h	
Pulse frequency	296 Hz for single signal mode 74 Hz for economy mode	
Maximum data rate	74 Hz	
Excitation monochromator	Range: settable 200 nm - 1200 nm and zero-order Bandwidth: 20 nm (fixed) Monochromator: concave holographic grating, F/1.6, blaze: 300 nm	
Emission monochromator	Range: settable 200 nm - 1200 nm and zero-order Bandwidth: 20 nm (fixed) Monochromator: concave holographic grating, F/1.6, blaze: 400 nm	
Reference system	in-line excitation measurement	
Timetable programing	up to 4 signal wavelengths, response time, PMT Gain, baseline behavior (append, free, zero), spectral parameters	

Table 5 Performance Specifications Agilent 1260 Infinity Fluorescence Detector (G1321C)

Туре	Specification	Comments
Wavelength characteristic	Repeatability +/- 0.2 nm Accuracy +/- 3 nm setting	
Flow cells	Standard: 8 µL volume and 20 bar (2 MPa) pressure maximum, fused silica block Optional: Fluorescence cuvette for offline spectroscopic measurements with 1 mL syringe, 8 µL volume Bio-inert: 8 µL volume and 20 bar	
	(2 MPa) pressure maximum, (pH 1–12) • Micro: 4 μL volume and 20 bar (2 MPa) pressure maximum	
Control and data evaluation	Agilent ChemStation for LC, Agilent Instant Pilot G4208A with limited spectral data analysis and printing of spectra	
Analog outputs	Recorder/integrator: 100 mV or 1 V, output range > 100 LU, two outputs	100 LU is the recommended range, see "FLD Scaling Range and Operating Conditions"
Communications	Controller-area network (CAN), RS-232C, LAN, APG Remote: ready, start, stop and shut-down signals	
Safety and maintenance	Extensive support for troubleshooting and maintenance is provided by the Instant Pilot, Agilent Lab Advisor, and the Chromatography Data System. Safety-related features are leak detection, safe leak handling, leak output signal for shutdown of pumping system, and low voltages in major maintenance areas.	

Table 5 Performance Specifications Agilent 1260 Infinity Fluorescence Detector (G1321C)

Туре	Specification	Comments
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of lamp burn time with user-settable limits and feedback messages. Electronic records of maintenance and errors. Verification of wavelength accuracy, using the Raman band of water.	
Housing	All materials recyclable.	
Environment	0 – 40 °C constant temperature at <95 % humidity (non-condensing)	
Dimensions	140 mm x 345 mm x 435 mm (5.5 x 13.5 x 17 inches) (height x width x depth)	
Weight	11.5 kg (25.5 lbs)	

Table 6 Performance Specifications Agilent 1200 Series Fluorescence Detector (G1321A)

Туре	Specification	Comments
Detection type	Multi-signal fluorescence detector with rapid on-line scanning capabilities and spectral data analysis	
Performance specifications	Single wavelength operation: • RAMAN (H ₂ 0) > 500 (noise reference measured at signal) Ex=350 nm, Em=397 nm, dark value 450 nm, standard flow cell Dual wavelength operation: RAMAN (H ₂ 0) > 300 Ex 350 nm, Em 397 nm and Ex 350 nm, Em 450 nm, standard flow cell.	see note below this table see Service Manual for details
Light source	Xenon Flash Lamp, normal mode 20 W, economy mode 5 W, lifetime 4000 h	
Pulse frequency	296 Hz for single signal mode 74 Hz for economy mode	
Maximum data rate	37 Hz	
Excitation monochromator	Range: settable 200 nm - 1200 nm and zero-order Bandwidth: 20 nm (fixed) Monochromator: concave holographic grating, F/1.6, blaze: 300 nm	
Emission monochromator	Range: settable 200 nm - 1200 nm and zero-order Bandwidth: 20 nm (fixed) Monochromator: concave holographic grating, F/1.6, blaze: 400 nm	
Reference system	in-line excitation measurement	
Timetable programing	up to 4 signal wavelengths, response time, PMT Gain, baseline behavior (append, free, zero), spectral parameters	

Table 6 Performance Specifications Agilent 1200 Series Fluorescence Detector (G1321A)

Туре	Specification	Comments
Spectrum acquisition	Excitation or Emission spectra Scan speed: 28 ms per datapoint (e.g. 0.6 s/spectrum 200 – 400 nm, 10 nm step) Step size: 1 – 20 nm Spectra storage: All	
Wavelength characteristic	Repeatability +/- 0.2 nm Accuracy +/- 3 nm setting	
Flow cells	Standard: 8 µL volume and 20 bar (2 MPa) pressure maximum, fused silica block Optional: • Fluorescence cuvette for offline spectroscopic measurements with 1 mL syringe, 8 µL volume • Bio-inert: 8 µL volume and 20 bar (2 MPa) pressure maximum, (pH 1–12) • Micro: 4 µL volume and 20 bar (2 MPa) pressure maximum	
Control and data evaluation	Agilent ChemStation for LC, Agilent Instant Pilot G4208A with limited spectral data analysis and printing of spectra	
Analog outputs	Recorder/integrator: 100 mV or 1 V, output range > 100 LU, two outputs	100 LU is the recommended range, see "FLD Scaling Range and Operating Conditions"
Communications	Controller-area network (CAN), RS-232C, LAN, APG Remote: ready, start, stop and shut-down signals	

Table 6 Performance Specifications Agilent 1200 Series Fluorescence Detector (G1321A)

Туре	Specification	Comments
Safety and maintenance	Extensive diagnostics, error detection and display (through Instant Pilot G4208A and ChemStation), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.	
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of lamp burn time with user-settable limits and feedback messages. Electronic records of maintenance and errors. Verification of wavelength accuracy, using the Raman band of water.	
Housing	All materials recyclable.	
Environment	$0-40~^{\circ}\text{C}$ constant temperature at <95 % humidity (non-condensing)	
Dimensions	140 mm x 345 mm x 435 mm (5.5 x 13.5 x 17 inches) (height x width x depth)	
Weight	11.5 kg (25.5 lbs)	

Optimizing the Stack Configuration 52
One Stack Configuration 53
Two Stack Configuration 55
Installation Information on Leak and Waste Handling 57
Installing the Module 61
Flow Connections to the Module 64
Installing Capillaries 68

This chapter gives information about the preferred stack setup for your system and the installation of the module.

Unpacking the Module

Damaged Packaging

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

CAUTION

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- → Notify your Agilent sales and service office about the damage.
- → An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

Delivery Checklist

Ensure all parts and materials have been delivered with your module. The delivery checklist is shown below.

For parts identification please check the illustrated parts breakdown in "Parts for Maintenance" on page 201

Please report any missing or damaged parts to your local Agilent Technologies sales and service office.

 Table 7
 Detector Checklist

Description	Quantity
Detector	1
Power cable	1
CAN cable	1
Flow cell	as ordered
Optional flow cell/cuvette	as ordered
User Manual on Documentation CD (part of the shipment - not module specific)	1 per order
Accessory kit (see "Standard Accessory Kit" on page 204)	1

3 Installing the Module Optimizing the Stack Configuration

Optimizing the Stack Configuration

If your module is part of a complete Agilent 1260 Infinity Liquid Chromatograph, you can ensure optimum performance by installing the following configurations. These configurations optimize the system flow path, ensuring minimum delay volume.

One Stack Configuration

Ensure optimum performance by installing the modules of the Agilent 1260 Infinity LC System in the following configuration (See Figure 18 on page 53 and Figure 19 on page 54). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

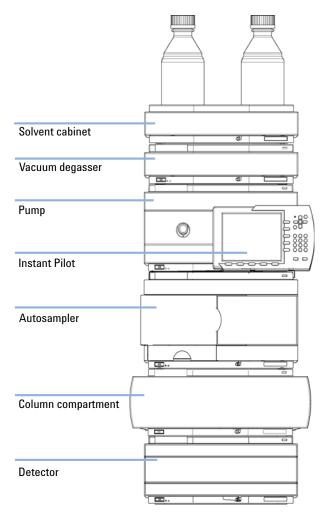


Figure 18 Recommended Stack Configuration for 1260 Infinity (Front View)

Optimizing the Stack Configuration

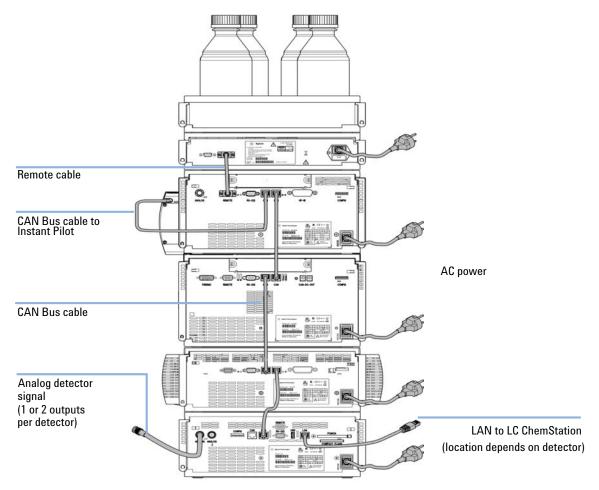
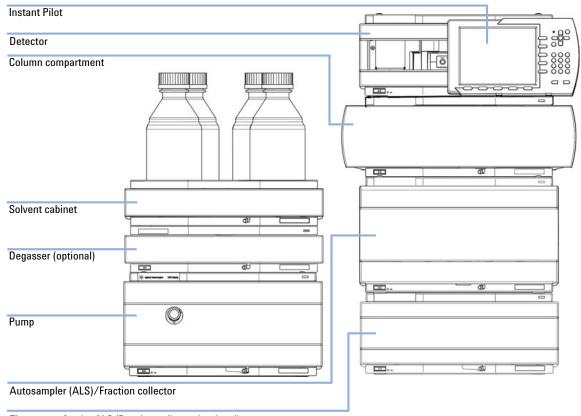



Figure 19 Recommended Stack Configuration for 1260 Infinity (Rear View)

Two Stack Configuration

To avoid excessive height of the stack when the autosampler thermostat is added to the system it is recommended to form two stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. (See Figure 20 on page 55 and Figure 21 on page 56).

Thermostat for the ALS/Fraction collector (optional)

Figure 20 Recommended Two Stack Configuration for 1260 Infinity (Front View)

Optimizing the Stack Configuration

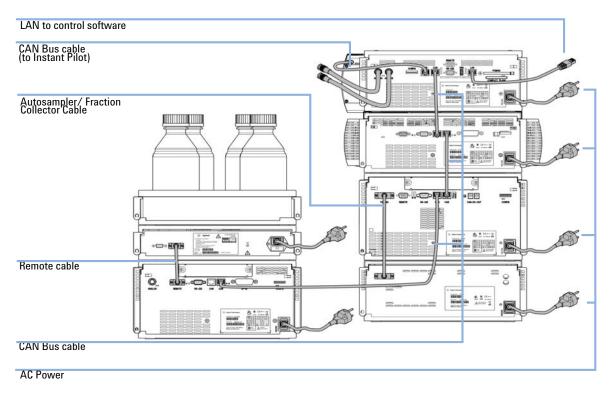


Figure 21 Recommended Two Stack Configuration for 1260 Infinity (Rear View)

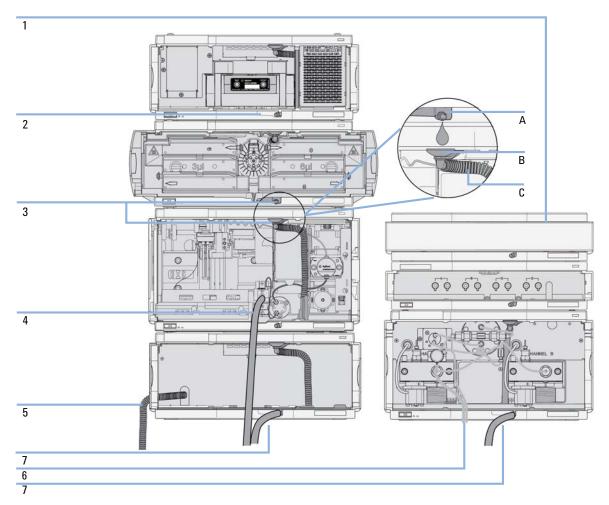
Installation Information on Leak and Waste Handling

The Agilent 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.


- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- → The volume of substances should be reduced to the minimum required for the analysis.
- Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

Installation Information on Leak and Waste Handling

Figure 22 Leak and waste handling (overview - typical stack configuration as an example)

1	Solvent cabinet
2	Leak pan
3	Leak pan's outlet port (A), leak funnel (B) and corrugated waste tube (C)
4	Waste tube of the sampler's needle wash
5	Condense drain outlet of the autosampler cooler
6	Waste tube of the purge valve
7	Waste tube

- 1 Stack the modules according to the adequate stack configuration.

 The leak pan outlet of the upper module must be vertically positioned above the leak tray of the lower module, see Figure 22 on page 58.
- **2** Connect data and power cables to the modules, see section *Installing* the *Module* below.
- **3** Connect capillaries and tubes to the modules, see section *Flow Connections to the module* below or the relevant system manual.

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

- → Keep solvent path free from blockages.
- → Keep the flow path closed (in case the pump in the system is equipped with a passive inlet valve, solvent may leak out due to hydrostatic pressure, even if your instrument is off).
- → Avoid loops.
- Tubes must not sag.
- Do not bend tubes.
- Do not immerse tube end in waste liquid.
- Do not intubate tubes in other tubes.
- → For correct tubing follow instructions on label attached to the module.

Installation Information on Leak and Waste Handling

Figure 23 Warning label (illustration for correct waste tubing)

Parts required Description

Power cord

For other cables see "Cable Overview" on page 208.

Software required Agilent Data System and/or Instant Pilot G4208A.

Preparations Locate bench space

Provide power connections
Unpack the detector

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

- → Make sure that it is always possible to access the power plug.
- → Remove the power cable from the instrument before opening the cover.
- → Do not connect the power cable to the Instrument while the covers are removed.
- 1 Install the LAN interface board in the detector (if required), see "Replacing the Interface Board" on page 197.
- **2** Place the detector in the stack or on the bench in a horizontal position.

Installing the Module

3 Ensure the line power switch at the front of the detector is OFF.

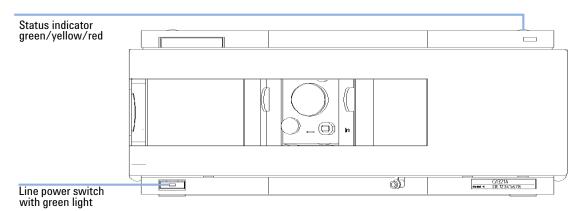


Figure 24 Front View of Detector

- **4** Connect the power cable to the power connector at the rear of the detector.
- **5** Connect the CAN cable to other modules.
- **6** If an Agilent ChemStation is the controller, connect the LAN connection to the LAN interface board in the detector.

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN (due to higher data load).

- 7 Connect the analog cable(s) (optional).
- **8** Connect the APG remote cable (optional) for non-Agilent Series instruments.

9 Turn ON power by pushing the button at the lower left hand side of the detector. The status LED should be green.

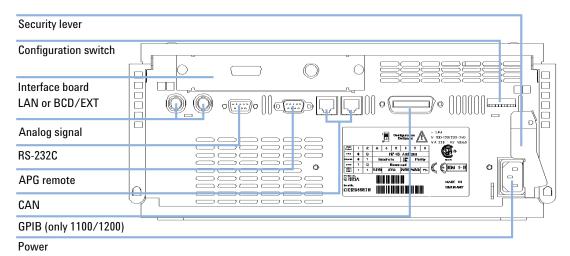


Figure 25 Rear View of Detector

The detector is turned ON when the line power switch is pressed and the green indicator lamp is illuminated. The detector is turned OFF when the line power switch is protruding and the green light is OFF.

NOTE

The detector was shipped with default configuration settings.

The GPIB interface has been removed with the introduction of the 1260 Infinity modules.

Flow Connections to the Module

For bio-inert modules use bio-inert parts only!

Tools required Description

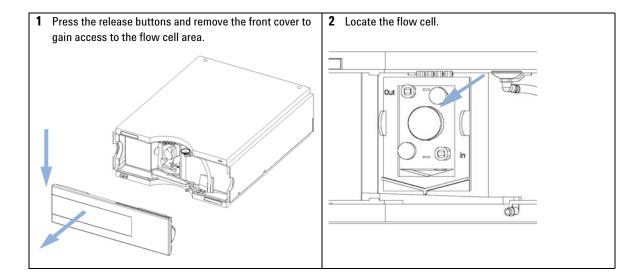
Wrench, 1/4 - 5/16 inch (for capillary connections)

Parts required p/n Description

G1321-68755 Accessory kit

Preparations Detector is installed in the LC system.

WARNING


Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- → The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.

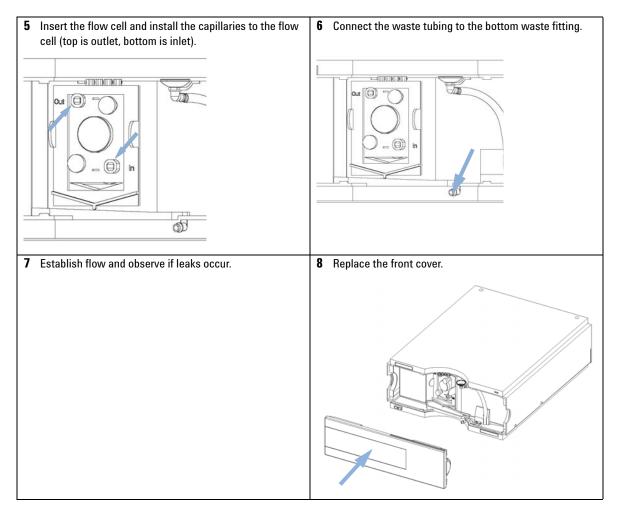
NOTE

The flow cell is shipped with a filling of isopropanol (also recommended when the instrument and/or flow cell is shipped to another location). This is to avoid breakage due to subambient conditions.

Flow Connections to the Module

3 Assemble the column detector capillary from the accessory kit. One side is already factory-assembled.

4 Assemble the waste tubing from the accessory kit.



NOTE

The fluorescence detector should be the last module in the flow system. An additional detector should be installed before the fluorescence detector to prevent any overpressure to the cell (maximum 20 bar).

When working with detector behind the FLD (on own risk) determine the backpressure of this detector first by

- removing the column and the last detect and measuring system pressure at the application flow rate.
- connecting the last detector (without column and FLD) and measuring the system pressure with flow.
- the difference in measured pressure is due to the back pressure generated by the last detector and is the pressure seen by the FLD.

The installation of the detector is now complete.

NOTE

The detector should be operated with the front cover in place to protect the flow cell area against strong drafts from the ouside.

Installing Capillaries

In May 2013, Agilent has introduced new UHP-FF fittings, which are designed for improved robustness and ease of use. Previous fittings require careful handling. Therefore it is important to know, which fittings are used in the system.

The figure below illustrates the differences between new and previous capillaries.

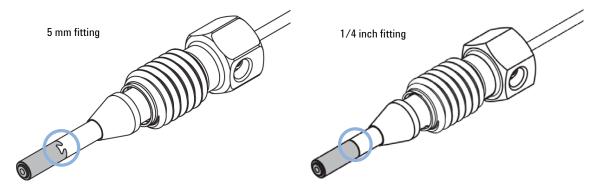


Figure 26 New bio-inert capillary and UHP-FF fitting with nose

Figure 27 Previous bio-inert capillary and fitting

NOTE

For handling instructions of capillaries and fittings, used in modules before delivery of the new UHP-FF fittings (introduced in May 2013), refer to "Installation of Stainless Steel Cladded PEEK Capillaries" on page 256.

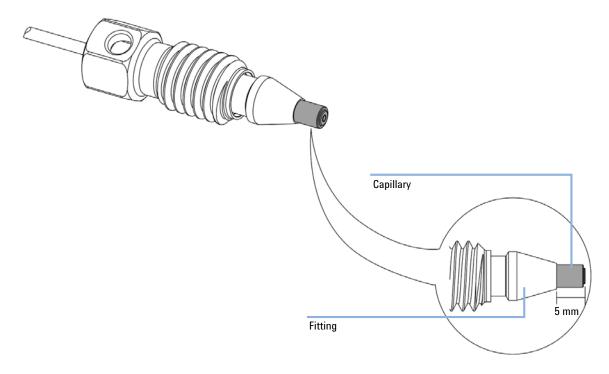
NOTE

To work on bio-inert capillaries produced before May 2013, you will need a 1/4 inch wrench instead of the 5 mm mounting tool.

Installing UHP-FF Fittings

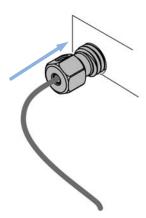
Tools required	p/n	Description
----------------	-----	-------------

5043-0915 Fitting mounting tool

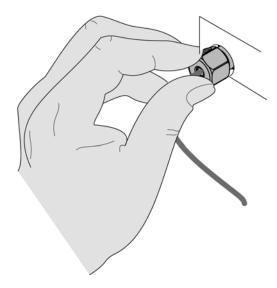

for bio-inert capillaries

Parts required p/n Description

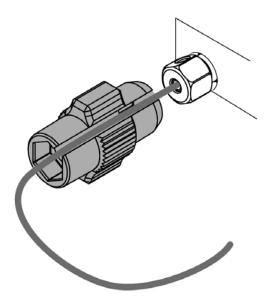
Capillaries and For details refer to the part section of the manual.


Fittings

1 Slide the fitting on the capillary. Let the capillary jut out 5 mm.



Installing Capillaries


2 Insert the fitting to the receiving port and push the capillary to the bottom of the port.

3 Finger tighten the nut into the port until snug.

4 Use Fitting mounting tool (5043-0915) or a 5 mm hex wrench for fixing the fitting (maximum torque 0.8 Nm).

CAUTION

Potential damage of capillaries

→ Do not remove fittings from used capillaries.

Installing Capillaries

5 When using UHP-FF fittings with bioinert capillaries, do not try to remove fittings from these capillaries. Bio-inert capillaries are using a PEEK front end, which may expand under pressure especially when being in contact with some organic solvents. If a fitting is moved across an expanded PEEK end, there is a risk of damaging the capillary by ripping off its end. Before re-installing such capillaries, push the ferrule towards the rear site for a small distance.

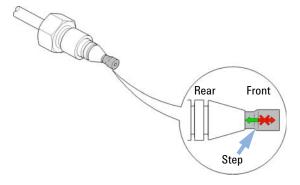
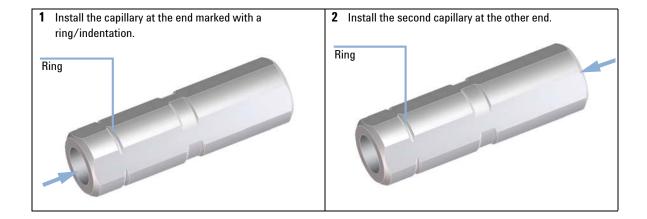


Figure 28 Capillary fitting


Installation of the Bio-inert Zero Dead Volume (ZDV) Union

The Bio-inert ZDV (p/n 5067-4741) union has two different connectors where capillaries need to be installed in the correct sequence. Otherwise, an inset of the union may be damaged and the connection may not be tight.

CAUTION

Potential leak or damage of the Bio-inert ZDV Union.

→ To avoid leaks or a damage to the Bio-inert ZDV union, follow the procedure below in the prescribed sequence.

3 Installing the Module Installing Capillaries


```
Leak and Waste Handling 76

Before You Start 77

Getting Started and Checkout 78

Starting Your Detector 78

Setting the Chromatographic Conditions 79

Observe the Maxima via the Isoabsorbance Plot 81

Method Development 82

Step 1: Check the LC System for Impurities 83

Step 2: Optimize Limits of Detection and Selectivity 84

Step 3: Set up Routine Methods 95

Example: Optimization for Multiple Compounds 99

How to collect spectra with modes SPECTRA ALL IN PEAK and APEX SPECTRA ONLY 109

Solvent Information 113
```

This chapter guides you how to start the work with the detector.

Leak and Waste Handling

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- → The volume of substances should be reduced to the minimum required for the analysis.
- Do not operate the instrument in an explosive atmosphere.
- → Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.
- → The residual free volume in the appropriate waste container must be large enough to collect the waste liquid.
- → Check the filling level of the waste container regularly.
- → To achieve maximal safety, check the correct installation regularly.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

For details on correct installation, see "Installation Information on Leak and Waste Handling" on page 57.

Before You Start

Your normal LC grade solvents usually give good results most of the time. But experience shows that baseline noise can be higher (lower signal-to-noise ratio) when impurities are in the solvents.

Flush your solvent delivery system for at least 15 minutes before checking sensitivity. If your pump has multiple channels, you should also flush the channels not in use.

For optimal results refer to "Optimizing the Detector" on page 119.

NOTE

Some features (e.g. spectrum acquisition, multi-wavelength detection) described in this chapter are not available on the G1321C FLD.

Getting Started and Checkout

Getting Started and Checkout

This chapter describes the check out of the Agilent 1260 Infinity Fluorescence Detector using the Agilent isocratic checkout sample.

Starting Your Detector

Parts required	#	p/n	Description
	1	5063-6528	Start-up Kit, includes
	1		LC Column and parts listed below
	1	01080-68704	Agilent isocratic checkout sample This 0.5 mL ampoule contains 0.15 wt.% dimethylphthalate, 0.15 wt.% diethylphthalate, 0.01 wt.% biphenyl, 0.03 wt.% o-terphenyl in methanol.
	1	0100-1516	Fitting male PEEK, 2/pk
	1	5021-1817	Capillary ST 0.17 mm x 150 mm

Hardware required

LC system with FLD

- 1 Turn ON the detector.
- **2** Turn ON the lamp.

When the lamp is turned on the first time the instrument performs some internal checks and a calibration check which takes about 5 minutes.

3 You are now ready to change the settings of your detector.

Setting the Chromatographic Conditions

1 Set up the system with the following chromatographic conditions and wait until the baseline gets stable.

 Table 8
 Chromatographic Conditions

Mobile phases	A = water = 35 %
	B = Acetonitrile = 65 %
Column	OSD-Hypersil column, 125 mm x 4 mm i.d. with 5 µm particles
Sample	Isocratic standard sample, 1:10 diluted in methanol
Flow rate	1.5 ml/min
Compressibility A (water)	46
Compressibility B (Acetonitrile)	115
Stroke A and B	auto
Stop time	4 min
Injection volume	5 µl
Oven temperature (1200)	30 °C
FLD Excitations/Emission Wavelength	EX = 246 nm, EM = 317 nm
FLD PMT Gain	PMT = 10
FLD Response time	4 s

2 Set the FLD setpoints according to Figure 29 on page 80.

Getting Started and Checkout

In this example additional excitation wavelenghts (B, C, D) are used. This will increase the scan time and may lower the performance.

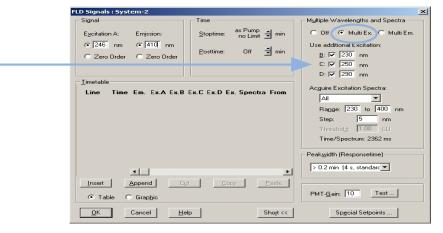


Figure 29 FLD Parameters

3 Start the run.

The resulting chromatograms are shown below:

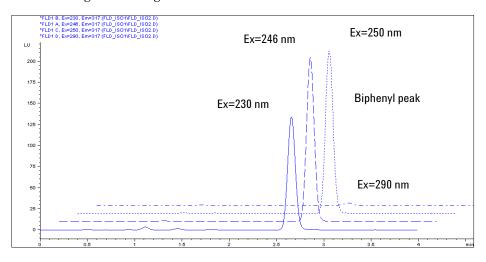


Figure 30 Biphenyl Peak With Different Excitation Wavelengths

The excitation maxima are around 250 nm.

Observe the Maxima via the Isoabsorbance Plot

- 1 Load the data file (λ_{EX} = 246 nm, λ_{EM} = 317 nm) and open the isoabsorbance plot.
- $\boldsymbol{2}$ The maximum λ_{EX} will be found around 250 nm.

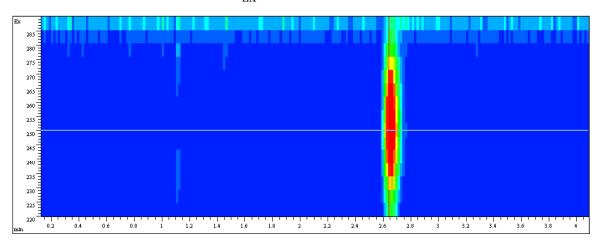


Figure 31 Isoabsorbance Plot

4 Using the Fluorescence Detector Method Development

Method Development

Fluorescence detectors are used in liquid chromatography when superior limits of detection and selectivity are required. Thorough method development, including spectra acquisition, is fundamental to achieve good results. This chapter describes three different steps that can be taken with the Agilent fluorescence detector. Table 9 on page 82 gives an overview of how to benefit from the operation modes during these steps.

 Table 9
 Steps for thorough method development

	Step 1: Check system	Step 2: Optimize limits of detection and selectivity	Step 3: Set up routine methods
Fluorescence scan	Find impurities (for example, in solvents and reagents)	Determine simultaneously the excitation and emission spectra of a pure compound	
Signal mode		Perform wavelength switching	Use for lowest limits of detection
Spectral mode/multi-wavelength detection		Determine Ex/Em spectra for all separated compounds in a single run	Collect online spectra, perform library search, determine peak purity
		Activate up to four wavelengths simultaneously	Deactivate wavelength switching

Step 1: Check the LC System for Impurities

A critical issue in trace level fluorescence detection is to have an LC system free of fluorescent contamination. Most contaminants derive from impure solvents. Taking a fluorescence scan is a convenient way to check the quality of the solvent in a few minutes. This can be done, for example, by filling the FLD cuvette directly with the solvent for an offline measurement even before the start of a chromatographic run. The result can be displayed as an isofluorescence plot or a three-dimensional plot. Different colors reflect different intensities.

Figure 32 on page 83 shows a sample of slightly impure water which was planned for use as mobile phase. The area where fluorescence of the contaminated water sample can be seen is between the stray light areas: the first- and second-order Raleigh stray light and Raman stray light.

A pure water sample was put into the flow cell. Spectra were recorded at 5 nm step sizes.

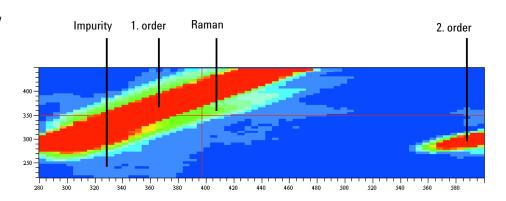


Figure 32 Isofluorescence plot of a mobile phase

Since "excitation" and "emission" wavelength are the same for Raleigh stray light, the area of first-order Raleigh stray light is visible in the left upper area of the diagram. The Raman bands of water are seen below the first-order Raleigh stray light. Since the cut-off filter cuts off light below 280 nm, the second-order Raleigh stray light starts above 560 nm.

Stray light acts in the same way as impurities in that it simulates background noise. In both cases, a higher noise level and therefore a higher limit of detection are obtained. This indicates that high sensitivity measurements should be done away from wavelength settings that have a high stray light background.

Step 2: Optimize Limits of Detection and Selectivity

To achieve optimum limits of detection and selectivity, analysts must find out about the fluorescent properties of the compounds of interest. Excitation and emission wavelengths can be selected for optimum limits of detection and best selectivity. In general, fluorescence spectra obtained with different instruments may show significant differences depending on the hardware and software used.

The traditional approach is to extract an appropriate excitation wavelength from the UV spectrum that is similar to the fluorescence excitation spectrum (see Figure 33 on page 84) and to record the emission spectrum. Then with an optimum emission wavelength determined, the excitation spectrum is acquired.

Excitation spectrum with emission at 440 nm, emission spectrum with excitation at 250 nm of 1 µg/ml quinidine. Detector settings: Step size 5 nm, PMT 12 Response time 4 s.

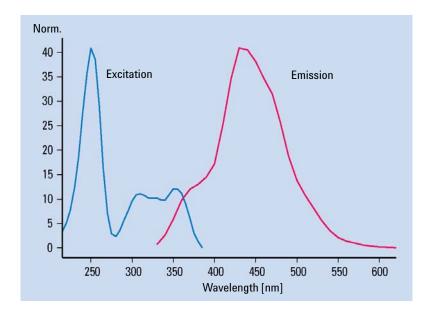


Figure 33 Excitation and emission spectra of quinidine

These tasks have to be repeated for each compound using either a fluorescence spectrophotometer or stop-flow conditions in LC. Usually each compound requires a separate run. As a result, a set of excitation and emission spectrum is obtained (Figure 32 on page 83) for each compound. Since this is a tedious procedure, it is applicable only when there is a limited number of compounds of interest.

The Agilent 1200 Infinity Series LC offers three different ways to obtain complete information on a compound's fluorescence:

Procedure I - Take a fluorescence scan offline for a single compound as described above for the mobile phase. This is done preferably with a manual FLD cuvette when pure compounds are available.

Procedure II - Use two LC runs with the Agilent 1260 Infinity Fluorescence Detector to separate the compound mix under known conditions and acquire emission and excitation spectra separately.

Procedure III - Use an Agilent 1200 Infinty Series FLD /DAD combination and acquire UV/Visible spectra (equivalent to excitation spectra) with the DAD and emission spectra with the FLD-both in a single run.

Procedure I - Take a fluorescence scan

Because fluorescence spectra traditionally have not been easily available with previous LC fluorescence detectors, standard fluorescence spectrophotometers have been used in the past to acquire spectral information for unknown compounds. Unfortunately this approach limits optimization, as there are differences expected in optical design between an LC detector and a dedicated fluorescence spectrophotometer, or even between detectors. These differences can lead to variations for the optimum excitation and emission wavelengths.

The Agilent 1260 Infinity Fluorescence Detector offers a fluorescence scan that delivers all spectral information previously obtained with a standard fluorescence spectrophotometer, independent of the LC fluorescence detector. Figure 34 on page 87 shows the complete information for quinidine as obtained with the Agilent 1260 Infinity Fluorescence Detector and a manual cuvette in a single offline measurement. The optima for excitation and emission wavelengths can be extracted as coordinates of the maxima in the three dimensional plot. One of the three maxima in the center of the plot can be chosen to define the excitation wavelength. The selection depends on the additional compounds that are going to be

Method Development

analyzed in the chromatographic run and the background noise that may be different upon excitation at 250 nm, 315 nm or 350 nm. The maximum of emission is observed at 440 nm.

Details for Figure 34 on page 87:

All excitation and emission spectra of Quinidine (1 $\mu g/ml$) are shown in graphic. Fluorescence intensity is plotted vs excitation and emission wavelengths.

Detector settings: step size 5 nm, PMT 12 , Response time 4 s

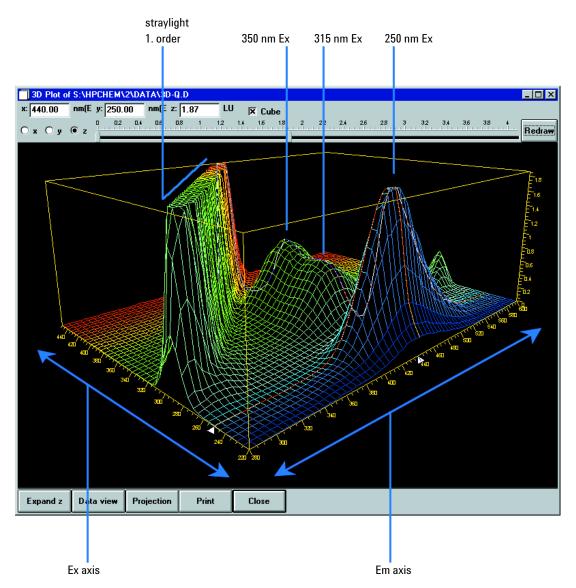


Figure 34 Characterization of a pure compound from a fluorescence scan

Method Development

Procedure II - Take two LC runs with the FLD

The conditions for the separation of organic compounds such as polyaromatic nuclear hydrocarbons (PNAs) are well described in various standard methods, including commonly used EPA and DIN methods. Achieving the best detection levels requires checking for the optimum excitation and emission wavelengths for all compounds. Yet taking fluorescence scans individually makes this a tedious process. A better approach is to acquire spectra online for all compounds during a run. This speeds up method development tremendously. Two runs are sufficient for optimization.

During the *first run*, one wavelength is chosen in the low UV range for the excitation wavelength and one emission wavelength in the spectral range for the emission wavelength. Most fluorophores show strong absorption at these wavelengths and the quantum yield is high. Excitation is sufficient for collecting emission spectra.

Table on page 90 contains all emission spectra obtained in a single run from a mix of 15 PNAs. This set of spectra is used to set up a timetable for optimum emission wavelengths for all compounds.

The individual compound spectra in the isofluorescence plot show that at least three emission wavelengths are needed to detect all 15 PNAs properly:

lable 10	Timetable for PN	IA analysis
----------	------------------	-------------

0 min:	350 nm	for naphthalene to phenanthrene	
8.2 min:	420 nm	for anthracene to benzo(g,h,i)perylene	
19.0 min:	500 nm	for indeno(1,2,3-c,d)pyrene	

In the second run, three setpoints for emission wavelengths are entered into the time-program and excitation spectra are recorded, as shown in Figure 36 on page 91. The area of high intensity (red) is caused by stray light when emission spectra overlap with the excitation wavelength. This can be avoided by fitting the spectral range automatically. Excitation at 260 nm is most appropriate for all PNAs.

 Table 11
 Conditions for Optimization of PNA analysis according to figures below

Column	Vydac, 2.1 x 200 mm, PNA, 5 μm	
Mobile phase	A = water; B = acetonitrile (50 : 50)	
Gradient	3 minutes, 60%	
	14 minutes, 90%	
	22 minutes, 100%	
Flow rate	0.4 ml/min	
Column temperature	18 °C	
Injection volume	5 µl	
FLD settings	PMT 12,	
	response time 4 s,	
	step size 5 nm	

Method Development

This shows the isofluorescence plot of emission spectra for 15 PNAs (5 µg/ml) with a fixed excitation wavelength (260 nm).

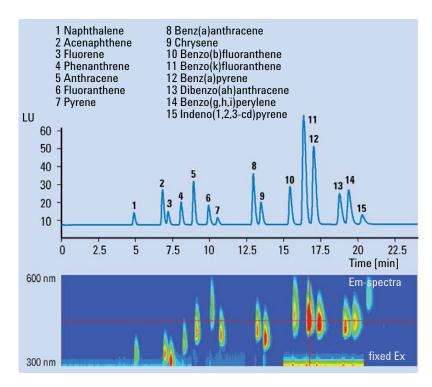


Figure 35 Optimization of the time-program for the emission wavelength

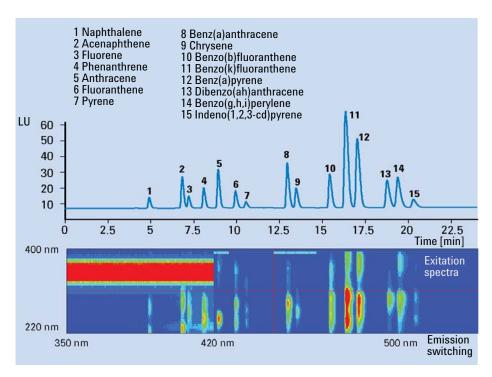


Figure 36 Optimization of the time-program for the excitation wavelength

The obtained data are combined to setup the time-table for the excitation wavelength for best limit of detection and selectivity. The optimized switching events for this example are summarized in Table 12 on page 91.

 Table 12
 Timetable for the analysis of 15 polynuclear aromatic hydrocarbons

Time [min]	Exitation Wavelength [nm]	Emission Wavelength [nm]
0	260	350
8.2	260	420
19.0	260	500

This timetable gives the conditions for optimum detection based on the results of two chromatographic runs.

Method Development

Procedure III - Make a single run with a DAD/FLD combination

For most organic compounds, UV-spectra from diode array detectors are nearly identical to fluorescence excitation spectra. Spectral differences are caused by specific detector characteristics such as spectral resolution or light sources.

In practice, combining a diode array detector with a fluorescence detector in series gives the full data set needed to achieve the optimum fluorescence excitation and emission wavelengths for a series of compounds in a single run. With the UV/Visible/excitation spectra available from the diode array detector, the fluorescence detector is set to acquire emission spectra with a fixed excitation wavelength in the low UV range.

The example is taken from the quality control of carbamates. Samples are analyzed for the impurities 2,3-diaminophenazine (DAP) and 2-amino-3-hydroxyphenazine (AHP). Reference samples of DAP and AHP were analyzed with diode array and fluorescence detection. Table on page 93 shows the spectra obtained from both detectors for DAP. The excitation spectrum of DAP is very similar to the UV absorption spectrum from the diode array detector. Table on page 94 shows the successful application of the method to a carbamate sample and a pure mixture of DAP and AHP for reference. The column was overloaded with the non-fluorescent carbamate (2-benzimidazole carbamic acid methylester/MBC) to see the known impurities, AHP and DAP.

This is an impurity of carbamates. The excitation spectrum in a second run shows the equivalence of UV-spectra and fluorescence excitation spectra. An excitation wavelength at 265 nm was used for taking the emission spectrum and an emission wavelength at 540 nm was used for taking the excitation spectrum.

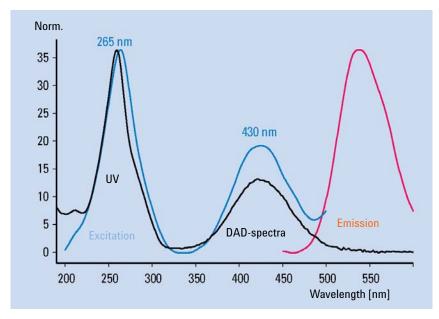


Figure 37 UV-spectrum and fluorescence spectra for 2,3-diaminophenazine (DAP)

Method Development

The two upper traces are obtained using two different excitation wavelengths.
The lower trace is a pure standard of the known impurities.

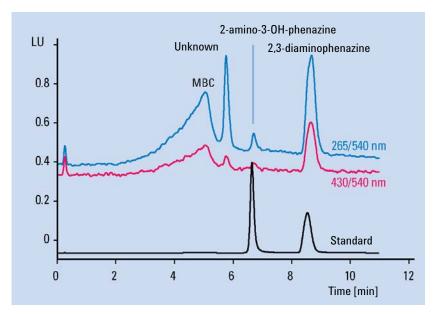


Figure 38 Qualitive analysis of MBC (2-benzimidazole carbamic acid methylester) and impurities

 Table 13
 Conditions for analysis of DAP and MBC according to figures above

Column	Zorbax SB, 2 x 50 mm, PNA, 5 μm
Mobile phase	A = water; B = acetonitrile
Gradient	0 minutes, 5% 10 minutes, 15%
Flow rate	0.4 ml/min
Column temperature	35 °C
Injection volume	5 µl
FLD settings	PMT 12, response time 4 s, step size 5 nm Ex 265 nm and 430 nm Em 540 nm

Step 3: Set up Routine Methods

In routine analysis, sample matrices can have a significant influence on retention times. For reliable results, sample preparation must be thorough to avoid interferences or LC methods must be rugged enough. With difficult matrices, simultaneous multi-wavelength detection offers more reliability than timetable-controlled wavelength switching. The FLD can, in addition, acquire fluorescence spectra while it records the detector signals for quantitative analysis. Therefore qualitative data are available for peak confirmation and purity checks in routine analysis.

Multi wavelength detection

Time-programmed wavelength switching traditionally is used to achieve low limits of detection and high selectivity in routine quantitative analysis. Such switching is difficult if compounds elute closely and require a change in excitation or emission wavelength. Peaks can be distorted and quantitation made impossible if wavelength switching occurs during the elution of a compound. Very often this happens with complex matrices, influencing the retention of compounds.

In spectral mode, the FLD can acquire up to four different signals simultaneously. All of them can be used for quantitative analysis. Apart from complex matrices, this is advantageous when watching for impurities at additional wavelengths. It is also advantageous for reaching low limits of detection or increasing selectivity through optimum wavelength settings at any time. The number of data points acquired per signal is reduced and thus limits of detection may be higher, depending on the detector settings compared to the signal mode.

PNA analysis, for example, can be performed with simultaneous multiwavelength detection instead of wavelength-switching. With four different wavelengths for emission, all 15 PNAs can be monitored (Table on page 97).

Method Development

Table 14 Conditions for simultaneous multi wavelength detection for PNA-analysis (see figure below)

Column	Vydac, 2.1 × 250 mm, PNA, 5 μm
Mobile phase	A = water; B = acetonitrile (50 : 50)
Gradient	3 min, 60 % 14.5 min, 90 % 22.5 min, 95 %
Flow rate	0.4 mL/min
Column temperature	22 °C
Injection volume	2 μL
FLD settings	PMT 12 , response time 4 s

The upper trace was received with traditional wavelength switching.

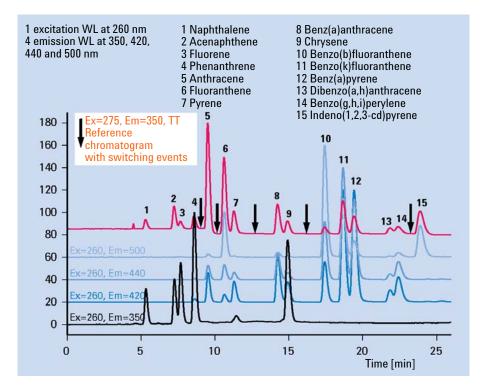


Figure 39 Simultaneous multi wavelength detection for PNA-analysis

Previously, only diode array detectors and mass spectrometric detectors could deliver spectral information on-line to confirm peak identity as assigned by retention time.

Now, fluorescence detectors provide an additional tool for automated peak confirmation and purity control. No additional run is necessary after the quantitative analysis.

During method development, fluorescence excitation and emission spectra are collected from reference standards and entered into a library-at the choice of the method developer. All spectral data from unknown samples can then be compared automatically with library data. Table 15 on page 98 illustrates this principle using a PNA analysis. The match factor given in the report for each peak indicates the degree of similarity between the reference spectrum and the spectra from a peak. A match factor of 1,000 means identical spectra.

Method Development

In addition, the purity of a peak can be investigated by comparing spectra obtained within a single peak. When a peak is calculated to be within the user-defined purity limits, the purity factor is the mean purity value of all spectra that are within the purity limits.

The reliability of the purity and the match factor depends on the quality of spectra recorded. Because of the lower number of data points available with the fluorescence detector in general, the match factors and purity data obtained show stronger deviations compared to data from the diode array detector, even if the compounds are identical.

Table 15 on page 98 shows an automated library search based on the emission spectra from a PNA reference sample.

Table 15 Peak confirmation using a fluorescence spectral library

Meas. RetTime	Library	CalTbl	Signal	Amount	Purity	#	Match	Libary Name
[min]	[min]	[min]		[ng]	Factor			
4.859	4.800	5.178	1	1.47986e-1	-	1	993	Naphthalene@em
6.764	7.000	7.162	1	2.16156e-1	-	1	998	Acenaphthene@em
7.137	7.100	7.544	1	1.14864e-1	-	1	995	Fluorene@em
8.005	8.000	8.453	1	2.56635e-1	-	1	969	Phenanthrene@em
8.841	8.800	9.328	1	1.76064e-1	-	1	993	Anthracene@em
9.838	10.000	10.353	1	2.15360e-1	-	1	997	Fluoranthene@em
10.439	10.400	10.988	1	8.00754e-2	-	1	1000	Pyrene@em
12.826	12.800	13.469	1	1.40764e-1	-	1	998	Benz(a)anthracene@em
13.340	13.300	14.022	1	1.14082e-1	-	1	999	Chrysene@em
15.274	15.200	16.052	1	6.90434e-1	-	1	999	Benzo(b)fluoranthene@em
16.187	16.200	17.052	1	5.61791e-1	-	1	998	Benzo(k)fluoranthene@em
16.865	16.900	17.804	1	5.58070e-1	-	1	999	Benz(a)pyrene@em
18.586	18.600	19.645	1	5.17430e-1	-	1	999	Dibenz(a,h)anthracene@em
19.200	19.100	20.329	1	6.03334e-1	-	1	995	Benzo(g,h,i)perylene@em
20.106	20.000	21.291	1	9.13648e-2	-	1	991	Indeno(1,2,3-c,d)pyrene@em

Example: Optimization for Multiple Compounds

Example: Optimization for Multiple Compounds

Using PNAs as a sample, this example uses the described scanning functions.

Example: Optimization for Multiple Compounds

Setting the Chromatographic Conditions

This example uses the following chromatographic conditions (the detector settings are shown in Figure 40 on page 101).

 Table 16
 Chromatographic Conditions

Mobile phases	A = water = 50 % B = Acetonitrile = 50 %
Column	Vydac-C18-PNA, 250 $$ mm x 2.1 mm i.d. with 5 μm particles
Sample	PAH 0.5 ng
Flow rate	0.4 ml/min
Compressibility A (water)	46
Compressibility B (Acetonitrile)	115
Stroke A and B	auto
Time Table	at 0 min % B=50
	at 3 min % B=60
	at 14.5 min % B=90
	at 22.5 min % B=95
Stop time	26 min
Post time	8 min
Injection volume	1 μΙ
Oven temperature (1200)	30 °C
FLD PMT Gain	PMT = 15
FLD Response time	4 s

Select a Excitation wavelength in the low UV (230...260 nm). This will cover nearly all fluorescence in your sample.

DO NOT select additional emission wavelengths (B, C, D). Doing so will increase the scan time and will lower the performance.

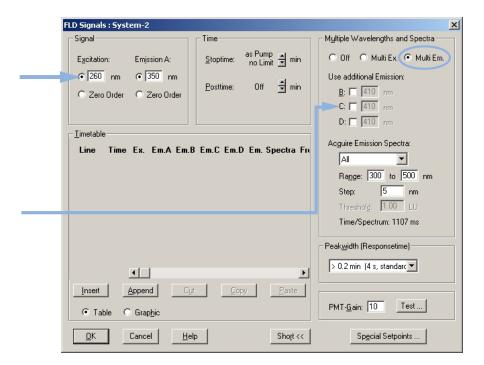


Figure 40 Detector Settings for Emission Scan

1 Wait until the baseline stabilizes. Complete the run.

Example: Optimization for Multiple Compounds

2 Load the signal. (In this example just the time range of 13 min is displayed).

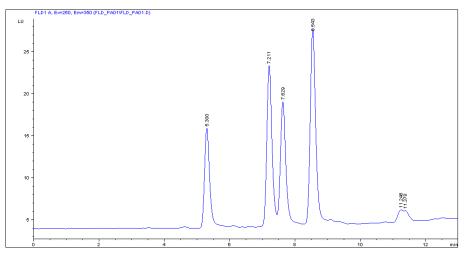
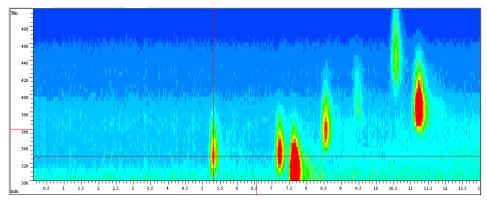


Figure 41 Chromatogram from Emissions Scan

3 Use the isoabsorbance plot and evaluate the optimal emission wavelengths, shown in the table below.



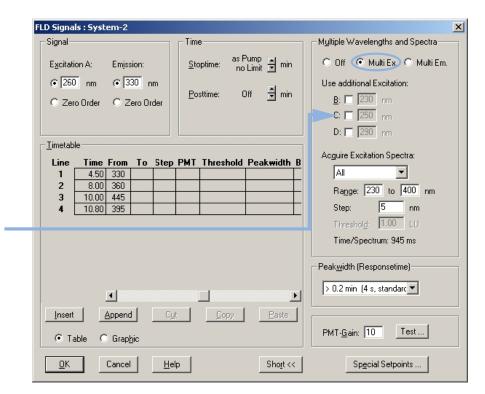

Figure 42 Isoabsorbance Plot from Emission Scan

Table 17

Peak #	Time	Emission Wavelength	
1	5.3 min	330 nm	_
2	7.2 min	330 nm	
3	7.6 min	310 nm	
4	8.6 min	360 nm	
5	10.6 min	445 nm	
6	11.23 min	385 nm	

Example: Optimization for Multiple Compounds

4 Using the settings and the timetable (from previous page), do a second run for the evaluation of the optimal excitation wavelength. See Figure 43 on page 104.

DO NOT select additional excitation wavelengths (B, C, D). Doing so will increase the scan time and will lower the performance.

Figure 43 Detector Settings for Excitation Scan

5 Wait until the baseline stabilizes. Start the run.

6 Load the signal.

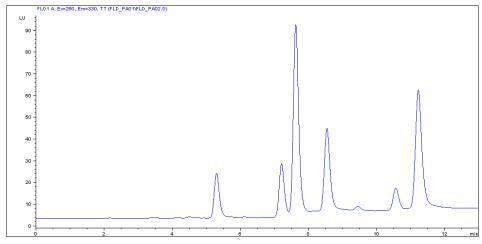


Figure 44 Chromatogram - Excitation Scan at Reference Wavelength 260/330 nm

7 Use the isoabsorbance plot and evaluate the optimal excitation wavelengths (in this example just in the time range of 13 minutes).

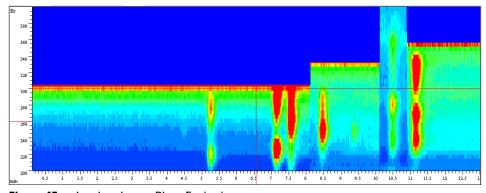


Figure 45 Isoabsorbance Plot - Excitation

The table below shows the complete information about emission (from Figure 42 on page 103) and excitation maxima.

Example: Optimization for Multiple Compounds

Table 18

Peak #	Time	Emission Wavelength	Excitation Wavelength
1	5.3 min	330 nm	220 / 280 nm
2	7.3 min	330 nm	225 / 285 nm
3	7.7 min	310 nm	265 nm
4	8.5 min	360 nm	245 nm
5	10.7 min	445 nm	280 nm
6	11.3 min	385 nm	270 / 330 nm

Evaluating The System Background

The example below uses water.

- 1 Pump solvent through your system.
- **2** Set the fluorescence scan range under FLD special setpoints according to your needs.

NOTE

The scan time will increase when the range is enlarged. With the default values, the scan takes about 2 minutes.

3 Set PMT gain to 16.

The wavelength range and step number defines the duration. Using the maximum range, the scan would take approximately 10 minutes.

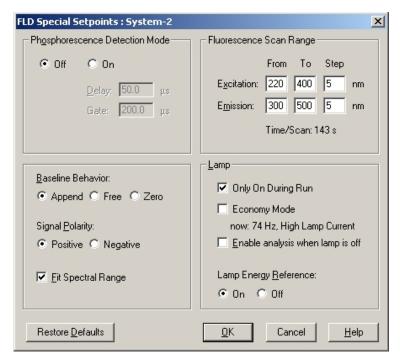


Figure 46 FLD Special Settings

Example: Optimization for Multiple Compounds

4 Define a data file name and take a fluorescence scan. After the scan is completed, the isoabsorbance scan results appear, see Figure 47 on page 108.

NOTE

A low background will improve the signal-to-noise, see also "Reducing Stray Light" on page 135.

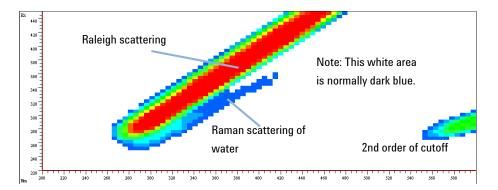
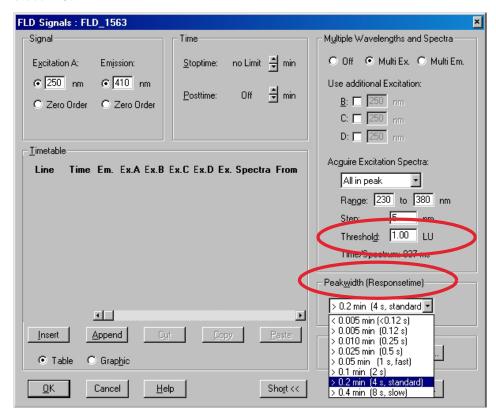


Figure 47 Fluorescence Scan of Water

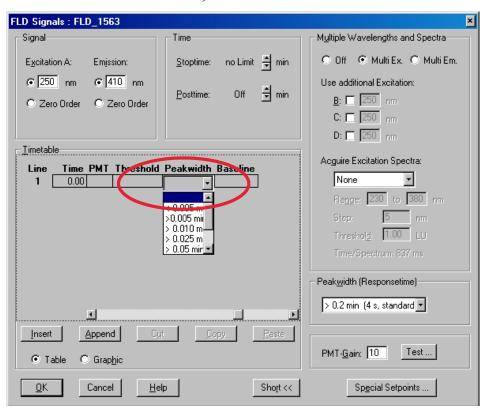
How to collect spectra with modes SPECTRA ALL IN PEAK and APEX SPECTRA ONLY

This section describes how to overcome a malfunction in the current implementation of the Agilent ChemStation with the Fluorescence Detector (G1321A/B). In these modes spectra intermittently are not collected into the data file.

The peak triggered spectra acquisition in the FLD is controlled by 2 parameters - THRS (Threshold) and PDPW (PeakDetector PeakWidth). In addition the parameter PKWD (Detector PeakWidth) only influences the filtering of the chromatogram.


1 Set the parameters THRS, PDPW and PKWD accordingly to the current chromatogram.

Best results for collecting peak triggered spectra are gathered when PDPW is 2 steps lower than PKWD, see "Peakwidth Settings" on page 134.


4 Using the Fluorescence Detector

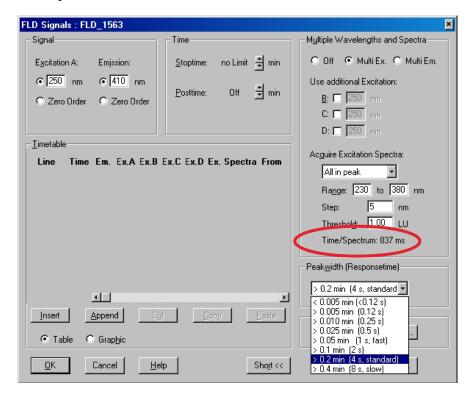
How to collect spectra with modes SPECTRA ALL IN PEAK and APEX SPECTRA ONLY

2 In the FLD's setup-screen there are 2 fields to enter the PKWD **Peakwidth (Responsetime)** and the THRS **Threshold** (visible when **Multi-EX** or **Multi-EM** is selected). Defaults are: PKWD = 6 (0.2 min); THRS = 5.000 LU.

The selected values are fixed during the run. Changes of PDPW are only possible using the **Peakwidth**-field in the Timetable (visible when **Multi-EX** or **Multi-EM** is selected).

NOTE

When you change PKWD you should change PDPW also. Enter in the Timetable at 0.0 min a PDPW = PKWD - 2 (e.g. PKWD = 0.2 min, PDPW = 0.05 min). In case of a longer chromatogram and peak broadening later on you can increase the PDPW-value by 1 step with an additional entry in the **Timetable**.


THRS and PDPW influence the peak-triggered spectra-acquisition. You can change THRS in the FLD's setup-screen; PDPW can only be changed with the **Peakwidth**-field in the **Timetable**.

4 Using the Fluorescence Detector

How to collect spectra with modes SPECTRA ALL IN PEAK and APEX SPECTRA ONLY

Notes:

- The peak-detection algorithm works best when a peak is reduced to 8 16 data points. The FLD collects the data points with an internal data rate of 74.08 Hz (= 13.50 ms) (1 signal only). The data reduction is only influenced by the PDPWparameter. When PDPW is too low, the peak-detector does not find a peak, instead it assumes a rising/falling baseline at begin/end of the peak. In case PDPW is too big the peak-detector assumes that the peak is noise.
- The peak-detector works online on the current chromatogram. This means that begin/apex/end of a peak is recognized with delay. Additionally the points of spectra are sequentially acquired. This means that the acquisition of wide range spectra lasts much longer than the acquisition of a short-range spectrum. When you have a fast chromatography it is nearly impossible to collect a "clean" APEX-spectra: the first/last points of the spectra are acquired before/after you have the highest concentration in the detector's cell.
- How long the acquisition of single spectra lasts is shown in the FLD's setup screen.

Solvent Information

Observe the following recommendations on the use of solvents.

- Follow recommendations for avoiding the growth of algae, see pump manuals.
- Small particles can permanently block capillaries and valves. Therefore, always filter solvents through $0.4~\mu m$ filters.
- Avoid or minimize the use of solvents that may corrode parts in the flow path. Consider specifications for the pH range given for different materials like flow cells, valve materials etc. and recommendations in subsequent sections.

Material Information

Materials in the flow path are carefully selected based on Agilent's experiences in developing highest quality instruments for HPLC analysis over several decades. These materials exhibit excellent robustness under typical HPLC conditions. For any special conditions, please consult the material information section or contact Agilent.

Disclaimer

Subsequent data were collected from external resources and are meant as a reference. Agilent cannot guarantee the correctness and completeness of such information. Data is based on compatibility libraries, which are not specific for estimating the long-term life time under specific but highly variable conditions of UHPLC systems, solvents, solvent mixtures and samples. Information can also not be generalized due to catalytic effects of impurities like metal ions, complexing agents, oxygen etc. Apart from pure chemical corrosion, other effects like electro corrosion, electrostatic charging (especially for non-conductive organic solvents), swelling of polymer parts etc. need to be considered. Most data available refers to room temperature (typically 20 – 25 °C, 68 – 77 °F). If corrosion is possible, it usually accelerates at higher temperatures. If in doubt, please consult technical literature on chemical compatibility of materials.

4 Using the Fluorescence Detector

Solvent Information

PEEK

PEEK (Polyether-Ether Ketones) combines excellent properties regarding biocompatibility, chemical resistance, mechanical and thermal stability. PEEK is therefore the material of choice for UHPLC and biochemical instrumentation.

It is stable in a wide pH range, and inert to many common solvents.

There is still a number of known incompatibilities with chemicals such as chloroform, methylene chloride, THF, DMSO, strong acids (nitric acid > 10 %, sulphuric acid > 10 %, sulfonic acids, trichloroacetic acid), halogenes or aequous halogene solutions, phenol and derivatives (cresols, salicylic acid etc.).

Polyimide

Agilent uses semi-crystalline polyimide for rotor seals in valves and needle seats in autosamplers. One supplier of polyimide is DuPont, which brands polyimide as Vespel, which is also used by Agilent.

Polyimide is stable in a pH range between 1 and 10 and in most organic solvents. It is incompatible with concentrated mineral acids (e.g. sulphuric acid), glacial acetic acid, DMSO and THF. It is also degraded by nucleophilic substances like ammonia (e.g. ammonium salts in basic conditions) or acetates.

Polyethylene (PE)

Agilent uses UHMW (ultra-high molecular weight)-PE/PTFE blends for yellow piston and wash seals, which are used in 1290 Infinity pumps and for normal phase applications in 1260 Infinity pumps.

Polyethylene has a good stability for most common inorganic solvents including acids and bases in a pH range of 1 to 12.5 . It is compatible to many organic solvents used in chromatographic systems like methanol, acetonitrile and isopropanol. It has limited stability with aliphatic, aromatic and halogenated hydrocarbons, THF, phenol and derivatives, concentrated acids and bases. For normal phase applications, the maximum pressure should be limited to 200 bar.

Tantalum (Ta)

Tantalum is inert to most common HPLC solvents and almost all acids except fluoric acid and acids with free sulfur trioxide. It can be corroded by strong bases (e.g. hydroxide solutions > 10 %, diethylamine). It is not recommended for the use with fluoric acid and fluorides.

Stainless Steel (ST)

Stainless steel is inert against many common solvents. It is stable in the presence of acids and bases in a pH range of 1 to 12.5. It can be corroded by acids below pH 2.3. It can also corrode in following solvents:

- Solutions of alkali halides, their respective acids (for example, lithium iodide, potassium chloride, and so on) and aqueous solutions of halogens.
- High concentrations of inorganic acids like nitric acid, sulfuric acid and
 organic solvents especially at higher temperatures (replace, if your
 chromatography method allows, by phosphoric acid or phosphate buffer
 which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

2 CHCl
$$_3$$
 + O $_2 \rightarrow$ 2 COCl $_2$ + 2 HCl

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether). Such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1 % solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.

4 Using the Fluorescence Detector

Solvent Information

Diamond-Like Carbon (DLC)

Diamond-Like Carbon is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Fused silica and Quartz (SiO₂)

Fused silica is used in 1290 Infinity Flow Cells and capillaries. Quartz is used for classical flow cell windows. It is inert against all common solvents and acids except hydrofluoric acid and acidic solvents containing fluorides. It is corroded by strong bases and should not be used above pH 12 at room temperature. The corrosion of flow cell windows can negatively affect measurement results. For a pH greater than 12, the use of flow cells with sapphire windows is recommended.

Gold

Gold is inert to all common HPLC solvents, acids and bases within the specified pH range. It can be corroded by complexing cyanides and concentrated acids like aqua regia.

Zirconium Oxide (ZrO₂)

Zirconium Oxide is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

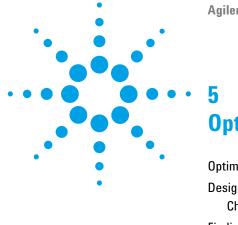
Platinum/Iridium

Platinum/Iridium is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Fluorinated polymers (PTFE, PFA, FEP, FFKM)

Fluorinated polymers like PTFE (polytetrafluorethylene), PFA (perfluoroalkoxy) and FEP (fluorinated ethylene propylene) are inert to almost all common acids, bases, and solvents. FFKM is perfluorinated rubber, which is also resistant to most chemicals. As an elastomer, it may swell in some organic solvents like halogenated hydrocarbons.

TFE/PDD copolymer tubings, which are used in all Agilent degassers except G1322A, are not compatible with fluorinated solvents like Freon, Fluorinert, or Vertrel. They have limited life time in the presence of


Hexafluoroisopropanol (HFIP). To ensure the longest possible life with HFIP, it is best to dedicate a particular chamber to this solvent, not to switch solvents, and not to let dry out the chamber. For optimizing the life of the pressure sensor, do not leave HFIP in the chamber when the unit is off.

Sapphire, Ruby and Al₂O₃-based ceramics

Sapphire, ruby and ceramics based on aluminum oxide ${\rm Al_2O_3}$ are inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

4 Using the Fluorescence Detector

Solvent Information

Optimizing the Detector

Optimization Overview 120

Design Features Help Optimization 122
Check Performance Before You Start 122

Finding the Best Wavelengths 123
A Real Example 124

Finding the Best Signal Amplification 125
FLD Scaling Range and Operating Conditions 126

Changing the Xenon Flash Lamp Frequency 131
Lamp Life Savings 132

Selecting the Best Response Time 133

Reducing Stray Light 135

This chapter provides information on how to optimize the detector.

Optimization Overview

NOTE

Some features (e.g. spectrum acquisition, multi-wavelength detection) described in this chapter are not available on the G1321C 1260 Infinity Fluorescence Detector.

NOTE

PMT Gain Test

The PMT Gain test was provided in the classic Agilent ChemStation within the settings of the FLD. It is not available in the Agilent OpenLAB CDS and G4208A Instant Pilot.

The PMT Gain test has been incorporated into in the Agilent Lab Advisor B.02.04 [093]. The PMT Gain Test can be found under **Instrument Control** > **Special Commands**.

1 Setting the right PMT value

For most applications a setting of 10 is adequate (see "Finding the Best Signal Amplification" on page 125). The FLD A/D converter exhibits a large linear range making PMT switching unnecessary for most applications. For example, if at high concentrations a peak is cut off; decrease the PMT setting. Remember that low PMT settings decrease the signal to noise ratio.

The built-in PMT gain test uses the parameters in the detector. When using the PMT gain test, the wavelength setting and lamp energy mode (depending on Multiwavelength-Mode and Lamp-Economy) will affect the PMT gain calculation.

NOTE

If you have changed one or more parameter(s), you have to press '**OK**' to write down the new settings into the FLD. Then re-enter '**FLD-Signals**' and start the PMT gain test.

2 Using an appropriate response time

For most applications a setting of 4 seconds is adequate (see "Selecting the Best Response Time" on page 133). Only for high speed analyses (short columns at high flow rates) a lower setting is recommended. Bear in mind that even if the response time is too high fast peaks will appear a little smaller and broader but retention time and peak areas are still correct and reproducible.

3 Finding the optimum wavelength

Most fluorescent active molecules absorb at 230 nm (see "Finding the Best Wavelengths" on page 123). Set the excitation wavelength to 230 nm and on-line scan the emission spectra (multi-emission mode). Then set the determined emission wavelength and perform a multi-excitation scan (multi-excitation mode) to find the best excitation wavelength.

4 Evaluating fluorescence spectra

In contrast to diode array based UV detectors where UV spectra are evaluated by taking a spectrum at the peak maximum and selecting a reference spectrum at the baseline, correct fluorescence spectra are obtained by selecting a peak maximum spectrum and a reference around the inflection points. Selecting reference spectra at the baseline is not useful because the spectrum on the baseline is very noisy (no light!).

5 Switching lamp ON only for analysis

Unless maximum sensitivity is needed, the lamp lifetime can significantly be increased by switching it on just for analysis. In contrast to other LC detectors the fluorescence detector equilibrates within seconds after the lamp is switched ON.

NOTE

For highest reproducibility and linearity change the lamp setting to always ON (default is on only during run).

One hour of initial warm-up of the instrument is recommended.

6 Do not overpressurize the detector flow cell

Be aware to not exceed a 20 bar pressure drop after the flow cell when hooking up additional devices like other detectors or a fraction collector. It's better to place a UV detector before the fluorescence detector.

NOTE

When comparing fluorescence excitation spectra directly with DAD spectra or literature based absorbance spectra, you should consider large differences in the used optical bandwidth (FLD = 20 nm) which cause a systematic wavelength maximum shift depending on the absorbance spectrum of the compound under evaluation.

Design Features Help Optimization

The module has several features you can use to optimize detection:

PMTGAIN	Amplification factor
LAMP	Flash frequency
RESPONSETIME	Data reduction interval

Check Performance Before You Start

Before you start you should check that your detector is performing according to the specifications published by Agilent Technologies.

Your normal LC grade solvents may give good results most of the time but our experience shows that baseline noise can be higher with LC grade solvents than with fluorescence grade solvents.

Flush your solvent delivery system for at least 15 minutes before checking sensitivity. If your pump has multiple channels, you should also flush the channels not in use.

Finding the Best Wavelengths

The most important parameters to be optimized in fluorescence detection are the excitation and emission wavelengths. Generally, it is assumed that the best excitation wavelength can be taken from the excitation spectrum acquired on a spectrofluorimeter. It is also assumed that once the optimal excitation wavelength has been found for one particular instrument type this wavelength can also be applied to other instruments.

Both assumptions are wrong.

The optimum wavelength for the excitation depends on the absorption of the compounds but also on the instrument characteristics, for example the lamp type and the gratings. As most organic molecules absorb best in the ultra-violet range the module was designed to give an optimum signal-to-noise ratio in the 210 nm to 360 nm range of the spectrum. To achieve greatest sensitivity, the absorbance wavelength of your sample molecule should match the wavelength range for your instrument. In other words, an excitation wavelength in the ultra-violet range. Your module has a broad excitation wavelength range, but for higher sensitivity you should choose a wavelength in the ultra-violet range (near 250 nm).

The design elements that contribute to lower efficiency in the lower ultra-violet range are the xenon flash lamp and the gratings. Flash-type lamps shift the optimum wavelength to lower wavelength ranges with the module to a maximum of 250 nm. The excitation grating is blazed for highest efficiency at 300 nm.

A Real Example

Although an excitation wavelength of 340 nm is quoted in the literature the module scan of orthophthalaldehyde, a derivative of the amino acid alanine, (Figure 48 on page 124) shows a maximum between 220 nm and 240 nm.

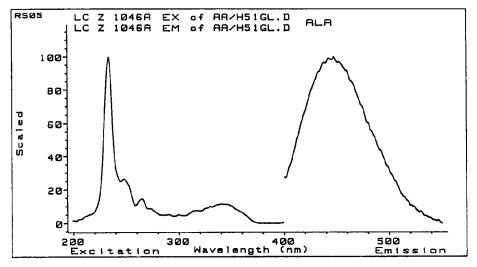


Figure 48 Scan Orthophthalaldehyde Derivative of Alanine

When you are looking for the wavelength by scanning, scan over the whole range. As this example shows a maximum may be found in a completely different wavelength range.

NOTE

When comparing fluorescence excitation spectra directly with DAD spectra or literature based absorbance spectra, you should consider large differences in the used optical bandwidth (FLD = 20 nm) which cause a systematic wavelength maximum shift depending on the absorbance spectrum of the compound under evaluation.

Finding the Best Signal Amplification

Increasing the PMTGAIN increases the signal and the noise. Up to a certain factor the increase in signal is higher than the increase in noise.

The step from gain to gain is equal to a factor of 2 (which is the same as on the HP 1046A FLD).

In Figure 49 on page 125 the PMTGAIN was gradually raised from 4 up to 11 (the peak is from the Agilent Technologies isocratic sample which was diluted 1000 times). With increasing PMTGAIN there was an improvement in signal-to-noise up to 10. Above 10 the noise increased proportionately to the signal with no improvement in signal-to-noise.

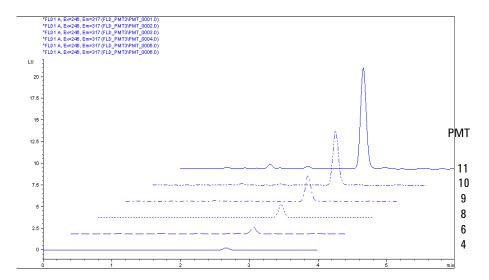


Figure 49 Finding Best PMTGAIN for Biphenyl

The reason for this is the fact, that quantification of baselines (especially at low background levels) is not sufficient for statistically working filter methods. For the best gain, check your solvent under flow conditions with the auto-gain function. Do not use higher values than proposed by the system, if not necessary, because of excessive high fluorescence signals.

Use the PMT test to automatically determine the setting.

FLD Scaling Range and Operating Conditions

When using different FLD

- The signal height of individual G1321 FLD modules may exceed the recommended signal range 0 100 LU. Under certain circumstances this could lead to clipped peaks.
- Different G1321 FLD modules show different signal heights with identical methods. This is not a problem in general but could be inconvenient when operating more than one G1321 FLD in the lab.

Both scaling issues can be resolved. Refer to "Optimize the PMT-Gain-Level" on page 126.

Optimize the PMT-Gain-Level

Start the PMT-Gain-Test with your operating conditions (used method parameter, EX-/EM-wavelength, solvent, flow rate, ...). The resulting PMT value will give you the best signal to noise performance with the maximum usable signal range for this method and this specific instrument. For another FLD this PMT level may vary (based on the individual PMT-Gain-Test).

The figure below demonstrates the impact of changing the PMT Gain.

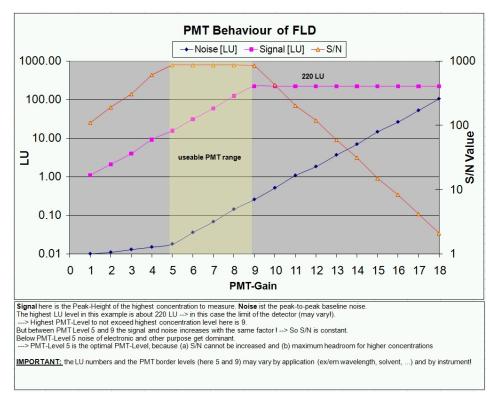


Figure 50 PMT Gain Behavior

In this example the maximum output is around 220 LU and further increase of the PMT (above 9) results in a signal overload (clipping) and drop of signal to noise value.

1 Set the PMT-Gain Level

Now check with your highest concentration amount, that your highest peak does not clip or overflow.

- If this check is ok, you finished the PMT-Gain-Level optimization. Continue with "Set your Luminescence Units in LU".
- If the check shows that the highest concentration doesn't fit to the selected range (e.g. by clipping), you may decrease the sensitivity of your FLD by gradually decreasing the PMT-Level by 1 to get roughly half the signal height by each step. Be aware that by that step you will lose sensitivity at low signal levels (LOD).

5 Optimizing the Detector

Finding the Best Signal Amplification

2 Set your Luminescence Units in LU

If you are not satisfied with the LU output level of the detector or if you want to align the output of multiple instruments with different output levels you can scale each instrument output.

The recommended setting of the G1321 FLD is around 100 LU for the highest peak height to get optimum signal to noise and signal range. Lower LU values normally do not influence the performance of the instrument if PMT-Gain Test was executed fine.

For analog out less than 100 LU is optimum to get best analog signal performance with the default attenuation of 100 LU/ 1 V. Adapt your LU setting such that your maximum signal level under default attenuation is between 50 to 80 LU (analog output equivalent to 500 mV to 800 mV).

After correct PMT Setting you can scale any instrument to your favorable LU level. We recommend not exceeding around 100 LU. The parameter of choice is called 'Scale factor' and is applicable by the local controller, the Instant Pilot (B.02.07 or later).

In case older revisions are used, the 'Scale factor' can be entered using the command line of

- Agilent ChemStation:
 PRINT SENDMODULE\$(LFLD, "DMUL x.xx")
- Instant Pilot: Service Mode FLD, then type
 DMUL x.xx and press SEND.
- LAN/RS-232 Firmware Update Tool: via Send Instruction menu:
- Agilent Lab Advisor Software: via Instruction menu:
 DMUL x.xx

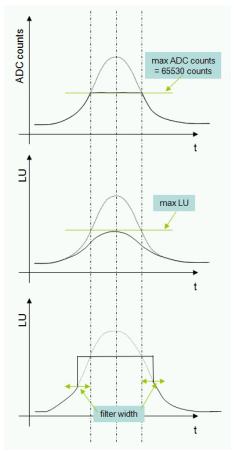
This setting is resident to the instrument even for firmware updates and is independent of the software environment.

The level of LU is no measure of instrument sensitivity! At the lowest concentration limit (limit of detection), the signal to noise (e.g. by Raman S/N Test) is the only measure that can accurately be used to compare chromatograms and results and to confirm the performance of the instrument.

For low background and highest sensitivity keep the flow cell clean and use always fresh water to prevent biological background from native fluorescence by algae and bacteria.

Visualization of ADC Limits

A new firmware (A.06.11) for the Fluorescence Detector G1321A/B has been released that includes a new feature, the "Visualization of ADC Limits".


Up to firmware A.06.10, an "ADC overflow" was not visible in the chromatogram under certain method conditions.

Overflow could be concealed by smoothing of a filter and thus not visible for the user. In the Agilent ChemStation, the "ADC overflow" event was only shown in the logbook.

This problem did only occur if the Peakwidth (Responsetime) parameter has been set similar or larger than the real width of the chromatographic peak.

5 Optimizing the Detector

Finding the Best Signal Amplification

Raw ADC counts

The measured light intensity is limited by the max range of the ADC-converter.

A filter smoothes the peak making it not clearly visible that the max intensity is reached. Also peak area and peak height are distorted which leads to poor linearity performance.

Note that "max LU" is not a fix number but depends on the intensity of the reference channel!

New implementation (with firmware A.06.11 or above)

While any sample value within the filter width is in state "ADC overflow" the max possible LU is displayed in chromatogram.

Note that "max LU" is slightly dependent on lamp drift and lamp noise but strongly dependent on the excitation wavelength.

As a result, the "ADC overflow" is visible as a real flat peak in the chromatogram showing the user, that the setting of the detector parameter (PMT gain or the concentration of the solution) is set to high.

NOTE

The transfer of methods 1:1 from one FLD to another may result into the above "ADC overflow" problem. For details see "FLD Scaling Range and Operating Conditions" on page 126"FLD Scaling Range and Operating Conditions".

Changing the Xenon Flash Lamp Frequency

Modes

The lamp flash frequency can be changed into the following modes:

Table 19 Flash Lamp Modes

Positioning	296 Hz (Standard), 560 V	63 mJ (18.8 W)
	74 Hz (Economy), 560 V	63 mJ (4.7 W)
Rotation (Multi Ex/Em)	74 Hz (Standard), 950 V	180 mJ (13.3 W)
	74 Hz (Economy), 560 V	63 mJ (4.7 W)

Best sensitivity can be expected with "no economy", see Figure 51 on page 131.

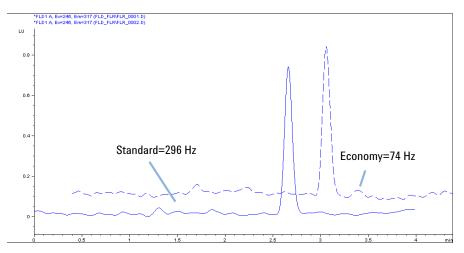


Figure 51 Xenon Flash Lamp Frequency

5 Optimizing the Detector

Changing the Xenon Flash Lamp Frequency

Lamp Life Savings

There are three ways to save lamp life:

- switch to "lamp on during run" without loss of sensitivity.
- switch to "economy" mode with a certain loss of sensitivity.
- · a combination of the above.

Selecting the Best Response Time

Selecting the Best Response Time

Data reduction using the RESPONSETIME function will increase your signal-to-noise ratio.

For example, see Figure 52 on page 133.

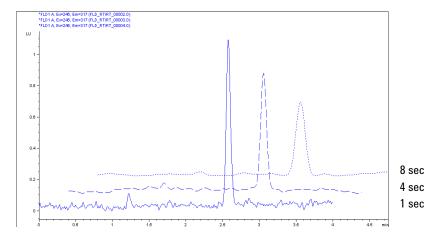


Figure 52 Finding Best Response Time

LC fluorescence detectors typically work with response times of $2\,$ or $4\,$ s. The default of the module is $4\,$ seconds. It is important to know that comparing sensitivity requires using the same response time. A response time of $4\,$ s (default) is equivalent to a time constant of $1.8\,$ s and appropriate for standard chromatographic conditions.

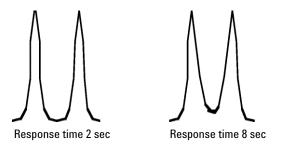


Figure 53 Separation of Peaks using Responsetime

Peakwidth Settings

NOTE

Do not use peak width shorter than necessary.

Peakwidth enables you to select the peak width (response time) for your analysis. The peak width is defined as the width of a peak, in minutes, at half the peak height. Set the peak width to the narrowest expected peak in your chromatogram. The peak width sets the optimum response time for your detector. The peak detector ignores any peaks that are considerably narrower, or wider, than the peak width setting. The response time is the time between 10 % and 90 % of the output signal in response to an input step function.

Limits: When you set the peak width (in minutes), the corresponding response time is set automatically and the appropriate data rate for signal and spectra acquisition is selected as shown in the table below.

Table 20 Peakwidth Setting

Peak Width		Data Rate				
At half height [min]	Response [sec]	Hz	ms			
> 0.0016	0.016	144.93	6.9	G1321B, K1321B (with firmware A.06.54 and above)		
< 0.003	0.03	74.07	13.5	G1321B/C, K1321B		
> 0.003	0.06	37.04	27.0			
> 0.005	0.12	37.04	27.0			
> 0.01	0.25	37.04	27.0	- - G1321A/B/C, K1321B		
> 0.025	0.5	18.52	54.0			
> 0.05	1.0	9.26	108.0			
> 0.1	2.0	4.63	216.0			
> 0.2	4.0	2.31	432.0			
> 0.4	8.0	1.16	864.0			

Reducing Stray Light

Cut-off filters are used to remove stray light and 2nd order or higher stray light by allowing complete transmission above the cut-off and little or no transmission below the cut-off point. They are used between excitation and emission gratings, to prevent any stray excitation light from reaching the photomultiplier tube, when it is measuring emission.

When the emission and excitation wavelengths are close together, the distortion due to scattering severely limits the sensitivity. When the emission wavelength is twice the excitation wavelength the 2nd order light is the limiting factor. To explain the effect of such higher order light, assume the detector is on, but no sample is eluting through the flow cell.

The lamp sends 1 million photons into the flow cell at, for example 280 nm. Scattering on the surface of the flow cell and scattering from the molecules of solvent allow 0.1 % of this light to leave the cell through the window at right angles to the incident light. Without a cut-off filter, these remaining 1000 photons will reach the emission grating. 90 % will be reflected totally without dispersion onto the photomultiplier. The other 10 % disperses at 280 nm (1st order) and at 560 nm (2nd order). To remove this stray light, you need a cut-off filter around 280 nm.

Because of a known set of applications a 295 nm cut-off filter is built-in for undisturbed application up to 560 nm without compromises (see Figure 54 on page 136).

5 Optimizing the Detector

Reducing Stray Light

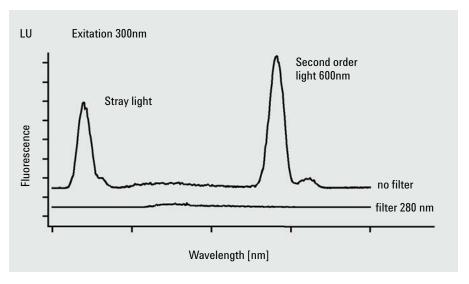
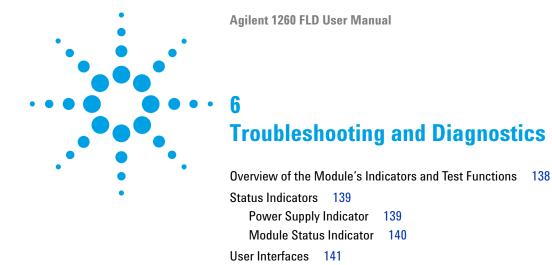



Figure 54 Reducing Stray Light

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

Agilent Lab Advisor Software 142

Overview of the Module's Indicators and Test Functions

Status Indicators

The module is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the module. The status indicators provide a quick visual check of the operation of the module.

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the module generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided (see chapter Error Information).

Test Functions

A series of test functions are available for troubleshooting and operational verification after exchanging internal components (see Tests and Calibrations).

Wavelength Recalibration

Wavelength recalibration is recommended after repair of internal components to ensure correct operation of the detector. The detector uses specific properties of the excitation and emission light characteristics (see "Wavelength Calibration Procedure" on page 177).

Status Indicators

Two status indicators are located on the front of the module. The lower left indicates the power supply status, the upper right indicates the module status.

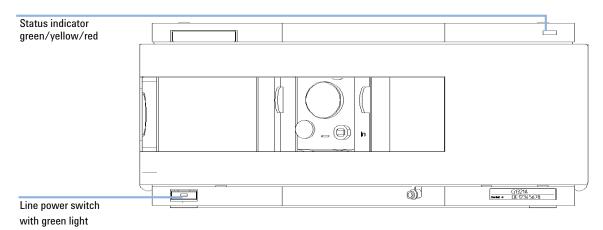


Figure 55 Location of Status Indicators

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is *ON*.

Module Status Indicator

The module status indicator indicates one of six possible module conditions:

- When the status indicator is *OFF* (and power switch light is on), the module is in a *prerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the module is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a set point), or while a self-test procedure is running.
- An error condition is indicated when the status indicator is red. An
 error condition indicates the module has detected an internal problem
 which affects correct operation of the module. Usually, an error
 condition requires attention (e.g. leak, defective internal components).
 An error condition always interrupts the analysis.
 - If the error occurs during analysis, it is propagated within the LC system, i.e. a red LED may indicate a problem of a different module. Use the status display of your user interface for finding the root cause/module of the error.
- A *blinking* indicator indicates that the module is in resident mode (e.g. during update of main firmware).
- A *fast blinking* indicator indicates that the module is in a low-level error mode. In such a case try to re-boot the module or try a cold-start (see "Special Settings" on page 242. Then try a firmware update (see "Replacing Module Firmware" on page 198). If this does not help, a main board replacement is required.

User Interfaces

Depending on the user interface the available tests vary. All test descriptions are based on the Agilent ChemStation as user interface. Some descriptions are only available in the Service Manual.

Table 21 Test Functions avaible vs. User Interface

Test	ChemStation	Instant Pilot G4208A	Lab Advisor
D/A Converter	No	No	Yes
Test Chromatogram	Yes (C)	No	Yes
Wavelength Calibration	Yes	Yes (M)	Yes
Lamp Intensity	Yes	No	Yes
Dark Current	Yes	No	Yes

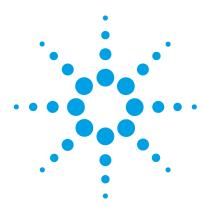
C via command

M section Maintenance

D section Diagnose

6 Troubleshooting and Diagnostics

Agilent Lab Advisor Software


Agilent Lab Advisor Software

The Agilent Lab Advisor software is a standalone product that can be used with or without data system. Agilent Lab Advisor software helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor software provides diagnostic capabilities for all Agilent 1200 Infinity Series modules. This includes diagnostic capabilities, calibration procedures and maintenance routines for all the maintenance routines.

The Agilent Lab Advisor software also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor software help files.

The Instrument Utilities is a basic version of the Lab Advisor with limited functionality required for installation, use and maintenance. No advanced repair, troubleshooting and monitoring functionality is included.

Error Information

153

7 Error Information

Agilent Lab Advisor Software

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG remote cable (see documentation for the APG interface).

General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

Probable cause

1 The analysis was completed successfully, and Check the logbook for the occurrence and source the timeout function switched off the module as requested.

2 A not-ready condition was present during a seguence or multiple-injection run for a period longer than the timeout threshold.

Suggested actions

of a not-ready condition. Restart the analysis where required.

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Probable cause

Suggested actions

1	Leak detected in another module with a CAN
	connection to the system.

2 Leak detected in an external instrument with a remote connection to the system.

3 Shut-down in an external instrument with a remote connection to the system.

4 The degasser failed to generate sufficient vacuum for solvent degassing.

N Fix the leak in the external instrument before restarting the module.

Fix the leak in the external instrument before restarting the module.

Check external instruments for a shut-down condition.

Check the vacuum degasser for an error condition. Refer to the Service Manual for the degasser or the 1260 pump that has the degasser built-in.

Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Probable cause		Suggested actions
1	Not-ready condition in one of the instruments connected to the remote line.	Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.
2	Defective remote cable.	Exchange the remote cable.
3	Defective components in the instrument showing the not-ready condition.	Check the instrument for defects (refer to the instrument's documentation).

Lost CAN Partner

Error ID: 0071

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Probable cause	Suggested actions	
1 CAN cable disconnected.	 Ensure all the CAN cables are connected correctly. 	
	Ensure all CAN cables are installed correctly.	
2 Defective CAN cable.	Exchange the CAN cable.	
3 Defective main board in another module.	Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.	

7 Error Information

General Error Messages

Leak

Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

Probable cause	Suggested actions
1 Loose fittings.	Ensure all fittings are tight.
2 Broken capillary.	Exchange defective capillaries.

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Probable cause		Suggested actions
1	Leak sensor not connected to the main board.	Please contact your Agilent service representative.
2	Defective leak sensor.	Please contact your Agilent service representative.
3	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable cause	Suggested actions
1 Defective leak sensor.	Please contact your Agilent service representative.

Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Probable cause	Suggested actions
1 Defective main board.	Please contact your Agilent service representative.

7 Error Information

General Error Messages

Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause	Suggested actions
1 Defective main board.	Please contact your Agilent service representative.

Fan Failed

Error ID: 0068

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

Probable cause		Suggested actions
1	Fan cable disconnected.	Please contact your Agilent service representative.
2	Defective fan.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Detector Error Messages

Lamp Cover Open

Error ID: 6622, 6731

The lamp cover in the optical compartment has been removed. The lamp cannot be turned on while this message is on.

Probable cause	Suggested actions
1 Lamp cover removed.	Please contact your Agilent service representative.

FLF Board not found

Error ID: 6620, 6730

The FLF board could not be found by the main board (FLM). This message comes together with some other message generated on the FLF board (e.g. Leak, ...).

Probable cause		Suggested actions
1 FLF board no	t connected to the FLM board.	Please contact your Agilent service representative.
2 Defective FL	F board.	Please contact your Agilent service representative.
3 Defective FL	M board.	Please contact your Agilent service representative.

7 Error Information

Detector Error Messages

ADC Not Calibrated

Error ID: 6621, 6732

The analog-to-digital converter located on the FLF board cannot calibrate.

Probable cause		Suggested actions
1	Defective ADC or other FLF electronics.	Please contact your Agilent service representative.

A/D Overflow

Error ID: 6618, 6619

This message is not implemented in firmware revision A.03.66 and below.

It indicates an overload situation of the A/D converter (sample signal). The user-interface will show a not-ready condition for the FLD and an info event is written into the logbook. If the message comes up during a run, it includes the time of occurrence and when it disappears.

1200 FLD 1 A/D overflow (RT is 0.32 min) 16:33:24 02/11/99

1200 FLD 1 A/D overflow finished (RT is 0.67 min)16:33:46 02/11/99

If this condition is present prior to a run, the not-ready will prevent the system to start the run/sequence.

With firmware revision A.06.11 and above, the A/D overflow leads into a flat peak in the chromatogram. For details see "Visualization of ADC Limits" on page 129.

Probable cause		Suggested actions	
1	PMT setting to high.	Reduce PMT gain.	
2	Wavelength setting wrong.	Change wavelength setting.	

Flash Lamp Current Overflow

Error ID: 6704

The lamp current of the xenon flash lamp is monitored constantly. If the current gets too high, an error is generated and the lamp is turned OFF.

Probable cause		Suggested actions
1	Short-circuit of trigger pack assembly or defective FLL board.	Please contact your Agilent service representative.
2	Short-circuit of flash lamp assembly.	Please contact your Agilent service representative.

No light at reference diode despite lamp is on

Error ID: 6721

- Revision A/B/C Front End Board (FLF):
 - There is no feedback mechanism that checks whether the lamp is ON! If no peaks are shown in the chromatogram, the user-interface shows the module still in **Ready**. Perform a "Lamp Intensity Test" (see "Lamp Intensity Test" on page 160) first. If flat use below steps.
- Revision D Front End Board (FLF):

The flashing of the xenon flash lamp is monitored constantly. If the Lamp has not flashed for more than 100 times in series, an error is generated and the lamp is turned OFF.

Probable cause	Suggested actions	
1 Defective Hardware.	Please contact your Agilent service representative.	

7 Error Information

Detector Error Messages

Flash Trigger Lost

Error ID: 6722

This message is displayed when the flash trigger is no longer generated.

Pr	obable cause	Suggested actions
1	Firmware problem.	Reboot the detector (power cycle).
2	Multi Mode Off	Please contact your Agilent service representative.
3	Defective encoder.	Please contact your Agilent service representative.

Wavelength Calibration Failed

Error ID: 6703

This message may show up during a wavelength calibration.

If the expected deviation is larger than the specified wavelength accuracy, the message "Wavelength Calibration Failed" is displayed and the instrument stays in a Not Ready condition.

Probable cause		Suggested actions
1	Flash lamp not ignited or position not correct.	Please contact your Agilent service representative.
2	Cell position not correct.	Check the cell position.
3	Solvent in the cell not clean or air bubble in the cell.	Flush the flow cell.
4	monochromator assembly position not correct (after replacement).	Please contact your Agilent service representative.

Wavelength Calibration Lost

Error ID: 6691

After exchanging the monochromator assemblies, the calibration factors should be reset to defaults values (a new FLM board comes with default values). In this case "Wavelength Calibration Lost" is displayed and the instrument stays in a Not Ready condition.

Probable cause		Suggested actions	
1	Reset of monochromator settings after exchange.	Perform a wavelength calibration.	
2	Replacement of FLM hoard	Perform a wavelength calibration.	

Flow Cell Removed

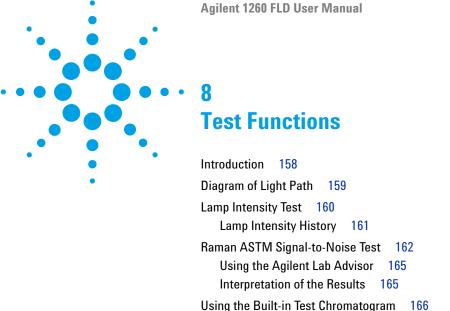
Error ID: 6616, 6702, 6760

The detector has an automatic cell recognition system. When the flow cell is removed, the lamp is turned off and a **NOT READY** condition exists. If the flow cell is removed during an analysis, a **SHUT DOWN** is generated.

Probable cause Suggested actions

1 Flow cell has been removed during analysis. Insert flow cell and turn on the lamp.

7 Error Information


Detector Error Messages

Motor Errors

NOTE

Monochromator motor errors may show up during the *initialization* or during *operation* of the detector. There are individual messages for either the excitation or the emission side. If an error occurs, do a lamp ignition. This will clear the error and a re-initialization of the motors is performed.

If motor errors are displayed, please contact your Agilent service representative.

Using the Built-in Test Chromatogram 166

Procedure Using the Agilent Lab Advisor 166

Wavelength Verification and Calibration 168

Wavelength Accuracy Test 171
Using the Agilent Lab Advisor 171
Interpretation of the Results 173

Using the Agilent ChemStation (Manually) 174

This chapter describes the detector's built in test functions.

Wavelength Calibration Procedure

8 Test Functions Introduction

Introduction

All tests are described based on the Agilent Lab Advisor Software B.02.03. Other user interfaces may not provide any test or just a few.

 Table 22
 Interfaces and available test functions

Interface	Comment	Available Function
Agilent Instrument Utilities	Maintenance tests are available	IntensityWL Calibration
Agilent Lab Advisor	All tests are available	 Intensity ASTM Drift and Noise Dark Current D/A Converter WL Accuracy WL Calibration Test Chromatogram (Tools) Spectra Scan (Tools) Module Infos (Tools) Diagnostic (Tools)
Agilent ChemStation	Some tests may be available Adding of temperature	Some of Lab Advisor tests
Agilent Instant Pilot	Some tests are available	IntensityWL CalibrationSpectra Scan (Tools)Module Infos (Tools)Diagnostic

For details on the use of the interface refer to the interface documentation.

Diagram of Light Path

The light path is shown in Figure 56 on page 159.

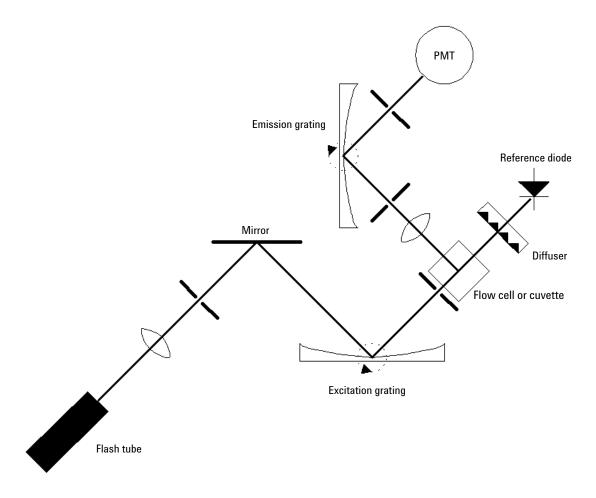


Figure 56 Schematic of the Light Path

Lamp Intensity Test

The intensity test scans an intensity spectrum via the reference diode (200 - 1200 nm in 1 nm steps) and stores it in a diagnosis buffer. The scan is displayed in a graphic window. There is no further evaluation of the test.

Results of this test are stored as lamp history (date code, intensity).

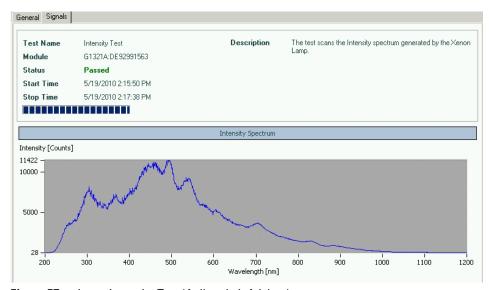


Figure 57 Lamp Intensity Test (Agilent Lab Advisor)

NOTE

The profile can vary from instrument to instrument. It is dependig on the age of the lamp and the content of the flow cell (use fresh water).

UV degradation, especially below 250 nm is significantly higher compared to visible wavelength range. Generally the "LAMP ON during run" setting or using "economy mode" will increase lamp life by a magnitude.

Lamp Intensity History

Available tables:

Results of the lamp intensity test (if the last one is older than one week) are stored as lamp history (date code, intensity of four different wavelengths, 250 nm, 350 nm, 450 and 600 nm) in a buffer. The data/plot can be retrieved via the diagnostics and provides intensity data over a length of time.

amp Intensity History					
Date	Reference Diode Counts at 250nm	Reference Diode Counts at 350nm	Reference Diode Counts at 450nm	Reference Diode Counts at 600nm	
01/28/2013 14:15	2143	2994	7166	3150	
12/17/2012 13:55	10	9	9	9	
12/17/2012 13:55	9	9	11	10	
12/17/2012 13:49	10	11	10	10	
10/29/2012 16:48	388	2120	5776	2766	
12/08/2011 10:39	88	1004	1227	935	
12/06/2011 11:31	576	2155	5532	2679	

Figure 58 Lamp Intensity History (Agilent Lab Advisor under Module Info)

Raman ASTM Signal-to-Noise Test

This test verifies the Raman ASTM signal-to-noise for the G1321 FLD detectors.

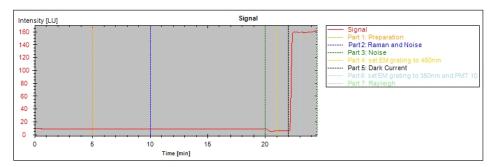


Figure 59 Raman ASTM Signal-to-Noise Test (Lab Advisor)

Depending on the version of the detector the specification has changed.

Table 23	Raman ASTM	Signal-to-Noise	Specification
----------	------------	-----------------	---------------

Instrument	SNR Specification Raman / Dark	SNR Specification Dual WL	Comment
G1321C (1260)	500 / 3000		FLF board revision D and above
G1321B (1260)	500 / 3000	300	FLF board revision D and above
G1321A (1200)	500	300	FLF board revision D and above
G1321A (1100)	400		FLF board revision B and above
G1321A (1100)	200		FLF board revision A

Conditions: Standard flow cell (G1321-60005, G5615-60005), flow of 0.25 mL/min of water.

NOTE

The Dark and Dual WL values are just additional specifications. Only the Raman value is used for the standard instrument checkout.

NOTE

The specification single wavelength at signal can be measured with the Agilent Lab Advisor. All others (not used for standard checkout) have to be set up manually with the information from Table 26 on page 163 and Table 27 on page 164.

Table 24 Raman Signal-to-Noise Test Conditions

Duration	approximately 23 minutes
Standard Flow Cell	G1321-60005, G5615-60005
Solvent	LC grade water, degassed
Flow rate	0.25 mL/min
Specification (single wavelength at signal)	>500 (according to settings in Table 25 on page 163)
Specification (single wavelength at background)	>3000 (according to settings in Table 26 on page 163)
Specification (dual wavelength)	>300 (according to settings in Table 27 on page 164)

 Table 25
 Settings for Single Wavelength Specifications (at signal)

Time	EX	EM	PMT	Baseline
0	350	397	12	Free
20.30	350	450	12	Free

 Table 26
 Settings for Single Wavelength Specifications (at background)

Time	EX	EM	PMT	Baseline
0	350	450	14	Free
20.30	350	397	14	Free

8 Test Functions

Raman ASTM Signal-to-Noise Test

EX EM PM Time EM Spectr From To Ste **Baseline** Fit Т Α В а Spectra p 0.00 350 397 450 None 280 450 10 12 Free **OFF** 0 20.3 350 450 450 280 450 10 12 Free OFF None 0

 Table 27
 Settings for Dual Wavelength Specifications (Multi-EM Scan)

Formulas for the Raman ASTM S/N value (see Figure 60 on page 164 for details):

$$SNR_Raman = \frac{mean_raman (ex = 350, em = 397) - mean_background (ex = 350, em = 450)}{noise_raman (ex = 350, em = 397)}$$

$$SNR_Dark = \frac{mean_raman (ex = 350, em = 397) - mean_background (ex = 350, em = 450)}{noise_background (ex = 350, em = 450)}$$

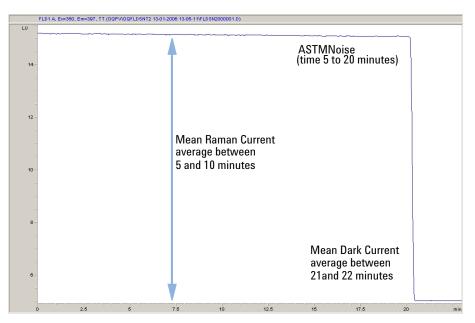


Figure 60 Raman ASTM signal/noise calculation

Using the Agilent Lab Advisor

- 1 Set up the HPLC system and the Lab Advisor.
- 2 Flush the flow cell with clean bi-distilled water.
- **3** Start the test in the Lab Advisor.

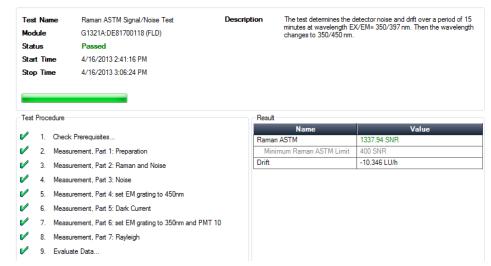


Figure 61 Raman ASTM Signal-to-Noise Test (Agilent Lab Advisor)

In case of failing this test (as shown above) see "Interpretation of the Results" on page 165.

Interpretation of the Results

If the test shows low Raman values, check for:

- correctly positioned flow cell,
- ✓ clean flow cell (flush with clean bi-distilled water),
- ✓ no air bubble(s) (check via fluorescence scan or visual check of cell/cuvette),
- ✓ solvent inlet filter (may create air bubbles in flow cell).

Using the Built-in Test Chromatogram

This function is available from the Agilent ChemStation, Lab Advisor and Instant Pilot.

The built-in Test Chromatogram can be used to check the signal path from the detector to the data system and the data analysis or via the analog output to the integrator or data system. The chromatogram is continuously repeated until a stop is executed either by means of a stop time or manually.

NOTE

The peak height is always the same but the area and the retention time depend on the set peakwidth, see example below.

Procedure Using the Agilent Lab Advisor

This procedure works for all Agilent 1200 Infinity detectors (DAD, MWD, VWD, FLD and RID). The example figure is from the RID detector.

- 1 Assure that the default LC method is loaded via the control software.
- 2 Start the Agilent Lab Advisor software (B.01.03 SP4 or later) and open the detector's **Tools** selection.
- **3** Open the test chromatogram screen

- 4 Turn the Test Chromatogram on.
- 5 Change to the detector's **Module Service Center** and add the detector signal to the Signal Plot window.

Set heater temperature Reply Module Time 35 Send RA 0000 STRT G1362A:DE91600336 5/4/2010 3:19:20 PM RA 0000 STOP G1362A:DE91600336 5/4/2010 3:24:11 PM Generic command line STOP ▾ Send Signal configuration Signal A [mAU]- G13 🔻 Add Select signal Signal A [nRIU]- G13 ▼ Remove Available signals ✓ Autoscroll Generic plot Signal A (nRtU) 120000 100000 800000 60000 40000 20000 Time [min]

6 To start a test chromatogram enter in the command line: STRT

Figure 62 Test Chromatogram with Agilent Lab Advisor

7 To stop the test chromatogram enter in the command line: STOP

NOTE

The test chromatogram is switched off automatically at the end of a run.

Wavelength Verification and Calibration

The wavelength calibration is based on a Glycogen solution, which acts as a strong elastic light scatterer (refer to ASTM Test Method E388-72-1993 "Spectral Bandwidth and Wavelength Accuracy of Fluorescence Spectrometers"). The Glycogen solution is introduced into the flow cell and then the built-in wavelength calibration functionality is used.

The algorithm is based on evaluating different grating orders and calculating the wavelength scales of both, excitation and emission monochromator, by applying the fundamental grating equation.

NOTE

A complete wavelength calibration is not always required. In most cases a quick wavelength accuracy verification is sufficient enough, see Table 28 on page 168.

 Table 28
 Reasons for doing a Verification or Calibration

	Verification	WL calibration
interest	Х	
GLP compliance	X	
cell change	X	(X)
lamp change	X	(X)
monochromator change		Х
main board change		Х
optical unit change		Х

(X) only required, if deviation is too large.

NOTE

Prior to a wavelength calibration, a wavelength accuracy verification should be performed, see "Wavelength Accuracy Test" on page 171. If the deviation is more than ±3 nm, the wavelength calibration should be done as described in "Wavelength Calibration Procedure" on page 177.

NOTE

The duration of the wavelength calibration is about 15 minutes plus setup time for the calibration sample and system. Depending on the maximum intensity found during this scan, the PMT gain will be changed automatically and requires an additional 1 minute per scan.

Table 29 on page 170 shows the steps performed during the wavelength calibration.

The excitation grating and the emission grating are calibrated using Rayleigh stray light from the flow cell or cuvette measured with the photomultiplier tube.

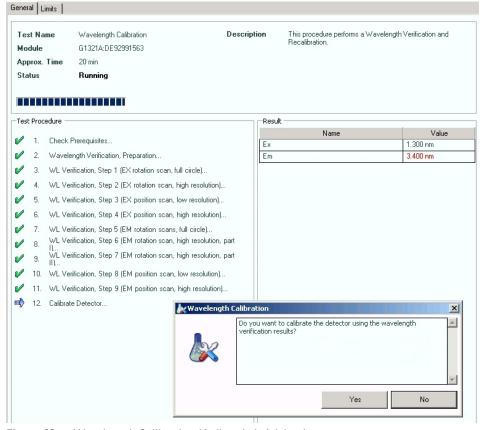


Figure 63 Wavelength Calibration (Agilent Lab Advisor)

8 Test Functions

Wavelength Verification and Calibration

 Table 29
 Wavelength Calibration Steps

Step	Description	Duration
1	Preparation	max 30 s
2	Excitation rotation scan, full circle	60 s
3	Excitation rotation scan, high resolution	44 s
4	Excitation position scan, low resolution	55 s variable
5	Excitation position scan, high resolution	260 s variable
6.n	Emission rotation scan, full circle (# of scans depends on the required PMT gain, 1 minute per scan)	61 s variable
6.n	Em rotation scan, full circle" (instrument profile)	9 s
6.n	Em rotation scan, full circle" (instrument profile)	9 s
6.n	Em rotation scan, full circle" (instrument profile)	9 s
6.n	Em rotation scan, full circle" (instrument profile)	9 s
7	Emission rotation scan, high resolution, part I	44 s
8	Emission rotation scan, high resolution, part II	44 s
9	Emission position scan, low resolution	50 s variable
10	Emission position scan, high resolution	250 s variable

NOTE

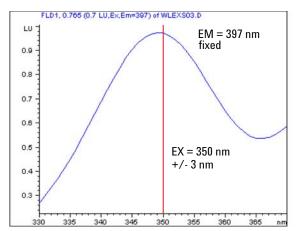
Variable times means that they could be a little bit longer.

When the lamp is off, the calibration process will stop within the first two steps with "Wavelength Calibration Failed", see "Wavelength Calibration Failed" on page 154.

If you encounter calibration problems:

- 1 Check for air bubbles in the flow cell.
- 2 Flush the flow cell with isopropanol.
- **3** Change the water.

Wavelength Accuracy Test


Using the Agilent Lab Advisor

- 1 Set up the HPLC system and the Agilent Lab Advisor.
- 2 Flush the flow cell with clean bi-distilled water.
- **3** Turn on the FLD lamp.
- 4 Run the Wavelength Accuracy Test.
- **5** The FLD will change into the multi-excitation mode with emission wavelength at 397 nm and scan in the range of the expected maximum of 350 nm±20 nm.

As result, the maxima should be found at 350 nm ±3 nm, see Figure 64 on page 171.

The FLD will change into the multi-emission mode with excitation wavelength at 350 nm and scan in the range of the expected maximum of 397 nm±20 nm.

As result, the maxima should be found at 397 nm ±3 nm, see Figure 64 on page 171.

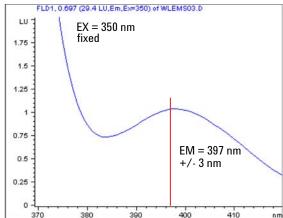


Figure 64 Excitation and Emission Spectrum (expected results)

NOTE

If the plots do not have a maximum around EM=397 nm and EX=350 nm (±3 nm) the test fails. Refer to "Interpretation of the Results" on page 173.

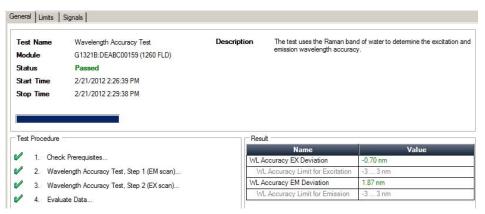


Figure 65 Wavelength Accuracy Test with Lab Advisor

If the test fails observe the maxima of the EX or EM side under the Signals tab.

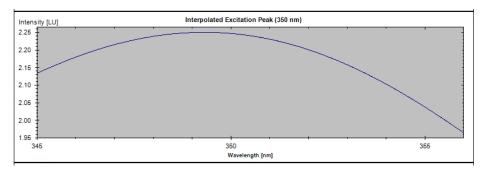


Figure 66 Example of good EX maxima

If the plots do not have a maximum around EX=397 nm and EX=350 nm (±3 nm) the test fails, see figure below. Refer to "Interpretation of the Results" on page 173.

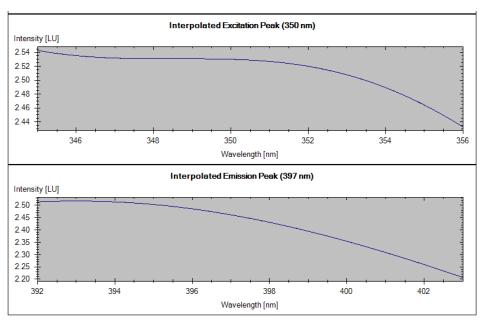
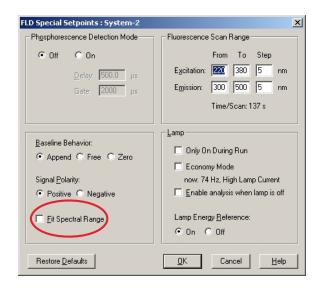
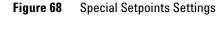


Figure 67 Example of bad EX/EM maxima (no maximum found)

Interpretation of the Results

If the test fails, check for:


- ✓ correctly positioned flow cell,
- ✓ clean flow cell (flush with isopropanol and clean bi-distilled water),
- no air bubble(s) (check via fluorescence scan or visual check of cell/cuvette),
- ✓ solvent inlet filter (may create air bubbles in flow cell).
- ✓ check optical path for contamination (service)
- ✓ check alignment of lamp / trigger pack assembly (service)
- ✓ perform a Wavelength Calibration


Using the Agilent ChemStation (Manually)

1 Create the methods WLEMTEST and WLEXTEST as listed Table 30 on page 174.

Table 30 Method Settings

Setting	Check of EM WL 397 nm WLEMTEST	Check of EX WL 350 nm WLEXTEST
Peak Width	>0.2 min (4 s, standard)	>0.2 min (4 s, standard)
Fit Spectral Range	OFF	OFF
PMT Gain	12	12
Flash Lamp	ON	ON
Spectrum Range	EM 367 - 417 nm step 1 nm	EX 330 - 380 nm step 1 nm
Store Spectra	All w/o signal	All w/o signal
EX Wavelength	350 nm, ON	350 nm, OFF
EM Wavelength	397 nm, OFF	397 nm, ON
Multi WL Settings	Multi EM	Multi EX

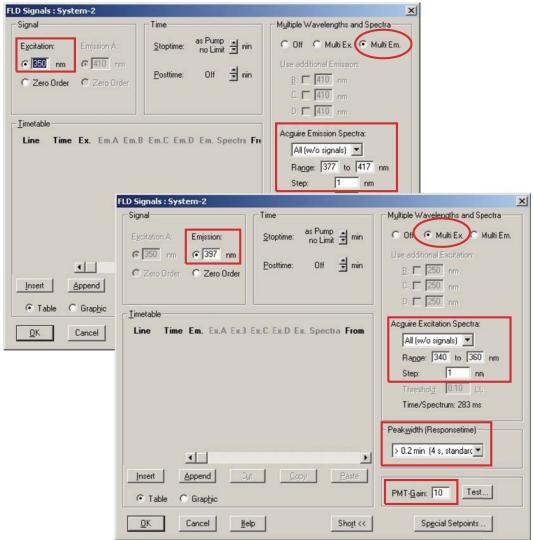


Figure 69 Settings for EM / EX Scan

8 Test Functions

Wavelength Accuracy Test

- 2 Load the method **WLEXTEST**. The FLD will change into the multi-emission mode and scan in the range of the expected maximum of 397 nm ±20 nm.
- **3** Start the pump and flush the cell with water for a few minutes to assure a clean flow cell. Flow rate should be 0.5 to 1 ml/min and the baseline stable.

NOTE

You may remove the flow cell and check for air bubbles. After re-inserting the cell, turn the lamp ON.

- **4** Open the Online Spectra plot and observe the maximum as shown in Figure 64 on page 171 (left).
- **5** Load the method **WLEMTEST**. The FLD will change into the multi-excitation mode and scan in the range of the expected maximum of 350 nm ±20 nm.
- **6** Open the Online Spectra plot and observe the maximum as shown in Figure 64 on page 171 (right).

Wavelength Calibration Procedure

When If application requires, or see Table 29 on page 170.

Tools required Description

Laboratory balance

required	

p/n	Description
5063-6597	Calibration Sample, Glycogen
9301-1446	Syringe
9301-0407	Needle
5190-5111	Syringe filter, 0.45 μ m, 100/pk
0100-1516	Fitting male PEEK, 2/pk

- 1 Preparation of the Glycogen Calibration Sample.
 - **a** To prepare 10 ml of the calibration solution you have to use 10 mg of the Glycogen sample (a tolerance of ±20% is not critical).
 - **b** Fill the prepared amount into a suitable bottle/vial.
 - **c** Fill 10 ml of distilled water into the vial and shake.
 - **d** Wait 5 minutes and shake again. After 10 minutes the solution is ready.
- **2** Preparation of the Flow Cell.
 - a Flush the flow cell with water.
 - **b** Remove the inlet capillary from the flow cell.
 - **c** Take the syringe and fix the needle to the syringe adapter.
 - **d** Suck about 1.0 ml of the calibration sample into the syringe.
 - **e** Keep the syringe in a horizontal position.
 - **f** Remove the needle.

8 Test Functions

Wavelength Calibration Procedure

g Add the filter to the syringe and fit the needle to filter.

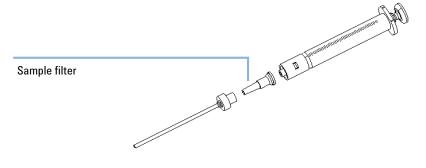


Figure 70 Syringe with Sample Filter

- **h** Lift the needle tip and carefully eject approximately 0.5 ml to remove air out of the syringe and to flush the needle.
- i Add the PEEK fitting to the needle tip and fix both at the flow cell inlet.

NOTE

Do not inject the calibration sample without the sample filter.

- j Slowly inject about 0.2 ml and wait for about 10 seconds to inject another 0.1 ml. This will assure that the cell is filled properly.
- **3** Wavelength Calibration.
 - **a** From the user interface start the FLD wavelength calibration (see Figure 73 on page 180).
 - Agilent Lab Advisor: Calibrations
 - Agilent ChemStation: Diagnosis > Maintenance > FLD Calibration
 - Instant Pilot (G4208A): Maintenance > FLD > Calibration

NOTE

If the wavelength calibration process fails, refer to "Wavelength Calibration Failed" on page 154.

b If a deviation is displayed, press Yes (Lab Advisor) to adjust to new values or Adjust and OK (ChemStation, see next page). The history table will be updated.

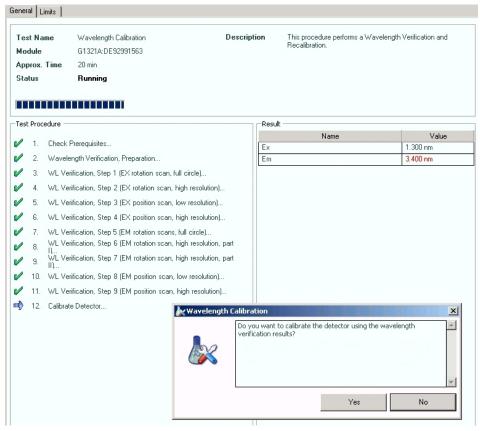


Figure 71 Wavelength Calibration (Agilent Lab Advisor)

8 Test Functions

Wavelength Calibration Procedure

	Date	Deviation of Excitation	Deviation of Emission	
	02/11/2010 12:54	0.3	-1.6	
	02/09/2010 12:22	0.0	0.0	
	02/09/2010 11:48	13.2	12.5	
	10/20/2009 10:41	-2.2	0.5	
	07/21/2009 13:41	23.2	-1.1	
	07/21/2009 12:22	0.1	0.1	
	07/21/2009 11:31	-19.7	-6.6	
	08/25/2006 12:05	-0.2	0.2	
	01/09/2006 16:02	-0.2	-0.1	
	01/09/2006 15:30	0.6	0.8	

Figure 72 Calibration History (Agilent Lab Advisor, under Module Info)

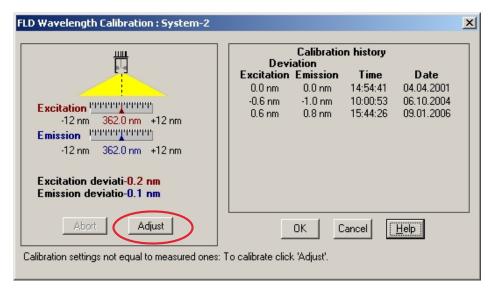
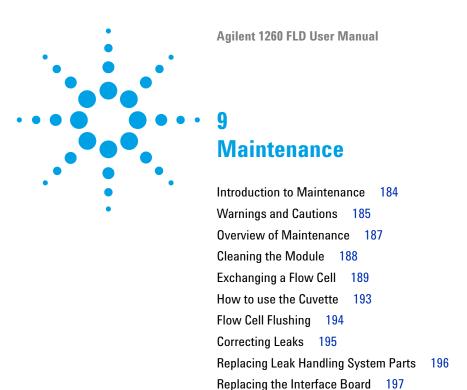


Figure 73 Wavelength Calibration (Agilent ChemStation)

NOTE

To look at the history table (ChemStation) start a wavelength calibration and abort immediately. No changes are made to the calibration at this time.


NOTE

Rinse the flow cell with pure water at a minimum of 1.5 ml/min to get rid of the Glycogen from the cell and the capillaries. When organic solvent is sequentially applied (without rinsing), a blockage of capillaries may occur.

- 4 Verification using "Wavelength Accuracy Test" on page 171.
 - a Refit the capillary to the flow cell.
 - **b** Follow the procedure "Wavelength Accuracy Test" on page 171.

8 Test Functions

Wavelength Calibration Procedure

This chapter provides general information on maintenance of the detector.

198

Replacing Module Firmware

Tests and Calibrations 199

Introduction to Maintenance

The module is designed for easy maintenance. Maintenance can be done from the front with module in place in the system stack.

NOTE

There are no serviceable parts inside.

Do not open the module.

Warnings and Cautions

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- → The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.

WARNING

Eye damage by detector light

Eye damage may result from directly viewing the UV-light produced by the lamp of the optical system used in this product.

→ Always turn the lamp of the optical system off before removing it.

WARNING

Electrical shock

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

- → Do not remove the cover of the module.
- → Only certified persons are authorized to carry out repairs inside the module.

9 Maintenance

Warnings and Cautions

WARNING

Personal injury or damage to the product

Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

→ Use your Agilent products only in the manner described in the Agilent product user guides.

CAUTION

Safety standards for external equipment

→ If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment.

Overview of Maintenance

The following pages describe maintenance (simple repairs) of the detector that can be carried out without opening the main cover.

 Table 31
 Simple Repairs

Procedure	Typical Frequency	Notes
Flow cell exchange	If application requires a different flow cell type or if defective.	Complete Assembly A wavelength calibration check should be performed after replacement.
		If the flow cell is removed and inserted, then a quick calibration check is performed. If this fails, you must do a wavelength recalibration, see "Wavelength Verification and Calibration" on page 168.
Flow cell flushing	If flow cell is contaminated.	
Leak sensor drying	If leak has occurred.	Check for leaks.
Leak handling System replacement	If broken or corroded.	Check for leaks.

9 Maintenance Cleaning the Module

Cleaning the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING

Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- → Do not use an excessively damp cloth during cleaning.
- → Drain all solvent lines before opening any connections in the flow path.

Exchanging a Flow Cell

For bio-inert modules use bio-inert parts only!

When If an application needs a different type of flow cell or the flow cell is defective (leaky).

Tools required	p/n	Description
		Wrench, 1/4 inch for capillary connections
OR	5043-0915	Fitting mounting tool for bio-inert capillaries

Parts required	#	p/n	Description
	1	G1321-60005	Flow cell, 8 μ L, 20 bar (pH 1 $-$ 9.5)
	1	G1321-60015	Flow cell, 4 μ L, 20 bar (pH 1 $-$ 9.5)
	1	G5615-60005	Bio-inert flow cell, 8 μ L, 20 bar (pH 1–12) includes Capillary Kit Flow Cells BIO (p/n G5615-68755)
	1	G1321-60007	FLD Cuvette Kit, 8 μL, 20 bar

Preparations

Turn off the flow.

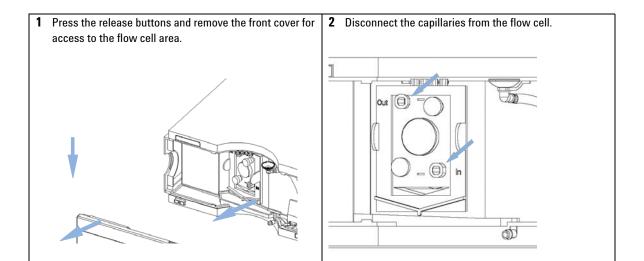
CAUTION

Sample degradation and contamination of the instrument

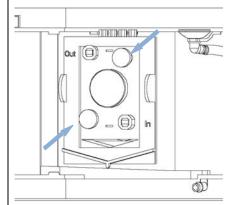
Metal parts in the flow path can interact with the bio-molecules in the sample leading to sample degradation and contamination.

- → For bio-inert applications, always use dedicated bio-inert parts, which can be identified by the bio-inert symbol or other markers described in this manual.
- → Do not mix bio-inert and non-inert modules or parts in a bio-inert system.

NOTE


DO NOT install the inlet capillary to the outlet connection of the flow cell. This will result in poor performance.

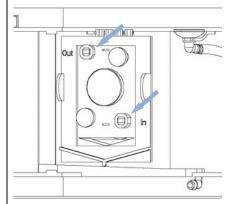
NOTE


In case the flow cell is not used for some time (stored), then flush the flow cell with iso-propanol and close the cell with Plug-Screw - Fitting (0100-1259).

9 Maintenance

Exchanging a Flow Cell

3 Unscrew the thumb screws and pull the flow cell out of the compartment.



NOTE

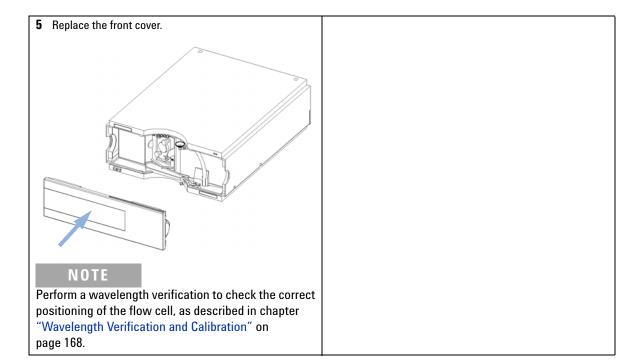
The label attached to the flow cell provides information on part number, cell volume and maximum pressure. The cell type will be automatically detected.

There are no parts that can be replaced on the flow cell. If defective (leaky) the flow cell has to be replaced completely.

4 Insert the flow cell and tighten the thumb screws. Reconnect the capillaries to the flow cell. DO NOT install the inlet capillary to the outlet connection of the flow cell. This will result in poor performance or damage.

NOTE

If an additional detector is added to the system, the fluorescence detector should be the last detector in the flow path except for evaporative detectors, like LC-MSD. Otherwise the back pressure generated by the other detector may overload the flow cell and will lead to a defective cell (maximum pressure is 20 bar (2 MPa)).


Always use the outlet capillary set supplied with the accessory kit.

NOTE

To check for leaks, establish a flow and observe the flow cell (outside of the cell compartment) and all capillary connections.

9 Maintenance

Exchanging a Flow Cell

How to use the Cuvette

The cuvette is used for off-line measurements (no flow system required) and is basically a standard flow cell with a few changes:

- · wide bore capillary connections for easier injections with a syringe
- identification lever for cell auto-recognition system.
- 1 Install the cuvette instead of the standard flow cell.
- **2** Connect the waste tubing to the outlet of the cuvette.
- 3 Use the syringe (see "Cuvette Kit" on page 203) to inject the compound.
- **4** Setup the parameters for the Fluorescence Scan (under Special Setpoints).
- **5** Select "Take Fluorescence Scan" on the user-interface to start the off-line measurement.

9 Maintenance Flow Cell Flushing

Flow Cell Flushing

When If flow cell is contaminated

Tools required Description

Glass syringe Adapter

Parts required # Description

1 Bidistilled water, nitric acid (65 %), tubings to waste

WARNING

Dangerous concentration of nitric acid

The nitric acid flushing procedure is not an infallible remedy for a dirty cell. It is to be used as a last attempt to salvage the cell before cell replacement. Note that the cell is a consumable item.

Give proper attention to safety.

NOTE

Aqueous solvents in the flow cell can built up algae. Algae do fluoresce. Therefore do not leave aqueous solvents in the flow cell for longer periods. Add a small percentage of organic solvents (e.g. Acetonitrile or Methanol \sim 5 %).

- **1** Flush with bidistilled water.
- **2** Flush with nitric acid (65 %) using a glass syringe.
- **3** Leave this solution in the cell for about one hour.
- **4** Flush with bidistilled water.

NOTE

Do not exceed the pressure limit of 20 bar (0.2 MPa).

Correcting Leaks

When If a leakage has occurred in the flow cell area or at the capillary connections

Tools required	p/n	Description
		Tissue
		Wrench, 1/4 inch for capillary connections
	5043-0915	Fitting mounting tool for bio-inert capillaries

- **1** Remove the front cover.
- 2 Use tissue to dry the leak sensor area and the leak pan.
- **3** Observe the capillary connections and the flow cell area for leaks and correct, if required.
- 4 Replace the front cover.

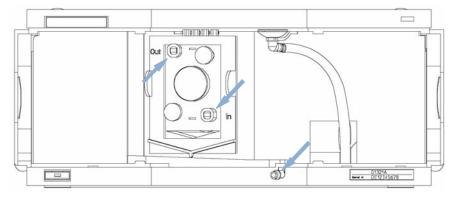


Figure 74 Observing for Leaks

Replacing Leak Handling System Parts

When	If the	f the parts are corroded or broken		
Parts required	#	p/n	Description	
	1	5041-8388	Leak funnel	
	1	5041-8389	Leak funnel holder	
1 5042-9974 Le		5042-9974	Leak tubing (1.5 m, 120 mm required)	
	1 Remove the front cover.		nt cover.	
2 Pull the leak funnel out of the leak funnel h		innel out of the leak funnel holder.		
	3 P	3 Pull out the leak funnel with the tubing.4 Insert the leak funnel with the tubing in its post		
	4 In			
	5 Insert the leak funnel into the leak funnel holder		funnel into the leak funnel holder.	

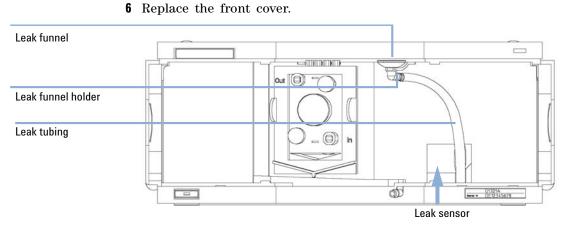


Figure 75 Replacing Leak Handling System Parts

Replacing the Interface Board

VA/I		
When	For all repairs inside the detector or for installation	i of the board

Parts required	#	p/n	Description
	1	G1351-68701	Interface board (BCD) with external contacts and BCD outputs
	1	G1369B or G1369-60002	Interface board (LAN)
OR	1	G1369C or G1369-60012	Interface board (LAN)

1 To replace the interface board unscrew the two screws, remove the board, slide in the new interface board and fix it with the board's screws.

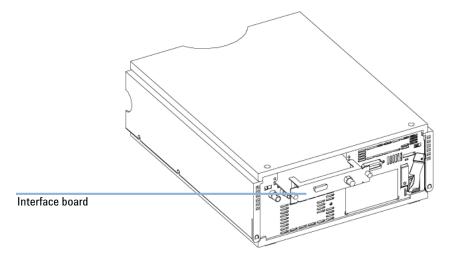


Figure 76 Location of the Interface Board

Replacing Module Firmware

When The installation of newer firmware might be necessary

- if a newer version solves problems of older versions or
- to keep all systems on the same (validated) revision.

The installation of older firmware might be necessary

- to keep all systems on the same (validated) revision or
- if a new module with newer firmware is added to a system or
- if third party control software requires a special version.

Tools required	Description
	LAN/RS-232 Firmware Update Tool
OR	Agilent Lab Advisor software

OR Instant Pilot G4208A

(only if supported by module)

Parts required # Description

1 Firmware, tools and documentation from Agilent web site

Preparations

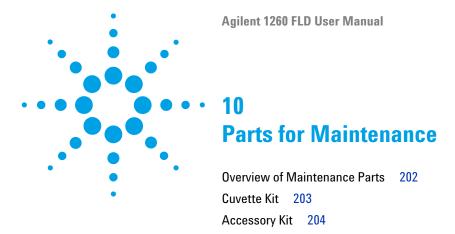
Read update documentation provided with the Firmware Update Tool.

To upgrade/downgrade the module's firmware carry out the following steps:

- 1 Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.
 - http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761
- **2** For loading the firmware into the module follow the instructions in the documentation.

Module Specific Information

There is no specific information for this module.


Tests and Calibrations

The following tests are required after maintenance of lamps and flow cells:

- "Lamp Intensity Test" on page 160.
- "Wavelength Verification and Calibration" on page 168

9 Maintenance

Tests and Calibrations

This chapter provides information on parts for maintenance.

Overview of Maintenance Parts

p/n	Description	
	G1321-60005	Flow cell, 8 μ L, 20 bar (pH 1 $-$ 9.5)
OR	G1321-60015	Flow cell, 4 µL, 20 bar (pH 1 $-$ 9.5) requires a 0.12 mm i.d. capillary (e.g. p/n G1316-87318, 300 mm long), part of Capillary kit for 0.12 mm id (p/n G1316-68716)
OR	G5615-60005	Bio-inert flow cell, 8 μL , 20 bar (pH 1–12) includes Capillary Kit Flow Cells BIO (p/n G5615-68755)
	G5615-68755	Capillary Kit Flow Cells BIO includes Capillary PK 0.18 mm x 1.5 m and PEEK Fittings 10/PK (p/n 5063-6591)
	G1321-60007	FLD Cuvette Kit, 8 µL, 20 bar
	9301-0407	Needle
	9301-1446	Syringe
	5067-4691	Front Panel DAD/VWD/FLD (1260/1290)
	5041-8388	Leak funnel
	5041-8389	Leak funnel
	5041-8387	Tube clip
	5062-2463	Corrugated tubing, PP, 6.5 mm id, 5 m
	5062-2462	Tube PTFE 0.8 mm x 2 m, re-order 5 m
	5181-1516	CAN cable, Agilent module to module, 0.5 m
	5181-1519	CAN cable, Agilent module to module, 1 m
	G1369B or G1369-60002	Interface board (LAN)
	5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
	5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)
	01046-60105	Agilent module to general purpose (Analog)
	G1351-68701	Interface board (BCD) with external contacts and BCD outputs

Parts for wavelength calibration, see "Standard Accessory Kit" on page 204.

Cuvette Kit

p/n	Description
G1321-60007	FLD Cuvette Kit, 8 μ L, 20 bar includes:
5062-2462	Tube PTFE 0.8 mm x 2 m, re-order 5 m
79814-22406	ST Fitting
0100-0043	ST front ferrule
0100-0044	ST back ferrule
0100-1516	Fitting male PEEK, 2/pk
9301-0407	Needle
9301-1446	Syringe

Accessory Kit

Standard Accessory Kit

Accessory kit (G1321-68755) contains some accessories and tools needed for the installation and repair/calibration of the detector.

ltem	p/n	Description
1	5062-2462	Tube PTFE 0.8 mm x 2 m, re-order 5 m
2	0100-1516	Fitting male PEEK, 2/pk
3	G1315-87311	Capillary ST 0.17 mm x 380 mm S/S Column to detector (includes ST ferrule front, ST ferrule back and ST fitting)
4	0100-0043	ST front ferrule
5	0100-0044	ST back ferrule
6	79814-22406	ST Fitting

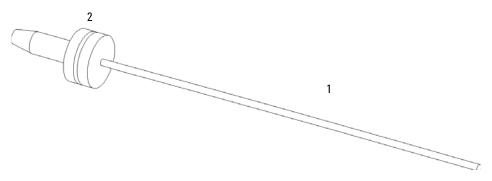


Figure 77 Waste Tubing Parts

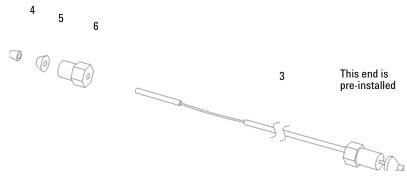
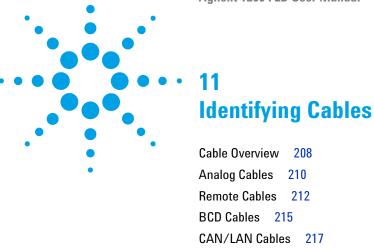


Figure 78 Inlet Capillary (Column-Detector) Parts

Capillary Kit Flow Cells BIO


Capillary Kit Flow Cells BIO includes Capillary PK 0.18~mm~x~1.5~m and PEEK Fittings 10/PK~(p/n~5063-6591)~(G5615-68755) includes:

p/n	Description
0890-1763	Capillary PK 0.18 mm x 1.5 m
5063-6591	PEEK Fittings 10/PK

10 Parts for Maintenance

Accessory Kit

External Contact Cable 218
Agilent Module to PC 219

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

11 Identifying Cables Cable Overview

Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Analog cables

p/n	Description
35900-60750	Agilent module to 3394/6 integrators
35900-60750	Agilent 35900A A/D converter
01046-60105	Analog cable (BNC to general purpose, spade lugs)

Remote cables

p/n	Description
03394-60600	Agilent module to 3396A Series I integrators
	3396 Series II $$ 3395A integrator, see details in section "Remote Cables" on page 212
03396-61010	Agilent module to 3396 Series III / 3395B integrators
5061-3378	Remote Cable
01046-60201	Agilent module to general purpose

BCD cables

p/n	Description
03396-60560	Agilent module to 3396 integrators
G1351-81600	Agilent module to general purpose

CAN cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

RS-232 cables

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

11 Identifying Cables Analog Cables

Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 3394/6 Integrators

p/n 35900-60750	Pin 3394/6	Pin Agilent module	Signal Name
	1		Not connected
	2	Shield	Analog -
	3	Center	Analog +

Agilent Module to BNC Connector

p/n 8120-1840	Pin BNC	Pin Agilent module	Signal Name
HEMA	Shield	Shield	Analog -
	Center	Center	Analog +

Agilent Module to General Purpose

p/n 01046-60105	Pin	Pin Agilent module	Signal Name
	1		Not connected
	2	Black	Analog -
	3	Red	Analog +
H			
	Z>		
	7		

Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

Agilent Module to 3396A Integrators

p/n 03394-60600	Pin 3396A	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
1 = 9	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	5,14	7 - Red	Ready	High
	1	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series II / 3395A Integrators

Use the cable Agilent module to 3396A Series I integrators (03394-60600) and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

Agilent Module to 3396 Series III / 3395B Integrators

p/n 03396-61010	Pin 33XX	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
1 • 9	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	14	7 - Red	Ready	High
	4	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to Agilent 35900 A/D Converters

o/n 5061-3378	Pin 35900 A/D	Pin Agilent module	Signal Name	Active (TTL)
	1 - White	1 - White	Digital ground	
	2 - Brown	2 - Brown	Prepare run	Low
50 00	3 - Gray	3 - Gray	Start	Low
80000	4 - Blue	4 - Blue	Shut down	Low
	5 - Pink	5 - Pink	Not connected	
	6 - Yellow	6 - Yellow	Power on	High
	7 - Red	7 - Red	Ready	High
	8 - Green	8 - Green	Stop	Low
	9 - Black	9 - Black	Start request	Low

11 Identifying Cables

Remote Cables

Agilent Module to General Purpose

p/n 01046-60201	Wire Color	Pin Agilent module	Signal Name	Active (TTL)
A O 1	White	1	Digital ground	
	Brown	2	Prepare run	Low
	Gray	3	Start	Low
	Blue	4	Shut down	Low
	Pink	5	Not connected	
	Yellow	6	Power on	High
	Red	7	Ready	High
	Green	8	Stop	Low
	Black	9	Start request	Low

BCD Cables

One end of these cables provides a 15-pin BCD connector to be connected to the Agilent modules. The other end depends on the instrument to be connected to

Agilent Module to General Purpose

p/n G1351-81600	Wire Color	Pin Agilent module	Signal Name	BCD Digit
	Green	1	BCD 5	20
	Violet	2	BCD 7	80
	Blue	3	BCD 6	40
	Yellow	4	BCD 4	10
	Black	5	BCD 0	1
	Orange	6	BCD 3	8
	Red	7	BCD 2	4
	Brown	8	BCD 1	2
	Gray	9	Digital ground	Gray
	Gray/pink	10	BCD 11	800
	Red/blue	11	BCD 10	400
	White/green	12	BCD 9	200
	Brown/green	13	BCD 8	100
	not connected	14		
	not connected	15	+ 5 V	Low

11 Identifying Cables

BCD Cables

Agilent Module to 3396 Integrators

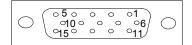
p/n 03396-60560	Pin 3396	Pin Agilent module	Signal Name	BCD Digit
8 • 15 • 0 • 0 • 0 • 0 • 9 1 • 9	1	1	BCD 5	20
	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Digital ground	
	NC	15	+ 5 V	Low

CAN/LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m


LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

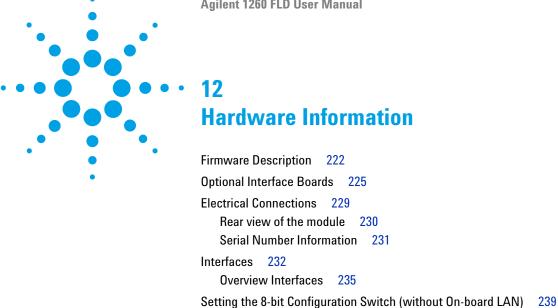
11 Identifying Cables

External Contact Cable

External Contact Cable

One end of this cable provides a 15-pin plug to be connected to Agilent modules interface board. The other end is for general purpose.

Agilent Module Interface Board to general purposes


p/n G1103-61611	Color	Pin Agilent module	Signal Name
/_	White	1	EXT 1
	Brown	2	EXT 1
	Green	3	EXT 2
	Yellow	4	EXT 2
	Grey	5	EXT 3
	Pink	6	EXT 3
	Blue	7	EXT 4
	Red	8	EXT 4
	Black	9	Not connected
	Violet	10	Not connected
	Grey/pink	11	Not connected
	Red/blue	12	Not connected
	White/green	13	Not connected
	Brown/green	14	Not connected
	White/yellow	15	Not connected

Agilent Module to PC

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

11 Identifying Cables

Agilent Module to PC

Special Settings 242 Early Maintenance Feedback 243

Instrument Layout 244

Communication Settings for RS-232C

This chapter describes the detector in more detail on hardware and electronics.

Firmware Description

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system
- · an instrument specific section, called main system

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- · memory management
- · ability to update the firmware of the 'main system'

Main System

Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- · memory management
- · ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG remote,
- · error handling,
- diagnostic functions,
- or module specific functions like
 - · internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.

Firmware Updates

Firmware updates can be done using your user interface:

· PC and Firmware Update Tool with local files on the hard disk

- **Firmware Description**
- · Instant Pilot (G4208A) with files from a USB Flash Disk
- Agilent Lab Advisor software B.01.03 and above

The file naming conventions are:

PPPP_RVVV_XXX.dlb, where

PPPP is the product number, for example, 1315AB for the G1315A/B DAD, R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 102 is revision 1.02,

XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

NOTE

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.

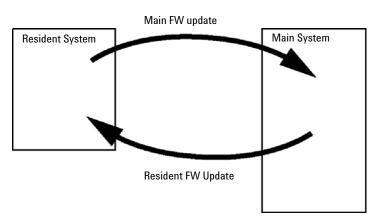


Figure 79 Firmware Update Mechanism

12 Hardware Information

Firmware Description

NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

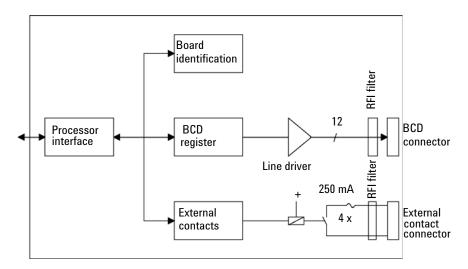
Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case the feature set of the target type are use and the feature set of the original are lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

• http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761

Optional Interface Boards


BCD / External Contact Board

The Agilent 1200 Infinity Series modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 232 for details.

Optional Interface Boards

p/n	Description
G1351-68701	Interface board (BCD) with external contacts and BCD outputs
2110-0004	Fuse for BCD board, 250 mA

The BCD board provides a BCD output for the bottle number of the Agilent 1200 Series autosampler and four external contacts. The external contact closure contacts are relay contacts. The maximum settings are: 30 V (AC/DC); 250 mA (fused).

12 Hardware Information

Optional Interface Boards

There are general purpose cables available to connect the BCD output, see "BCD Cables" on page 215 and the external outputs, see "External Contact Cable" on page 218 to external devices.

 Table 32
 Detailed connector layout (1200)

Pin	Signal name	BCD digit
1	BCD 5	20
2	BCD 7	80
3	BCD 6	40
4	BCD 4	10
5	BCD 0	1
6	BCD 3	8
7	BCD 2	4
8	BCD 1	2
9	Digital ground	
10	BCD 11	800
11	BCD 10	400
12	BCD 9	200
13	BCD 8	100
15	+5V	Low

LAN Communication Interface Board

The Agilent modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 232 for details.

p/n	Description	
	G1369B or G1369-60002	Interface board (LAN)
OR	G1369C or G1369-60012	Interface board (LAN)

NOTE

One board is required per Agilent 1260 Infinity instrument. It is recommended to add the LAN board to the detector with highest data rate.

NOTE

For the configuration of the G1369 LAN Communication Interface card refer to its documentation.

The following cards can be used with the Agilent 1260 Infinity modules.

Table 33 LAN Boards

Туре	Vendor	Supported networks
Interface board (LAN) (G1369B or G1369-60002) or Interface board (LAN) (G1369C or G1369-60012)	Agilent Technologies	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) recommended for re-ordering
LAN Communication Interface board (G1369A or G1369-60001)	Agilent Technologies	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) (obsolete)
J4106A ¹	Hewlett Packard	Ethernet/802.3, RJ-45 (10Base-T)

12 Hardware Information

Optional Interface Boards

Table 33 LAN Boards

Туре	Vendor	Supported networks
J4105A ¹	Hewlett Packard	Token Ring/802.5, DB9, RJ-45 (10Base-T)
J4100A ¹	Hewlett Packard	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) + BNC (10Base2)

These cards may be no longer orderable. Minimum firmware of these Hewlett Packard JetDirect cards is A.05.05.

Recommended LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

Electrical Connections

- The CAN bus is a serial bus with high speed data transfer. The two
 connectors for the CAN bus are used for internal module data transfer
 and synchronization.
- Two independent analog outputs provide signals for integrators or data handling.
- The interface board slot is used for external contacts and BCD bottle number output or LAN connections.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch.
- The power input socket accepts a line voltage of $100-240~\rm VAC\pm10~\%$ with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Rear view of the module

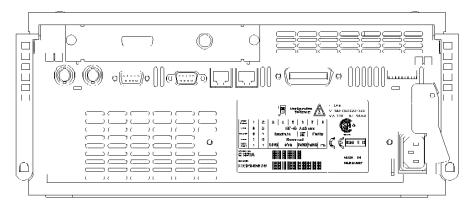


Figure 80 Rear View of Detector – Electrical Connections and Label

NOTE

The GPIB interface has been removed with the introduction of the 1260 Infinity modules.

Serial Number Information

Serial Number Information 1260 Infinity

The serial number information on the instrument labels provide the following information:

CCXZZ00000	Format
CC	Country of manufacturing DE = Germany JP = Japan CN = China
X	Alphabetic character A-Z (used by manufacturing)
ZZ	Alpha-numeric code 0-9, A-Z, where each combination unambiguously denotes a module (there can be more than one code for the same module)
00000	Serial number

Serial Number Information 1200 Series and 1290 Infinity

The serial number information on the instrument labels provide the following information:

CCYWWSSSSS	Format
CC	 country of manufacturing DE = Germany JP = Japan CN = China
YWW	year and week of last major manufacturing change, e.g. 820 could be week 20 of 1998 or 2008
SSSSS	real serial number

Interfaces

Interfaces

The Agilent 1200 Infinity Series modules provide the following interfaces:

 Table 34
 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Pumps							
G1310B Iso Pump G1311B Quat Pump G1311C Quat Pump VL G1312B Bin Pump K1312B Bin Pump Clinical Ed. G1312C Bin Pump VL 1376A Cap Pump G2226A Nano Pump G5611A Bio-inert Quat Pump	2	Yes	No	Yes	1	Yes	
G4220A/B Bin Pump G4204A Quat Pump	2	No	Yes	Yes	No	Yes	CAN-DC- OUT for CAN slaves
G1361A Prep Pump	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves
Samplers							
G1329B ALS G2260A Prep ALS	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B
G1364B FC-PS G1364C FC-AS G1364D FC-µS G1367E HiP ALS K1367E HiP ALS Clinical Ed. G1377A HiP micro ALS G2258A DL ALS G5664A Bio-inert FC-AS G5667A Bio-inert Autosampler	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B CAN-DC- OUT for CAN slaves
G4226A ALS	2	Yes	No	Yes	No	Yes	

 Table 34
 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Detectors							
G1314B VWD VL G1314C VWD VL+	2	Yes	No	Yes	1	Yes	
G1314E/F VWD K1314F Clinical Ed.	2	No	Yes	Yes	1	Yes	
G4212A/B DAD K4212B DAD Clinical Ed.	2	No	Yes	Yes	1	Yes	
G1315C DAD VL+ G1365C MWD G1315D DAD VL G1365D MWD VL	2	No	Yes	Yes	2	Yes	
G1321B FLD K1321B FLD Clinical Ed. G1321C FLD	2	Yes	No	Yes	2	Yes	
G1362A RID	2	Yes	No	Yes	1	Yes	
G4280A ELSD	No	No	No	Yes	Yes	Yes	EXT Contact AUTOZERO
Others							
G1170A Valve Drive	2	No	No	No	No	No	1
G1316A/C TCC K1316C TCC Clinical Ed.	2	No	No	Yes	No	Yes	
G1322A DEG K1322A DEG Clinical Ed.	No	No	No	No	No	Yes	AUX
G1379B DEG	No	No	No	Yes	No	Yes	
G4225A DEG K4225A DEG Clinical Ed.	No	No	No	Yes	No	Yes	

12 Hardware Information

Interfaces

 Table 34
 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
G4227A Flex Cube	2	No	No	No	No	No	CAN-DC- OUT for CAN slaves 1
G4240A CHIP CUBE	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves THERMOSTAT for G1330A/B (NOT USED), K1330B

Requires a HOST module with on-board LAN (e.g. G4212A or G4220A with minimum firmware B.06.40 or C.06.40) or with additional G1369C LAN Card

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- · CAN connectors as interface to other modules
- · LAN connector as interface to the control software
- · RS-232C as interface to a computer
- · REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output

Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for an LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flex Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

NOTE

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

RS-232C (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module at the rear of the module. Refer to *Communication Settings for RS-232C*.

NOTE

There is no configuration possible on main boards with on-board LAN. These are pre-configured for

- · 19200 baud,
- 8 data bit with no parity and
- one start bit and one stop bit are always used (not selectable).

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

 Table 35
 RS-232C Connection Table

Pin	Direction	Function
1	In	DCD
2	In	RxD
3	Out	TxD
4	Out	DTR
5		Ground
6	In	DSR
7	Out	RTS
8	In	CTS
9	In	RI

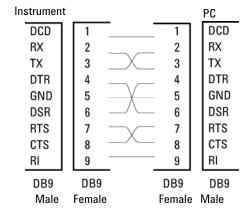


Figure 81 RS-232 Cable

Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module's main board.

Interfaces

APG Remote

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE

All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).

 Table 36
 Remote Signal Distribution

Pin	Signal	Description
1	DGND	Digital ground
2	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.
3	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.
4	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.
5		Not used
6	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.
7	READY	(H) System is ready for next analysis. Receiver is any sequence controller.
8	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.
9	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.

Special Interfaces

There is no special interface for this module.

Setting the 8-bit Configuration Switch (without On-board LAN)

The 8-bit configuration switch is located at the rear of the module.

This module does not have its own on-board LAN interface. It can be controlled through the LAN interface of another module, and a CAN connection to that module.

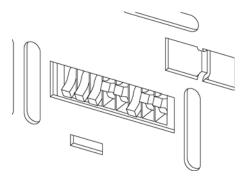


Figure 82 Configuration switch (settings depend on configured mode)

All modules without on-board LAN:

- default should be ALL DIPS DOWN (= best settings)
 - Bootp mode for LAN and
 - 19200 baud, 8 data bit / 1 stop bit with no parity for RS-232
- DIP 1 DOWN and DIP 2 UP allows special RS-232 settings
- for boot/test modes DIPS 1+2 must be UP plus required mode

NOTE

For normal operation use the default (best) settings.

Switch settings provide configuration parameters for serial communication protocol and instrument specific initialization procedures.

NOTE

With the introduction of the Agilent 1260 Infinity, all GPIB interfaces have been removed. The preferred communication is LAN.

12 Hardware Information

Setting the 8-bit Configuration Switch (without On-board LAN)

NOTE

The following tables represent the configuration switch settings for the modules without on-board LAN only.

Table 37 8-bit Configuration Switch (without on-board LAN)

Mode Select	1	2	3 4 5			6	7	8
RS-232C	0	1	Baudrate			Data Bits	Parity	
Reserved	1	0	Reserved					
TEST/B00T	1	1	RSVD SYS			RSVD	RSVD	FC

NOTE

The LAN settings are done on the LAN Interface Card G1369B/C. Refer to the documentation provided with the card.

Communication Settings for RS-232C

The communication protocol used in the column compartment supports only hardware handshake (CTS/RTR).

Switches 1 in down and 2 in up position define that the RS-232C parameters will be changed. Once the change has been completed, the column instrument must be powered up again in order to store the values in the non-volatile memory.

Table 38 Communication Settings for RS-232C Communication (without on-board LAN)

Mode Select	1	2	3	4	5	6	7	8
RS-232C	0	1		Baudrate		Data Bits	Pari	ty

Use the following tables for selecting the setting which you want to use for RS-232C communication. The number 0 means that the switch is down and 1 means that the switch is up.

	Switches		Switches Baud Rate			Switches			
3	4	5		3	4	5			
0	0	0	9600	1	0	0	9600		
0	0	1	1200	1	0	1	14400		
0	1	0	2400	1	1	0	19200		
0	1	1	4800	1	1	1	38400		

Table 39 Baudrate Settings (without on-board LAN)

Table 40 Data Bit Settings (without on-board LAN)

Switch 6	Data Word Size
0	7 Bit Communication
1	8 Bit Communication

 Table 41
 Parity Settings (without on-board LAN)

Swite	ches	Parity
7	8	
0	0	No Parity
0	1	Odd Parity
1	1	Even Parity

One start bit and one stop bit are always used (not selectable).

Per default, the module will turn into 19200 baud, 8 data bit with no parity.

Setting the 8-bit Configuration Switch (without On-board LAN)

Special Settings

The special settings are required for specific actions (normally in a service case).

Boot-Resident

Firmware update procedures may require this mode in case of firmware loading errors (main firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident mode. It is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

 Table 42
 Boot Resident Settings (without on-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	1	0	0	0

Forced Cold Start

A forced cold start can be used to bring the module into a defined mode with default parameter settings.

CAUTION

Loss of data

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are calibration settings, diagnosis and repair log books which will not be erased.

→ Save your methods and data before executing a forced cold start.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

Table 43 Forced Cold Start Settings (without on-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	0	0	0	1

Early Maintenance Feedback

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the module and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

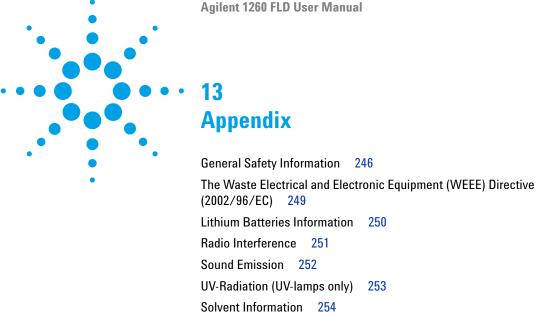
EMF Counters

EMF counters increment with use and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Some counters can be reset to zero after the required maintenance procedure.

Using the EMF Counters

The user-settable **EMF** limits for the **EMF Counters** enable the early maintenance feedback to be adapted to specific user requirements. The useful maintenance cycle is dependent on the requirements for use. Therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits


The setting of the **EMF** limits must be optimized over one or two maintenance cycles. Initially the default **EMF** limits should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by the **EMF counters**. Enter these values (or values slightly less than the displayed values) as **EMF** limits, and then reset the **EMF counters** to zero. The next time the **EMF counters** exceed the new **EMF** limits, the **EMF** flag will be displayed, providing a reminder that maintenance needs to be scheduled.

Instrument Layout

Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.

Installation of Stainless Steel Cladded PEEK Capillaries 256 First Step: Finger-tight Fitting 257

Second Step: Installation to Connector 257 Removing Capillaries 261

Agilent Technologies on Internet 262

This chapter provides safetey and other general information.

General Safety Information

Safety Symbols

 Table 44
 Safety Symbols

Symbol	Description
Δ	The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.
\$	Indicates dangerous voltages.
	Indicates a protected ground terminal.
	Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.
	The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

→ The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for

13 Appendix

General Safety Information

replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents, observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC)

Abstract

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC), adopted by EU Commission on 13 February 2003, is introducing producer responsibility on all Electric and Electronic appliances from 13 August 2005.

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control instrumentation" product.

Do not dispose off in domestic household waste

To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.

Lithium Batteries Information

WARNING

Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

- Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.
- → Replace only with the same or equivalent type recommended by the equipment manufacturer.

WARNING

Lithiumbatteri - Eksplosionsfare ved feilagtig håndtering.

Udskiftning må kun ske med batteri af samme fabrikat og type.

→ Lever det brugte batteri tilbage til leverandøren.

WARNING

Lithiumbatteri - Eksplosionsfare.

Ved udskiftning benyttes kun batteri som anbefalt av apparatfabrikanten.

Brukt batteri returneres appararleverandoren.

NOTE

Bij dit apparaat zijn batterijen geleverd. Wanneer deze leeg zijn, moet u ze niet weggooien maar inleveren als KCA.

Radio Interference

Cables supplied by Agilent Technologies are screened to provide optimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

Sound Emission

Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- · At Operator Position
- · Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

UV-Radiation (UV-lamps only)

Emissions of ultraviolet radiation (200-315 nm) from this product is limited such that radiant exposure incident upon the unprotected skin or eye of operator or service personnel is limited to the following TLVs (Threshold Limit Values) according to the American Conference of Governmental Industrial Hygienists:

Table 45 UV-Radiation Limits

Exposure/day	Effective Irradiance
8 hours	0.1 µW/cm2
10 minutes	5.0 μW/cm2

Typically the radiation values are much smaller than these limits:

Table 46 UV-Radiation Typical Values

Position	Effective Irradiance
Lamp installed, 50-cm distance	average 0.016 µW/cm2
Lamp installed, 50-cm distance	maximum 0.14 μW/cm2

Solvent Information

Flow Cell

To protect optimal functionality of your flow-cell:

- Avoid the use of alkaline solutions (pH > 9.5) which can attack quartz and thus impair the optical properties of the flow cell.
- If the flow cell is transported while temperatures are below 5 °C, it must be assured that the cell is filled with alcohol.
- · Aqueous solvents in the flow cell can built up algae. Therefore do not leave aqueous solvents sitting in the flow cell. Add a small % of organic solvents (e.g. acetonitrile or methanol ~5 %).

Use of Solvents

Observe the following recommendations on the use of solvents.

- Brown glass ware can avoid growth of algae.
- Small particles can permanently block capillaries and valves. Therefore always filter solvents through 0.4 µm filters.
- Avoid the use of the following steel-corrosive solvents:
 - Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on),
 - High concentrations of inorganic acids like sulfuric acid and nitric acid, especially at higher temperatures (if your chromatography method allows, replace by phosphoric acid or phosphate buffer which are less corrosive against stainless steel),
 - Halogenated solvents or mixtures which form radicals and/or acids, for example:

$$2\mathrm{CHCl}_3 \,+\, \mathrm{O}_2 {\longrightarrow}\, 2\mathrm{COCl}_2 \,+\, 2\mathrm{HCl}$$

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol,

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides,
- · Solvents containing strong complexing agents (e.g. EDTA),
- · Mixtures of carbon tetrachloride with 2-propanol or THF.

Installation of Stainless Steel Cladded PEEK Capillaries

NOTE

This installation procedure applies for capillaries and corresponding fittings used in modules delivered before January 2013. For current capillaries and fittings, see "Installing UHP-FF Fittings" on page 69.

The 1260 Infinity Bio-inert LC system uses PEEK capillaries that are cladded with stainless steel. These capillaries combine the high pressure stability of steel with the inertness of PEEK. They are used in the high pressure flow path after sample introduction (loop/needle seat capillary) through the thermostatted column compartment/heat exchangers to the column. Such capillaries need to be installed carefully in order to keep them tight without damaging them by over-tightening.

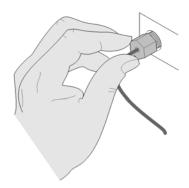
CAUTION

Handling of stainless-steel-cladded PEEK capillaries

Be careful when installing stainless-steel-cladded PEEK capillaries. The correct torque must be applied to avoid leaks potentially causing measurement problems or damage to the capillary.

→ Follow the procedure below for a correct installation

Installation procedure


The amount of force/torque needing to be applied to install the capillary depends on

- the female connector to which the capillary is installed, and whether the material of that connector is soft or hard. Compared with hard connectors, a greater tightening angle is required for soft connectors to achieve same torque.
- whether the capillary is installed for the first time or subsequent times. For the first time, a greater tightening angle needs to be applied.

The installation consists of two steps. In the first step, the fitting is installed finger-tight without using tools. Finger-tight means that the fitting will grip and hold the capillary. This brings the fitting to the appropriate start position (marked as 0 ° below) for the second step.

First Step: Finger-tight Fitting

1 Tighten the fitting using your fingers.

Second Step: Installation to Connector

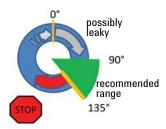
In the second step ("Second Step: Installation to Hard Connectors" on page 257 or "Second Step: Installation to Soft Connectors" on page 258), a wrench is used to rotate the fitting relative to the finger-tight position by a defined angle. For each of the cases mentioned above, there is a recommended range in which the fitting is tight.

Staying below this range could create a leak, either a visible one or a micro-leak, potentially biasing measurement results. Exceeding the recommended range could damage the capillary.

Alternatively, a torque wrench may be used. The target torque for all connections is about 0.7 Nm. When using a torque wrench, read instructions for that tool carefully, as wrong handling may easily miss the correct torque.

Second Step: Installation to Hard Connectors

Use this procedure for hard connectors made from metal (titanium) or ceramics. In the system, these are connections to and from the analytical head of the autosampler (connections to injection valve and needle), and to a metal column.


First installation of a capillary to a hard connector

1 When tightening a fitting for the first time, start from the finger-tight position (which is not necessarily a vertical wrench position) and rotate the wrench by 135 - 180°. Staying below 135° (grey arrow) will be insufficiently tight, more than 180 ° (red arrow) could damage the capillary.

Second and subsequent installations of a capillary to a hard connector

1 When tightening the fitting for the second and subsequent times, again start from the finger-tight position (which is not necessarily a vertical wrench position) and rotate the wrench by 90 - 135 °. Staying below 90 ° (grey arrow) could be insufficiently tight, more than 135 ° (red arrow) could damage the capillary.

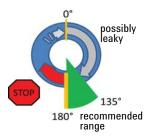
Second Step: Installation to Soft Connectors

Use this procedure for soft connectors, which are typically made from PEEK. These are the following connections:

- to and from all bio-inert valves (injection valve in the autosampler and valves in the thermostatted column compartment and 1290 Infinity Valve Drive),
- bio-inert ZDV unions (detector flow cells, multi-draw upgrade kit, capillary to capillary connections, for example, for heat exchangers),

- · to the autosampler needle and
- to PEEK columns (like many bio-inert columns).

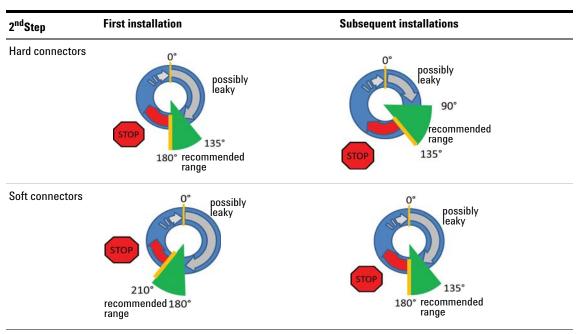
For the installation of bio-inert ZDV unions, see "Installation of the Bio-inert Zero Dead Volume (ZDV) Union" on page 73.


First installation of a capillary to a soft connector

1 When tightening a fitting for the first time, start from the finger-tight position (which does not necessarily need to be a vertical wrench position) and rotate the wrench by 180 – 210 °. Staying below 180 ° (grey arrow) will not be sufficiently tight, more than 210 ° (red arrow) could damage the capillary.

Second and subsequent installations of a capillary to a soft connector

1 When tightening the fitting for the second and subsequent times, again start from the finger-tight position (which is not necessarily a vertical wrench position) and rotate the wrench by 135 – 180 °. Staying below 135 ° (grey arrow) could be insufficiently tight enough, more than 180 ° (red arrow) could damage the capillary.



13 Appendix

Installation of Stainless Steel Cladded PEEK Capillaries

Summary for Second Step

Table 47 Summary for second step

Removing Capillaries

CAUTION

Potential damage of capillaries

Do not remove fittings from used capillaries.

To keep the flow path free of stainless steel, the front end of the capillary is made of PEEK. Under high pressure, or when in contact with some solvents, PEEK can expand to the shape of the connector where the capillary is installed. If the capillary is removed, this may become visible as a small step. In such cases, do not try to pull the fitting from the capillary, as this can destroy the front part of the capillary. Instead, carefully pull it to the rear. During installation of the capillary, the fitting will end up in the correct position.

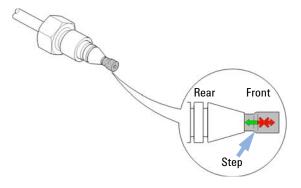


Figure 83 Capillary fitting

13 Appendix

Agilent Technologies on Internet

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

Index

8	LAN card 227	one stack 53
8-bit configuration switch		two stack 55
without On-Board LAN 239	C	cut-off filter 16
Without Off Board LATE 200	cable	cuvette
A	analog 210	how to use 193
accessory kit parts 204	BCD 215 CAN 217	D
accuracy of wavelength 40 Agilent Lab Advisor software 142 Agilent Lab Advisor 142 Agilent on internet 262	connecting APG remote 56 connecting CAN 56 connecting LAN 56 connecting the ChemStation 56 connecting the power 56	defect on arrival 50 degradation UV 18, 160 delivery checklist 51 dimensions 39
algae 254, 254 algea 194	external contact 218 LAN 217	E
ambient non-operating temperature 39 ambient operating temperature 39	remote 212 RS-232 219	electrical connections descriptions of 229
analog signal 236	cables	EMF
analog	analog 208	early maintenance feedback 243
cable 210	BCD 208	emission condenser lens 16
apg remote 237	CAN 209	emission grating 16
apg romote 207	LAN 209	emission monochromator 20
В	overview 208	emission slit 16
	remote 208	error messages
battery	RS-232 209	A/D Overflow 152
safety information 250	calibration sample 177	ADC Not Calibrated 152
BCD board	CAN	compensation sensor open 149
external contacts 225	cable 217	compensation sensor short 150
BCD 015	cautions and warnings 185	fan failed 150
cable 215	cleaning 188	Flash Lamp Current Overflow 153
bench space 38	Communication settings	Flash Trigger Lost 154
bio-inert 189	RS-232C 240	FLF Board not found 151
materials 32	compensation sensor open 149	Flow Cell Removed 155
board	compensation sensor short 150	Lamp Cover Open 151
HP JetDirect card 227	condensation 38	leak sensor open 148
boards	configuration	leak sensor short 149

Index

leak 148	Н	feedback 243
lost CAN partner 147	How the Detector Operates 12	overview 187
motor errors 156	how to use the cuvette 193	replacing firmware 198
remote timeout 147	HP JetDirect card 227	materials
shutdown 146	humidity 39	bio-inert 32
timeout 146	numidity 39	message
Wavelength Calibration Failed 154	1	A/D Overflow 152
Wavelength Calibration Lost 155	•	ADC Not Calibrated 152
excitation condenser lens 16	installation	Flash Lamp Current Overflow 153
excitation grating 16	bench space 38	Flash Trigger Lost 154
excitation monochromator 18	flow connections 64	FLF Board not found 151
excitation slit 16	of flow cell and capillaries 64	Flow Cell Removed 155
external contact	of the detector 61	Lamp Cover Open 151
cable 218	site requirements 35	motor messages 156
external contacts	instrument layout 244	remote timeout 147
BCD board 225	interfaces 232	Wavelength Calibration Failed 154
	internet 262	Wavelength Calibration Lost 155
F	Introduction to the Detector 10	method development
fan failed 150		1 - check the LC system for
features	L	impurities 83
safety and maintenance 42, 44, 48	lamp intensity history 161	2 - optimize limits of detection and selectivity 84
firmware	lamp intensity test 160	3 - set up routine methods 95
description 222	LAN	multi wavelength detection 95
main system 222	cable 217	take a fluorescence scan 85
resident system 222	communication interface board 227	mirror 16
update tool 223	leak sensor open 148	monochromator
updates 222, 198	leak sensor short 149	EM 20, 16
upgrade/downgrade 198	leak 148	EX 18, 16
flow cell 16, 20, 254		multi wavelength detection 95
solvent information 254	leaks correcting 195	mun wavelength detection 33
fluorescence and phosphorescence 13	•	N
fluorescence detection 24	line frequency 39	
frequency range 39	line voltage 39	non-operating altitude 39
front view of module 61	lithium batteries 250	non-operating temperature 39
nont view of module of	lost CAN partner 147	
G	luminescence 12	0
		off-line measurements 10
general error messages 146	M	operating Altitude 39
GLP features 42, 45, 48	maintenance	operating temperature 39
glycogen 177	definition of 184	operation of the detector 12

optical unit overview 16	recalibration of wavelength 138, 159	site requirements 35
optimization	reference diode 23	power cords 37
example 99	reference system 23, 23	solvent information 254
stack configuration 52	remote	solvents 254
	cable 212	sound emission 252
P	repairs	special interfaces 238
packaging	cautions and warnings 185	special settings
damaged 50	correction leaks 195	boot-resident 242
parts identification	exchanging a flow cell 189	forced cold start 242
accessory kit 204	of the detector 183	specification
cables 207	replacing firmware 198	physical 39
overview 202	replacing leak handling system 196	specifications
parts	replacing interface board	analog outputs 42, 44, 47
damaged 51	(BCD/LAN) 197	communications 42, 44, 47
missing 51	response time settings 134	flow cell 41, 44, 47
peakwidth settings 134	response time	GLP features 42, 45, 48
peakwidth	selecting 133	monochromators 40, 43, 46
selecting 133	responsetime 27	performance 40, 43, 46
performance specifications 40, 43, 46	RS-232C	pulse frequency 40, 43, 46
phosphorescence detection 25	cable 219	safety and maintenance 42, 44, 48
photoluminescence 12	communication settings 240	wavelength accuracy 40
photo-multiplier tube		spectra wavelength shift 121
location of PMT 16	S	stack configuration
PMT 21	safety class I 247	front view 55
physical specifications 39	safety information	rear view 56
PMT	lithium batteries 250	status indicator 140
gain test 120	safety	stray light 135
gain 125, 21	general information 247	system setup and installation
photo-multiplier tube 21	standards 39	optimizing stack configuration 52
range 27	symbols 246	
power consideration 36	selecting	T
power consumption 39	peakwidth 133	temperature sensor 148
power cords 37	response time 133	test chromatogram 166
power supply indicator 139	serial number	test functions 138, 159
power supply indicator 100	information 231, 231	tests
R	settings	functions 159
	peakwidth 134	lamp intensity history 161
radio interference 251	response time 134	lamp intensity 160
Raman S/N test 162	shutdown 146	PMT gain test 120
Raman 15		ŭ

Index

```
Raman AST S/N 162
   test chromatogram 166
timeout 146
troubleshooting
   error messages 138, 145
   status indicators 139, 138
U
unpacking 50
UV degradation 18, 160
V
voltage range 39
W
warnings and cautions 185
wavelength calibration procedure 168,
177
wavelength calibration 168
wavelength shift of spectra 121
wavelength
   recalibration 138, 159
weight 39
X
xenon flash lamp 16, 17
```

www.agilent.com

In This Book

This manual contains technical reference information about the Agilent 1260 Infinity Fluorescence Detector (G1321B SPECTRA, G1321C),and Agilent 1100/1200 Series Fluorescence Detector G1321A (obsolete).

- · introduction and specifications,
- · installation,
- · using and optimizing,
- · troubleshooting and diagnose,
- · maintenance,
- · parts identification,
- · safety and related information.

© Agilent Technologies 2010-2012, 2013

Printed in Germany 11/2013

G1321-90014 Rev. B

