

Agilent 1200 Infinity Series Variable Wavelength Detectors

Agilent Technologies

User Manual

Notices

© Agilent Technologies, Inc. 2008, 2010-2012, 2013

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G1314-90034 Rev B

Edition

11/2013

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

This product may be used as a component of an in vitro diagnostic system if the system is registered with the appropriate authorities and complies with the relevant regulations. Otherwise, it is intended only for general laboratory use.

Warranty

The material contained in this document is provided "as is," and is subiect to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide

This manual covers

- the Agilent 1290 Infinity Variable Wavelength Detector (G1314E),
- the Agilent 1260 Infinity Variable Wavelength Detector (G1314F) and
- the Agilent 1200 series Variable Wavelength Detector (G1314D) (obsolete).

Find information on other Agilent Variable Wavelength Detectors in separate manuals.

1 Introduction to the Variable Wavelength Detector

This chapter gives an introduction to the detector, instrument overview and internal connectors.

2 Site Requirements and Specifications

This chapter gives information on environmental requirements, physical and performance specifications.

3 Installing the Detector

This chapter describes the installation of the detector.

4 Using the Detector

This chapter provides information on how to set up the detector for an analysis and explains the basic settings.

5 How to optimize the detector

This chapter gives hints on how to select the detector parameters and the flow cell.

6 Troubleshooting and Diagnostics

Overview about the troubleshooting and diagnostic features.

7 Error Information

This chapter describes the meaning of detector error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

8 Test Functions

This chapter describes the detector's built in test functions.

9 Maintenance and Repair

This chapter provides general information on maintenance and repair of the detector.

10 Parts and Materials for Maintenance

This chapter provides information on parts for maintenance.

11 Identifying Cables

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

12 Hardware Information

This chapter describes the detector in more detail on hardware and electronics.

13 LAN Configuration

This chapter provides information on connecting the detector to the Agilent ChemStation PC.

14 Appendix

This chapter provides addition information on safety, legal and web.

Contents

1 Introduction to the Variable Wavelength Detector 9

Introduction to the Detector 10 Optical System Overview 11 System Overview 16

2 Site Requirements and Specifications 19

Site Requirements 20 Physical Specifications 23 Performance Specifications G1314D 24 Performance Specifications G1314E 27 Performance Specifications G1314F 30

3 Installing the Detector 33

Unpacking the Detector 34 Optimizing the Stack Configuration 36 Installation Information on Leak and Waste Handling 45 Installing the Detector 49 Flow Connections to the Detector 52

4 Using the Detector 55

Leak and Waste Handling 56 Setting up an Analysis 57 Special Settings of the Detector 71

5 How to optimize the detector 83

Optimizing the Detector Performance 84 Match the Flow Cell to the Column 85 Set the Detector Parameters 88

Contents

6 Troubleshooting and Diagnostics 89

Overview of the Detector's Indicators and Test Functions 90 Status Indicators 91 Available Tests versus Interfaces 93 Agilent Lab Advisor Software 94

7 Error Information 95

What Are Error Messages97General Error Messages98Detector Error Messages104

8 Test Functions 115

Intensity Test 116 Cell Test 118 Wavelength Verification-Calibration 120 ASTM Drift and Noise Test 122 Quick Noise Test 123 Dark Current Test 124 Holmium Oxide Test 126

9 Maintenance and Repair 129

Introduction to Maintenance 130 Warnings and Cautions 131 Overview of Maintenance 133 Cleaning the Module 134 Exchanging a Lamp 135 Exchanging a Flow Cell 138 **Repairing the Flow Cells** 140 Using the Cuvette Holder 143 Correcting Leaks 145 Replacing Leak Handling System Parts 146 Replacing the Module's Firmware 147

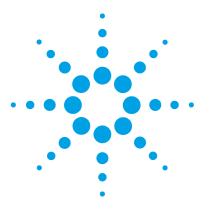
10 Parts and Materials for Maintenance 149

11 Identifying Cables 163

Cable Overview 164 Analog Cables 166 Remote Cables 168 BCD Cables 171 CAN/LAN Cables 173 RS-232 Cables 174

12 Hardware Information 175

Firmware Description 176 Electrical Connections 179 Interfaces 182 Setting the 8-bit Configuration Switch 189 Instrument Layout 193 Early Maintenance Feedback (EMF) 194


13 LAN Configuration 197

What you have to do first 198 TCP-IP parameter configuration 199 **Configuration Switches** 200 Initialization mode selection 201 Dynamic Host Configuration Protocol (DHCP) 205 Link configuration selection 208 Automatic configuration with Bootp 209 Manual Configuration 219 PC and User Interface Software Setup 225

Contents

14 Appendix 227

General Safety Information 228 Radio Interference 231 Sound Emission 232 UV Radiation 233 Solvent Information 234 Declaration of Conformity for HOX2 Filter 236 Agilent Technologies on Internet 237

Introduction to the Variable Wavelength Detector

Introduction to the Detector 10 **Optical System Overview** 11 Flow Cell 12 Lamp 13 Source Lens Assembly 13 Entrance Slit Assembly 13 Filter Assembly 14 Mirror Assemblies M1 and M2 15 Grating Assembly 15 Beam Splitter Assembly 15 Photo Diodes Assemblies 15 Photo Diode ADC (analog-to-digital converter) 15 System Overview 16 Leak and Waste Handling 16

This chapter gives an introduction to the detector, instrument overview and internal connectors.

Introduction to the Detector

The Agilent variable wavelength detectors described in this manual are designed for highest optical performance, GLP compliance and easy maintenance with:

- data rate up to 20 Hz for standard-HPLC (G1314D), see Table 10 on page 78
- higher data rate up to 80 Hz for fast-HPLC (G1314F), see Table 11 on page 78
- higher data rate up to 160 Hz for ultra-fast-HPLC (G1314E), see Table 12 on page 79
- data recovery card DRC (G1314E) gives unique "data-never-lost" insurance "Run Recovery Settings" on page 80,
- deuterium lamp for highest intensity and lowest detection limit over a wavelength range of 190 to 600 nm,
- optional flow-cell cartridges (standard 10 mm, 14 μ L; high pressure 10 mm, 14 μ L; micro 3 mm, 2 μ L; semi-micro 6 mm, 5 μ L) are available and can be used depending on the application needs (other types may be introduced later),
- · easy front access to lamp and flow cell for fast replacement,
- electronic identification of flow cell and lamp with RFID (Radio Frequency Identification) tag for unambiguous identification,
 - lamp information: part number, serial number, production date, ignitions, burn time
 - cell information: part number, serial number, production date, nominal path length, volume, maximum pressure
- built-in electronic temperature control (ETC) for improved baseline stability, and
- built-in holmium oxide filter for fast wavelength accuracy verification.

For specifications refer to Table 3 on page 24.

Optical System Overview

The optical system of the detector is shown in the figure below. Its radiation source is a deuterium-arc discharge lamp for the ultraviolet (UV) wavelength range from 190 to 600 nm. The light beam from the deuterium lamp passes through a lens, a filter assembly, an entrance slit, a spherical mirror (M1), a grating, a second spherical mirror (M2), a beam splitter, and finally through a flow cell to the sample diode. The beam through the flow cell is absorbed depending on the solutions in the cell, in which UV absorption takes place, and the intensity is converted to an electrical signal by means of the sample photodiode. Part of the light is directed to the reference photodiode by the beam splitter to obtain a reference signal for compensation of intensity fluctuation of the light source. A slit in front of the reference photodiode cuts out light of the sample bandwidth. Wavelength selection is made by rotating the grating, which is driven directly by a stepper motor. This configuration allows fast change of the wavelength. The cutoff filter is moved into the lightpath above 370 nm to reduce higher order light.

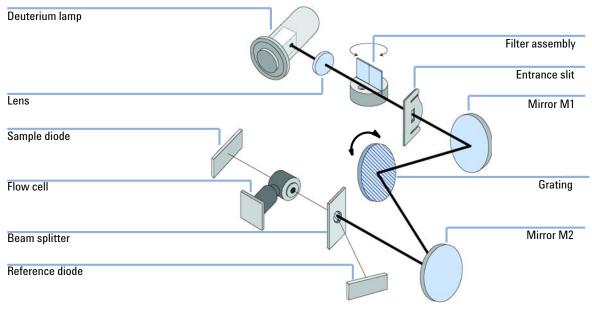


Figure 1 Optical Path of the Variable Wavelength Detector

1 Introduction to the Variable Wavelength Detector Optical System Overview

Flow Cell

A variety of flow-cell cartridges can be inserted using the same quick and simple mounting system.

The flow cells have an integrated RFID tag that contains the flow cell specific information (e.g. part number, cell volume, path length, ...). A RFID tag reader reads out this information and transfers it to the user interface.

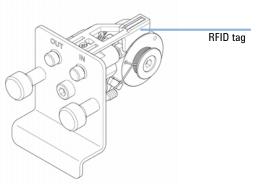


Figure 2 Flow Cell with RFID tag

	STD	Semi-micro	Micro	High Pressure	
Maximum pressure	40 (4)	40 (4)	120 (12)	400 (40)	bar
Path length	10 (conical)	6 (conical)	3 (conical)	10 (conical)	mm
Volume	14	5	2	14	μL
Inlet i.d.	0.25	0.17	0.12	0.25	mm
Inlet length	750	250	310	750	mm
Outlet i.d.	0.30	0.17	0.17	0.17	mm
Outlet length	120	120	120	120	mm
Total volume	60.77	14.49	14.00	60.77	μL
Materials in contact with solvent	SST, quartz, PTFE, PEEK	SST, quartz, PTFE	SST, quartz, PTFE	SST, quartz, Kapton	

Lamp

The light source for the UV wavelength range is a deuterium lamp. As a result of plasma discharge in a low pressure deuterium gas, the lamp emits light over the 190 - 600 nm wavelength range.

The lamp has an integrated RFID tag that contains the lamp specific information (e.g. part number, burn time, ...). A RFID tag reader reads out this information and transfers it to the user interface.

Source Lens Assembly

The source lens receives the light from the deuterium lamp and focuses it onto the entrance slit.

Entrance Slit Assembly

The entrance slit assembly has an exchangeable slit. The standard one has a 1-mm slit. For replacement and calibration purposes to optimize the alignment, a slit with a hole is needed.

Filter Assembly

The filter assembly is electromechanically actuated. During wavelength calibrations it moves into the light path.

Cutoff Filter plus Holmium Oxide Filter

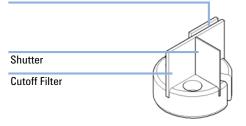


Figure 3 Filter Assemby

The filter assembly has two filters installed and is processor-controlled.

OPEN	nothing in light path at λ < 370 nm
CUTOFF	cut off filter in light path at λ > 370 nm
HOLMIU M	holmium oxide filter for wavelength check
SHUTTER	for measurement of dark current of photo diodes

A photo sensor determines the correct position.

Mirror Assemblies M1 and M2

The instrument contains two spherical mirrors (M1 and M2). The beam adjustable is vertically and horizontally. Both mirrors are identical.

Grating Assembly

The grating separates the light beam into all its component wavelengths and reflects the light onto mirror #2.

The stepper motor reference position is determined by a plate fitted onto the motor shaft, interrupting the beam of a photo sensor. The wavelength calibration of the grating is done at the zero order light position and at 656 nm, which is the emission line of the deuterium lamp.

Beam Splitter Assembly

The beam splitter splits the light beam. One part goes directly to the sample diode. The other part of the light beam goes to the reference diode.

Photo Diodes Assemblies

Two photo diode assemblies are installed in the optical unit. The sample diode assembly is located on the left side of the optical unit. The reference diode assembly is located in the front of the optical unit.

Photo Diode ADC (analog-to-digital converter)

The photo diode current is directly converted to digital data direct photo current digitalization. The data is transferred to the detector main board . The photo diode ADC boards are located close to the photo diodes. 1 Introduction to the Variable Wavelength Detector System Overview

System Overview

Leak and Waste Handling

The 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

Introduction to the Variable Wavelength Detector 1 System Overview

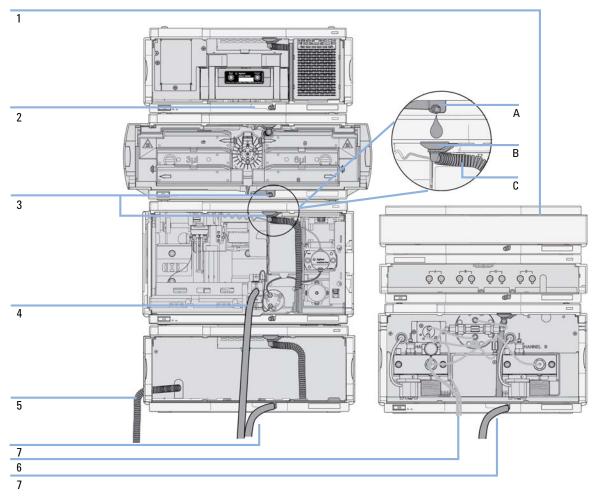
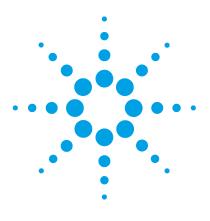


Figure 4 Leak and waste handling concept (overview - typical stack configuration as an example)

The solvent cabinet (1) is designed to store a maximum volume of 6 L solvent. The maximum volume for an individual bottle stored in the solvent cabinet should not exceed 2.5 L. For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets (a printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet).

The leak pan (2) (individually designed in each module) guides solvents to the front of the module. The concept covers also leakages on internal parts (e.g. the detector's flow cell). The leak sensor in the leak pan stops the running system as soon as the leak detection level is reached.


The leak pan's outlet port (3, A) guides excessive overfill from one module to the next, as the solvent flows into the next module's leak funnel (3, B) and the connected corrugated waste tube (3, C). The corrugated waste tube guides the solvent to the next lower positioned module's leak tray and sensor.

The waste tube of the sampler's needle wash port (4) guides solvents to waste.

The condense drain outlet of the autosampler cooler (5) guides condensate to waste.

The waste tube of the purge valve (6) guides solvents to waste.

The waste tube connected to the leak pan outlet on each of the bottom instruments (7) guides the solvent to a suitable waste container.

2 Site Requirements and Specifications

Site Requirements20Physical Specifications23Performance SpecificationsG1314D24Performance SpecificationsG1314E27Performance SpecificationsG1314F30

This chapter gives information on environmental requirements, physical and performance specifications.

2 Site Requirements and Specifications Site Requirements

Site Requirements

A suitable environment is important to ensure optimal performance of the instrument.

Power Consideration

The detector power supply has wide ranging capabilities, see "Physical Specifications" on page 23. It accepts any line voltage in the above mentioned range. Consequently, there is no voltage selector in the rear of the detector. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING Instrument is partially energized when switched off

The power supply still uses some power, even when the power switch on the front panel is turned OFF. Repair work at the detector can lead to personal injuries, e. g. shock hazard, when the detector cover is opened and the instrument is connected to power.

→ To disconnect the detector from the power line, unplug the power cord.

WARNING Hazard of electrical shock or damage of your instrumentation

can result, if the devices are connected to a line voltage higher than specified.

→ Connect your instrument to the specified line voltage only.

CAUTION

Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING

Absence of ground connection or use of unspecified power cord

The absence of ground connection or the use of unspecified power cord can lead to electric shock or short circuit.

- Never operate your instrumentation from a power outlet that has no ground connection.
- Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Unintended use of supplied power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

→ Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.

Bench Space

The detector dimensions and weight (see "Physical Specifications" on page 23) allows you to place the detector on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inch) of space on either side and approximately 8 cm (3.1 inch) in the rear for air circulation and electric connections.

If the bench should carry an Agilent 1200 Infinity Series system, make sure that the bench is designed to bear the weight of all modules.

The detector should be operated in a horizontal position.

Environment

Your detector will work within specifications at ambient temperatures and relative humidity as described in "Physical Specifications" on page 23.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1 °C/hour (1.8 °F/hour). Turbulences around one minute or less can be ignored.

CAUTION

Condensation within the module

Condensation will damage the system electronics.

- Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- → If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

Physical Specifications

Туре	Specification	Comments
Weight	11 kg (25 lbs)	
Dimensions (height × width × depth)	140 x 345 x 435 mm (5.5 x 13.5 x 17 inches)	
Line voltage	100 – 240 VAC, ± 10 %	Wide-ranging capability
Line frequency	50 or 60 Hz, ± 5 %	
Power consumption	220 VA, 85 W / 290 BTU	Maximum
Ambient operating temperature	0–55 °C (32–131 °F)	
Ambient non-operating temperature	-40 – 70 °C (-40 – 158 °F)	
Humidity	< 95 % r.h. at 40 °C (104 °F)	Non-condensing
Operating altitude	Up to 2000 m (6562 ft)	
Non-operating altitude	Up to 4600 m (15091 ft)	For storing the module
Safety standards: IEC, CSA, UL	Installation category II, Pollution degree 2	For indoor use only.

Table 2 Physical Specifications

Performance Specifications G1314D

Performance Specifications G1314D

Table 3Performance Specifications

Туре	Specification	Comments
Detection type	Double-beam photometer	
Light source	Deuterium lamp	
Wavelength range	190 – 600 nm	The UV-lamp is equipped with RFID tag that holds lamp typical information.
Short term noise	± 0.15·10 ⁻⁵ AU at 230 nm	Under specified condtions. See "Specification Conditions G1314D" on page 26 below the table.
Drift	< 1·10 ⁻⁴ AU/h at 230 nm	Under specified condtions. See "Specification Conditions G1314D" on page 26 below the table.
Linearity	> 2.5 AU (5 %) at 265 nm	Under specified condtions. See "Specification Conditions G1314D" on page 26 below the table.
Wavelength accuracy	± 1 nm	Self-calibration with deuterium lines, verification with holmium oxide filter
Maximum sampling rate	20 Hz	
Band width	6.5 nm typical	
Flow cells	Standard: 14 μL volume, 10 mm cell path length and 40 bar (588 psi) pressure maximum High pressure: 14 μL volume, cell path length and 400 bar (5880 psi) pressure maximum Micro: 2 μL volume, 3 mm cell path length and 120 bar (1760 psi) pressure maximum Semi-micro: 5 μL volume, 6 mm cell path length and 40 bar (588 psi) pressure maximum	All flow cells have RFID tags for unambitious identification. Can be repaired on component level

Туре	Specification	Comments
Electronic Temperature Control (ETC)	For improved baseline stability in instable environment.	
Control and data evaluation	Agilent ChemStation B.03.02 SR1 or above Instant Pilot (G4208A) with firmware B.02.07 or above	Control and data evaluation Control only
Time programmable	Wavelength, Reference and Sample scan, balance, steps,lamp on/off	
Spectral tools	Stop-flow wavelength scan	
Analog outputs	Recorder/integrator: 100 mV or 1 V, output range 0.001 – 2 AU, one output	
Communications	LAN card integrated on main board, Controller-area network (CAN), RS-232C, APG Remote: ready, start, stop and shut-down signals	
Safety and maintenance	Extensive diagnostics, error detection and display (through Instant Pilot and Data System), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.	
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of lamp burn time with user-settable limits and feedback messages. Electronic records of maintenance and errors. Verification of wavelength accuracy with built-in holmium oxide filter. RFID for electronics records of flow cell and UV lamp conditions (path length, volume, product number, serial number, test passed, usage)	
Housing	All materials recyclable.	

Table 3 Performance Specifications

Specification Conditions G1314D

ASTM: "Standard Practice for Variable Wavelength Photometric Detectors Used in Liquid Chromatography".

Reference conditions: Standard flow cell, path length 10 mm, flow 1 mL/min LC-grade methanol.

Noise:

 \pm 0.15·10⁻⁵ AU at 230 nm, TC 2 s

RT = 2.2 * TC

Linearity:

Linearity is measured with caffeine at 265 nm.

NOTE

The specification are based on the the standard RFID tag lamp (G1314-60101) and may be not achieved when other lamp types or aged lamps are used.

ASTM drift tests require a temperature change below 2°C/hour (3.6°F/hour) over one hour period. Our published drift specification is based on these conditions. Larger ambient temperature changes will result in larger drift.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1° C/hour (1.8°F/hour). Turbulences around one minute or less can be ignored.

Performance tests should be done with a completely warmed up optical unit (> one hour). ASTM measurements require that the detector should be turned on at least 24 hours before start of testing.

Performance Specifications G1314E

Туре	Specification	Comments
Detection type	Double-beam photometer	
Light source	Deuterium lamp	
Wavelength range	190 – 600 nm	The UV-lamp is equipped with RFID tag that holds lamp typical information.
Short term noise	± 0.15·10 ⁻⁵ AU at 230 nm	Under specified condtions. See "Specification Conditions G1314E" on page 29 below the table.
Drift	< 1·10 ⁻⁴ AU/h at 230 nm	Under specified condtions. See "Specification Conditions G1314E" on page 29 below the table.
Linearity	> 2.5 AU (5 %) at 265 nm	Under specified condtions. See "Specification Conditions G1314E" on page 29 below the table.
Wavelength accuracy	± 1 nm	Self-calibration with deuterium lines, verification with holmium oxide filter
Maximum data rate	160 Hz	
Band width	6.5 nm typical	
Flow cells	Standard: 14 μL volume, 10 mm cell path length and 40 bar (588 psi) pressure maximum High pressure: 14 μL volume, cell path length and 400 bar (5880 psi) pressure maximum Micro: 2 μL volume, 3 mm cell path length and 120 bar (1760 psi) pressure maximum Semi-micro: 5 μL volume, 6 mm cell path length and 40 bar (588 psi) pressure maximum	All flow cells have RFID tags for unambitious identification. Can be repaired on component level
Electronic Temperature Control (ETC)	For improved baseline stability in instable environment.	

Table 4 Performance Specifications G1314E

2 Site Requirements and Specifications

Performance Specifications G1314E

Туре	Specification	Comments
Control and data evaluation	Agilent ChemStation B.03.02 SR1 or above Instant Pilot (G4208A) with firmware B.02.07 or above	Control and data evaluation Control only
Time programmable	Wavelength, Reference and Sample scan, balance, steps,lamp on/off	
Spectral tools	Stop-flow wavelength scan	
Analog outputs	Recorder/integrator: 100 mV or 1 V, output range 0.001 – 2 AU, one output	
Communications	LAN card integrated on main board, Controller-area network (CAN), RS-232C, APG Remote: ready, start, stop and shut-down signals	
Safety and maintenance	Extensive diagnostics, error detection and display (through Instant Pilot and Data System), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.	
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of lamp burn time with user-settable limits and feedback messages. Electronic records of maintenance and errors. Verification of wavelength accuracy with built-in holmium oxide filter. RFID for electronics records of flow cell and UV lamp conditions (path length, volume, product number, serial number, test passed, usage)	
Housing	All materials recyclable.	

Table 4 Performance Specifications G1314E

Specification Conditions G1314E

ASTM: "Standard Practice for Variable Wavelength Photometric Detectors Used in Liquid Chromatography".

Reference conditions: Standard flow cell, path length 10 mm, flow 1 mL/min LC-grade methanol.

Noise:

 \pm 0.15·10⁻⁵ AU at 230 nm, TC 2 s

RT = 2.2 * TC

Linearity:

Linearity is measured with caffeine at 265 nm.

NOTE

The specification are based on the the standard RFID tag lamp (G1314-60101) and may be not achieved when other lamp types or aged lamps are used.

ASTM drift tests require a temperature change below 2°C/hour (3.6°F/hour) over one hour period. Our published drift specification is based on these conditions. Larger ambient temperature changes will result in larger drift.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1° C/hour (1.8°F/hour). Turbulences around one minute or less can be ignored.

Performance tests should be done with a completely warmed up optical unit (> one hour). ASTM measurements require that the detector should be turned on at least 24 hours before start of testing.

Performance Specifications G1314F

Туре	Specification	Comments
Detection type	Double-beam photometer	
Light source	Deuterium lamp	
Wavelength range	190 – 600 nm	The UV-lamp is equipped with RFID tag that holds lamp typical information.
Short term noise	± 0.25·10 ⁻⁵ AU at 230 nm	Under specified condtions. See "Specification Conditions G1314F" on page 32 below the table.
Drift	< 1·10 ⁻⁴ AU/h at 230 nm	Under specified condtions. See "Specification Conditions G1314F" on page 32 below the table.
Linearity	> 2.5 AU (5 %) at 265 nm	Under specified condtions. See "Specification Conditions G1314F" on page 32 below the table.
Wavelength accuracy	± 1 nm	Self-calibration with deuterium lines, verification with holmium oxide filter
Maximum data rate	80 Hz	
Band width	6.5 nm typical	
Flow cells	Standard: 14 μL volume, 10 mm cell path length and 40 bar (588 psi) pressure maximum High pressure: 14 μL volume, cell path length and 400 bar (5880 psi) pressure maximum Micro: 2 μL volume, 3 mm cell path length and 120 bar (1760 psi) pressure maximum Semi-micro: 5 μL volume, 6 mm cell path length and 40 bar (588 psi) pressure maximum	All flow cells have RFID tags for unambitious identification. Can be repaired on component level
Electronic Temperature Control (ETC)	For improved baseline stability in instable environment.	

Table 5 Performance Specifications G1314F

Туре	Specification	Comments
Control and data evaluation	Agilent ChemStation B.04.02 SP2 or above Instant Pilot (G4208A) with firmware B.02.11 or above	Control and data evaluation Control only
Time programmable	Wavelength, Reference and Sample scan, balance, steps,lamp on/off	
Spectral tools	Stop-flow wavelength scan	
Analog outputs	Recorder/integrator: 100 mV or 1 V, output range 0.001 – 2 AU, one output	
Communications	LAN card integrated on main board, Controller-area network (CAN), RS-232C, APG Remote: ready, start, stop and shut-down signals	
Safety and maintenance	Extensive support for troubleshooting and maintenance is provided by the Instant Pilot, Agilent Lab Advisor, and the Chromatography Data System. Safety-related features are leak detection, safe leak handling, leak output signal for shutdown of pumping system, and low voltages in major maintenance areas.	
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of lamp burn time with user-settable limits and feedback messages. Electronic records of maintenance and errors. Verification of wavelength accuracy with built-in holmium oxide filter. RFID for electronics records of flow cell and UV lamp conditions (path length, volume, product number, serial number, test passed, usage)	
Housing	All materials recyclable.	

Table 5 Performance Specifications G1314F

Specification Conditions G1314F

ASTM: "Standard Practice for Variable Wavelength Photometric Detectors Used in Liquid Chromatography".

Reference conditions: Standard flow cell, path length 10 mm, flow 1 mL/min LC-grade methanol.

Noise:

 \pm 0.25·10⁻⁵ AU at 230 nm, TC 2 s

RT = 2.2 * TC

Linearity:

Linearity is measured with caffeine at 265 nm.

NOTE

The specification are based on the the standard RFID tag lamp (G1314-60101) and may be not achieved when other lamp types or aged lamps are used.

ASTM drift tests require a temperature change below 2°C/hour (3.6°F/hour) over one hour period. Our published drift specification is based on these conditions. Larger ambient temperature changes will result in larger drift.

Better drift performance depends on better control of the temperature fluctuations. To realize the highest performance, minimize the frequency and the amplitude of the temperature changes to below 1° C/hour (1.8°F/hour). Turbulences around one minute or less can be ignored.

Performance tests should be done with a completely warmed up optical unit (> one hour). ASTM measurements require that the detector should be turned on at least 24 hours before start of testing.

Installing the Detector

Unpacking the Detector 34 Damaged Packaging 34 Delivery Checklist 35 Detector Accessory Kit Contents 35 Optimizing the Stack Configuration 36 **One Stack Configuration** 37 **Two Stack Configuration** 41 Installation Information on Leak and Waste Handling 45 Installing the Detector 49 Flow Connections to the Detector 52

This chapter describes the installation of the detector.

Unpacking the Detector

CAUTION

Condensation within the detector

Condensation will damage the system electronics.

- → Do not store, ship or use your detector under conditions where temperature fluctuations could cause condensation within the detector.
- → If your detector was shipped in cold weather, leave it in its box and allow it to warm up slowly to room temperature to avoid condensation.

Damaged Packaging

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

CAUTION

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- → Notify your Agilent sales and service office about the damage.
- → An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

Delivery Checklist

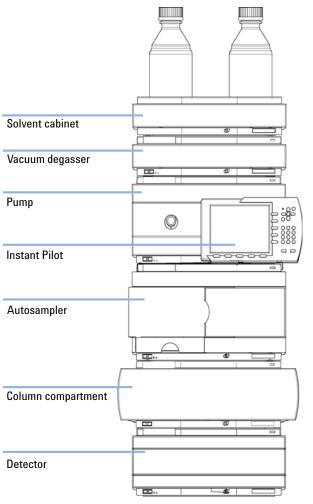
Ensure all parts and materials have been delivered with the detector. The delivery checklist is shown below. Please report missing or damaged parts to your local Agilent Technologies sales and service office.

Description	Quantity
Variable wavelength detector	1
Power cable	1
Flow cell	As ordered
<i>User Manual</i> on Documentation CD (part of the shipment - not module specific)	1 per order
Accessory kit	1
CompactFlash Card (G1314E)	1

 Table 6
 Variable Wavelength Detector Checklist

Detector Accessory Kit Contents

The module is shipped with Accessory kit (G1314-68755) (see "Accessory Kit" on page 151).


Optimizing the Stack Configuration

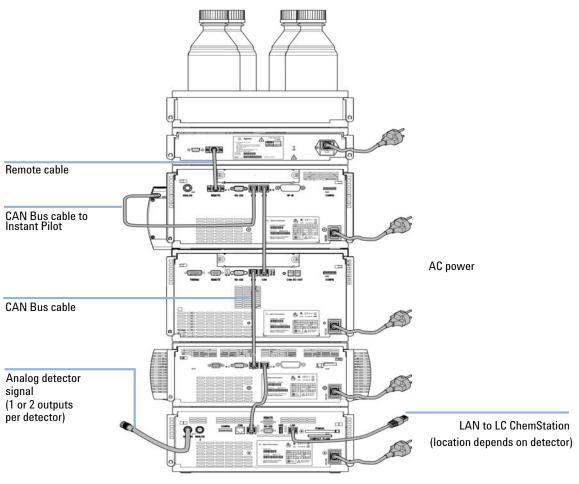
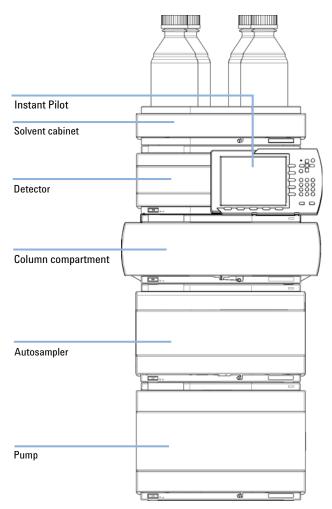
If your detector is part of a complete Agilent 1200 Infinity Series system, you can ensure optimum performance by installing the following configuration. This configuration optimizes the system flow path, ensuring minimum delay volume.

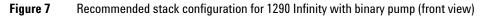
One Stack Configuration

One Stack Configuration for Agilent 1260 Infinity LC

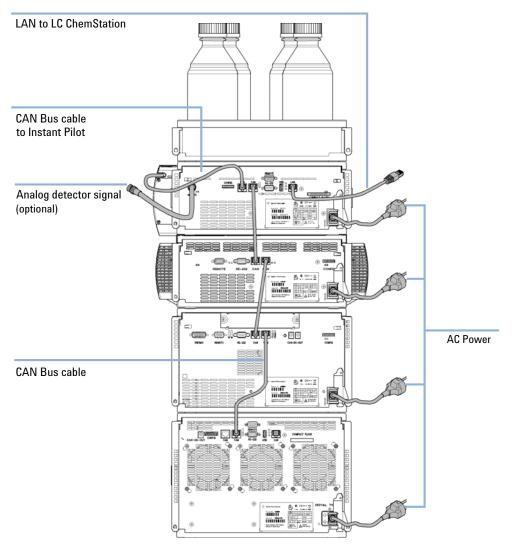
Ensure optimum performance by installing the modules of the Agilent 1260 Infinity LC System in the following configuration (See Figure 5 on page 37 and Figure 6 on page 38). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

Optimizing the Stack Configuration

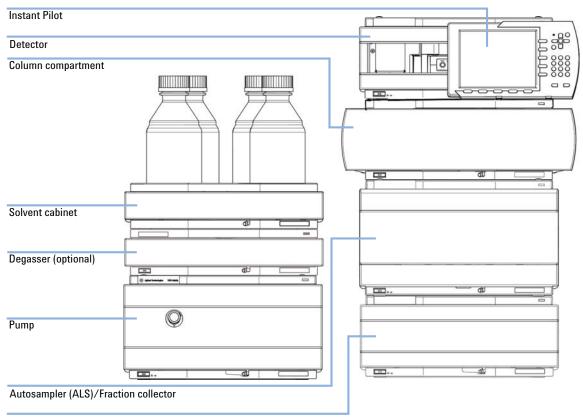

Figure 6 Recommended Stack Configuration for 1260 Infinity (Rear View)

One Stack Configuration for Agilent 1290 Infinity LC


Ensure optimum performance by installing the modules of the Agilent 1290 Infinity Binary LC System in the following configuration (See Figure 7 on page 39 and Figure 8 on page 40). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

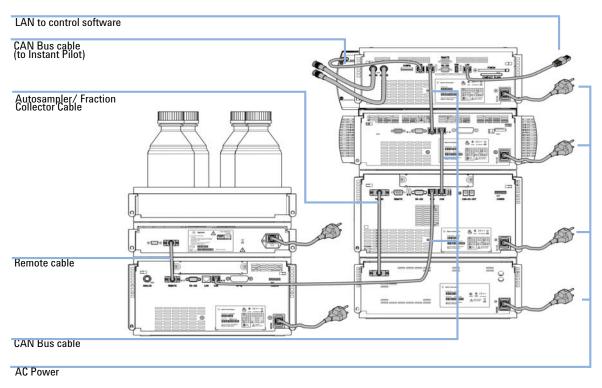
The Agilent 1290 Infinity Binary Pump should always be installed at the bottom of the stack.

Optimizing the Stack Configuration



Two Stack Configuration

Two Stack Configuration for Agilent 1260 Infinity LC


To avoid excessive height of the stack when the autosampler thermostat is added to the system it is recommended to form two stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. (See Figure 9 on page 41 and Figure 10 on page 42).

Thermostat for the ALS/Fraction collector (optional)

Optimizing the Stack Configuration

Two Stack Configuration for Agilent 1290 Infinity LC

In case the autosampler thermostat is added to the system, a two-stack configuration is recommended, which places both heavy modules (1290 Infinity pump and thermostat) at the bottom of each stack and avoids high stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. (See Figure 11 on page 43 and Figure 12 on page 44).

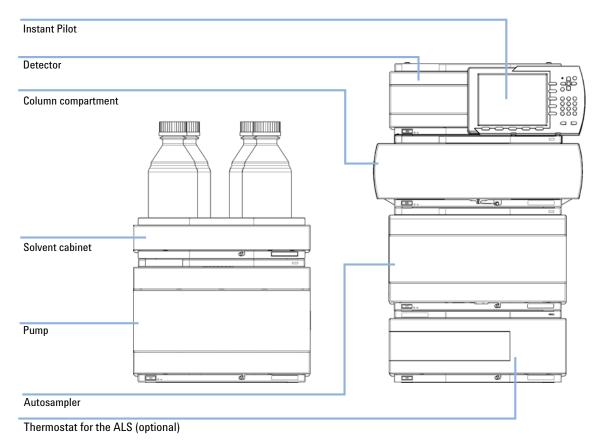
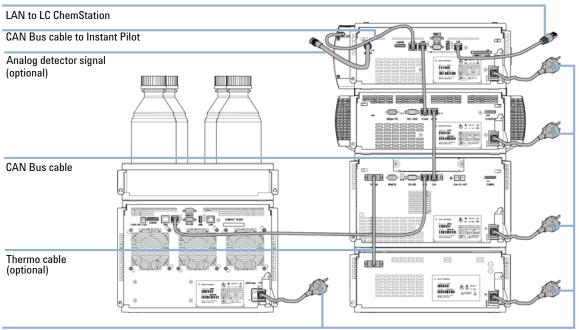



Figure 11 Recommended two stack configuration for 1290 Infinity with binary pump (front view)

Optimizing the Stack Configuration

AC Power

Figure 12 Recommended two stack configuration for 1290 Infinity with binary pump (rear view)

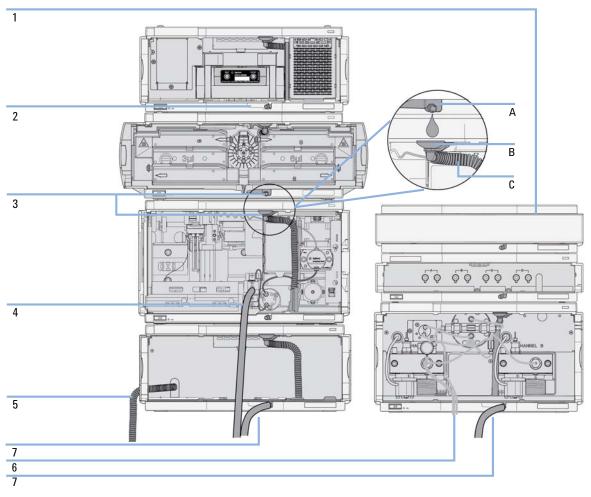
Installation Information on Leak and Waste Handling

The Agilent 1200 Infinity Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.


- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

Installation Information on Leak and Waste Handling

Figure 13 Leak and waste handling (overview - typical stack configuration as an example)

Installation Information on Leak and Waste Handling

1	Solvent cabinet
2	Leak pan
3	Leak pan's outlet port (A), leak funnel (B) and corrugated waste tube (C) $% \left(\mathcal{C} \right)$
4	Waste tube of the sampler's needle wash
5	Condense drain outlet of the autosampler cooler
6	Waste tube of the purge valve
7	Waste tube

1 Stack the modules according to the adequate stack configuration.

The leak pan outlet of the upper module must be vertically positioned above the leak tray of the lower module, see Figure 13 on page 46.

- **2** Connect data and power cables to the modules, see section *Installing the Module* below.
- **3** Connect capillaries and tubes to the modules, see section *Flow Connections to the module* below or the relevant system manual.

Toxic, flammable and hazardous solvents, samples and reagents

- → Keep solvent path free from blockages.
- Keep the flow path closed (in case the pump in the system is equipped with a passive inlet valve, solvent may leak out due to hydrostatic pressure, even if your instrument is off).
- → Avoid loops.

WARNING

- → Tubes must not sag.
- Do not bend tubes.
- → Do not immerse tube end in waste liquid.
- → Do not intubate tubes in other tubes.
- → For correct tubing follow instructions on label attached to the module.

Installation Information on Leak and Waste Handling

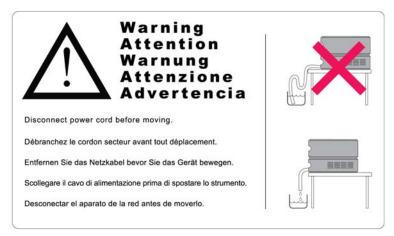


Figure 14 Warning label (illustration for correct waste tubing)

Parts required	#	p/n	Description	
	1		Detector	
	1		Power cord	
	1		LAN cable (cross-over or twisted pair network cable)	
	1		Agilent ChemStation or other control software	
	1	G4208A	Instant Pilot	
	1		CompactFlash Card (G1314E only)	
	For ot	her cables see belo	es see below and section "Cable Overview" on page 164.	
Instant Pilot (G4208A) is optional.		optional.		
Preparations Other LC modules must have appropriate firmware installed to work with the detector Provide power connections Unpack the detector				
NOTE		Before adding the detector into an existing system assure that the existing modules have been updated to firmware revision that is supported by the control software.		
NOTE	-	want to use the "da ed in the rear of the	ata-never-lost" feature, then assure that the CompactFlash Card is e G1314E VWD.	

1 Note the MAC address of the LAN interface (rear of the module, under the configuration switch, see figure below). It's required for LAN Configuration, see chapter *LAN Configuration*.

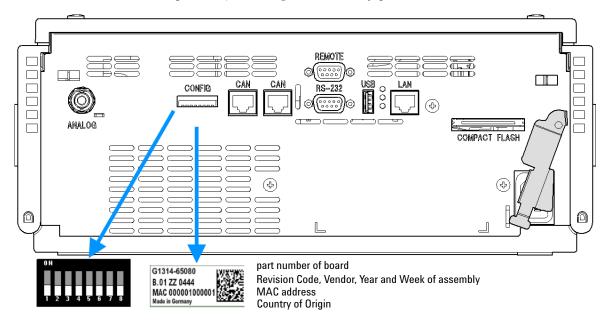


Figure 15 Rear View of Detector

2 Check the setting of the DIP switch at the rear of the detector. All switches should be in down position (BOOTP mode). If another boot mode is required refer to "Link configuration selection" on page 208.

NOTE

The detector was shipped with default configuration settings (all switches down).

- **3** Place the detector in the stack or on the bench in a horizontal position.
- 4 Ensure the line power switch at the front of the detector is OFF.
- **5** Connect the power cable to the power connector at the rear of the detector.
- **6** Connect the CAN cable to other modules.

7 Connect the LAN cable (e.g. from a Agilent ChemStation as controller) to the detector's LAN connector.

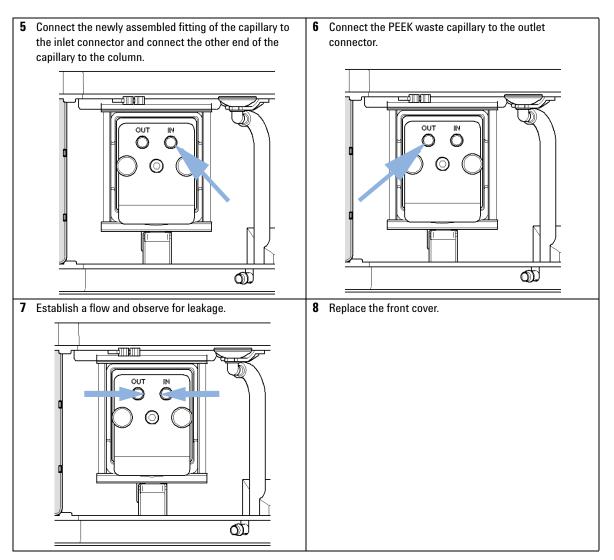
NOTE In multi-detector configurations the LAN of the Agilent detector with the highest data rate must be used due to its higher data load.

- 8 Connect the analog cable(s) (optional).
- **9** Connect the APG remote cable (optional) for non-Agilent 1200 Infinity Series instruments.
- **10** Turn on power by pushing the button at the lower left hand side of the detector. The status LED should be green.

Status indicator		
green/yellow/red		
	-	
Line power switch		
with green light		
NOTE	The detector is turned on when the line power switch is press	-
NUL	lamp is illuminated. The detector is turned off when the line po	ower switch is protruding and
	the green light is off.	

NOTE To disconnect the detector from line, unplug the power cord. The power supply still uses some power, even if the power switch at the front panel is turned off.

Flow Connections to the Detector


Tools required		i ption :h, 1/4 – 5/16 inch pillary connections)		
Parts required	# 1	p/n G1314-68755	Description Accessory kit	
Hardware required	Other modules depend on system setup			
Preparations	Detector is installed in the LC system.			
WARNING	Toxic, flammable and hazardous solvents, samples and reagents The handling of solvents, samples and reagents can hold health and safety risks.			
	→ When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.			
 → The volume of substances should be reduced to the minimum required f analysis. → Do not operate the instrument in an explosive atmosphere. 			ances should be reduced to the minimum required for the	
			strument in an explosive atmosphere.	
NOTE	The flo	ow cell is shipped v	vith a filling of isopropanol (also recommended when the	

NOTE Internov cents shipped with a mining of isopropation (also recommended when the instrument and/or flow cell is shipped to another location). This is to avoid breakage due to subambient conditions.

Flow Connections to the Detector

Press the release buttons and remove the front cover to have access to the front area.	2 Loose the screws of the flow cell dummy plate by turning each screw one turn. Then unscrew the screws completely. This is required to avoid any problem with helicoil insert in the casting.
 Press the flow cell completely into the slot and tighten the cell screws (both parallel) until the mechanical stop. 	4 Assemble the column-detector capillary. Depending on the flow cell type it may be a PEEK or SST capillary.

Flow Connections to the Detector

The installation of the detector is now complete.

NOTE

The detector should be operated with the front cover in place to protect the flow cell area against strong drafts from the outside.

Using the Detector

Leak and Waste Handling 56 Setting up an Analysis 57 Before Using the System 57 **Requirements and Conditions** 59 Optimization of the System 61 Preparing the HPLC System 61 Running the Sample and Verifying the Results 70 Special Settings of the Detector 71 Control Settings 71 Configuration Settings 72 Online Spectra 73 Scanning with the VWD 74 Analog Output Settings 75 **Special Setpoints** 76 Run Recovery (G1314E) 80

This chapter provides information on how to set up the detector for an analysis and explains the basic settings.

Leak and Waste Handling

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.
- → Never exceed the maximal permissible volume of solvents (6 L) in the solvent cabinet.
- → Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.
- → Arrange the bottles as specified in the usage guideline for the solvent cabinet.
- → A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet.
- The residual free volume in the appropriate waste container must be large enough to collect the waste liquid.
- → Check the filling level of the waste container regularly.
- → To achieve maximal safety, check the correct installation regularly.

NOTE

Recommendations for Solvent Cabinet

For details, see the usage guideline for the Agilent 1200 Infinity Series Solvent Cabinets.

For details on correct installation, see "Installation Information on Leak and Waste Handling" on page 45.

Setting up an Analysis

This chapter can be used for

- preparing the system,
- · to learn the set up of an HPLC analysis and
- to use it as an instrument check to demonstrate that all modules of the system are correctly installed and connected. It is not a test of the instrument performance.
- Learn about special settings

Before Using the System

Solvent Information

Observe recommendations on the use of solvents in chapter "Solvents" in the pump's reference manual.

Priming and Purging the System

When the solvents have been exchanged or the pumping system has been turned off for a certain time (for example, overnight) oxygen will re-diffuse into the solvent channel between the solvent reservoir, vacuum degasser (when available in the system) and the pump. Solvents containing volatile ingredients will slightly lose these. Therefore priming of the pumping system is required before starting an application.

4 Using the Detector

Setting up an Analysis

Activity	Solvent	Comments
After an installation	lsopropanol	Best solvent to flush air out of the system
When switching between reverse phase and normal phase (both times)	Isopropanol	Best solvent to flush air out of the system
After an installation	Ethanol or Methanol	Alternative to Isopropanol (second choice) if no Isopropanol is available
To clean the system when using buffers	Bidistilled water Bidistilled water	Best solvent to re-dissolve buffer crystals
After a solvent change		Best solvent to re-dissolve buffer crystals
After the installation of normal phase seals (P/N 0905-1420)	Hexane + 5% Isopropanol	Good wetting properties

Table 7 Choice of Priming Solvents for Different Purposes

NOTE

The pump should never be used for priming empty tubings (never let the pump run dry). Use a syringe to draw enough solvent for completely filling the tubings to the pump inlet before continuing to prime with the pump.

- 1 Open the purge value of your pump (by turning it counterclockwise) and set flow rate to 3 5 mL/min.
- 2 Flush all tubes with at least 30 mL of solvent.
- **3** Set flow to required value of your application and close the purge valve.

NOTE Pump for approximately 10 minutes before starting your application.

Requirements and Conditions

What You Will Need

The table below lists the items you need to have for the set up of the analysis. Some of these are optional (not required for the basic system).

Agilent 1200 Infinity Series system	Pump (plus degassing)
	Autosampler
	Detector, standard flow cell installed
	Degasser (optional)
	Column Compartment (optional)
	Agilent ChemStation or Instant Pilot G4208, optional for basic operation.
	System should be correctly set up for LAN communication with the Agilent ChemStation
Column:	Zorbax Eclipse XDB-C18, 4.6 x 150 mm, 5 μm (993967-902) or an equivalent column
Standard:	Agilent isocratic checkout sample (01080-68704)

Table 8What you will need

Conditions

A single injection of the isocratic test standard is made under the conditions given in Table 9 on page 59:

Table 9 Conditions

Flow	1.5 mL/min
Stoptime	8 min
Solvent	100% (30% water/70% Acetonitrile)
Temperature	Ambient
Wavelength	sample 254 nm
Injection Volume	1 µL
Column Temperature (optional):	25 °C or ambient

Typical Chromatogram

A typical chromatogram for this analysis is shown in Figure 16 on page 60. The exact profile of the chromatogram will depend on the chromatographic conditions. Variations in solvent quality, column packing, standard concentration and column temperature will all have a potential effect on peak retention and response.

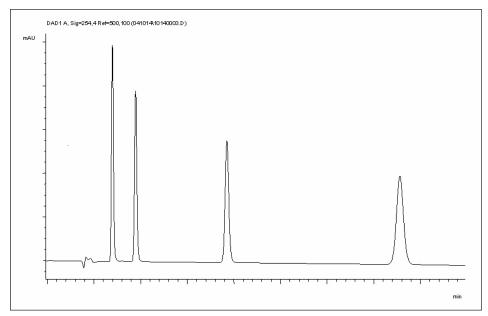


Figure 16 Typical Chromatogram with UV-detector

Optimization of the System

The settings used for this analysis are specific for this purpose. For other applications the system can be optimized in various ways. Please refer to the section "Optimizing the Detector Performance" on page 84.

Preparing the HPLC System

- 1 Turn on the Agilent ChemStation PC and the monitor.
- **2** Turn on the modules.
- **3** Start the Agilent ChemStation software. If the pump, autosampler, thermostatted column compartment and detector are found, the Agilent ChemStation screen should look like shown in Figure 17 on page 61. The System status is red (**Not Ready**).

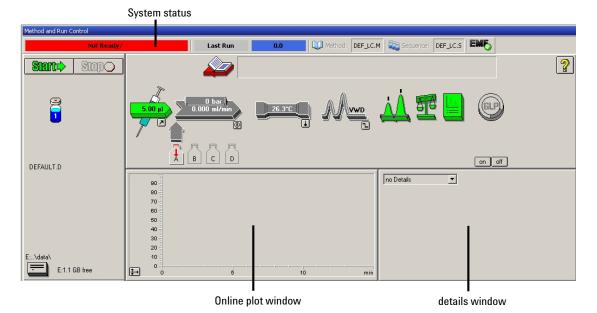
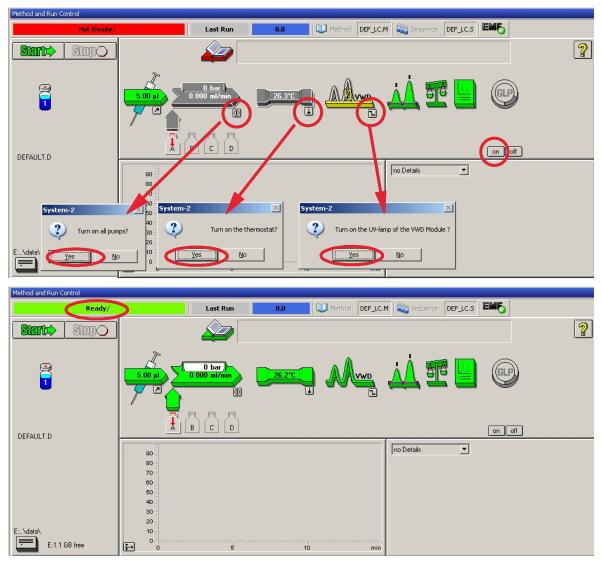



 Figure 17
 Initial Agilent ChemStation screen (Method and Run Control)

4 Turn on the detector lamp, pump and autosampler by clicking the **System On** button or the buttons below the module icons on the graphical user interface (GUI).

After some time, the pump, thermostatted column compartment and detector module will turn to green.

Figure 18 Turning on the HPLC Module

- **5** Purge the pump. For more information "Priming and Purging the System" on page 57.
- **6** Allow the detector to warm up of at least 60 minutes to provide a stable baseline (example: Figure 19 on page 63).

For reproducible chromatography, the detector and lamp should be on for at least one hour. Otherwise the detector baseline may still drift (depending on the environment).

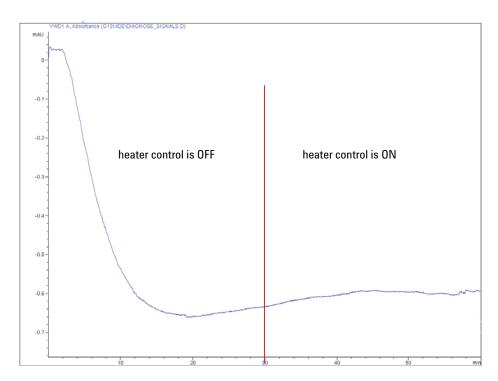


Figure 19 Stabilization of baseline after turn on of detector

7 For the isocratic pump, fill the solvent bottle with the mixture of HPLC-grade bi-distilled water (30 %) and acetonitrile (70 %). For binary- and quaternary pumps you can use separate bottles.

NOTE

8 Click on the Load Method button, select DEF_LC.M and press OK. Alternatively, double-click on the method in the method window. The default LC method parameters are transferred into the modules.

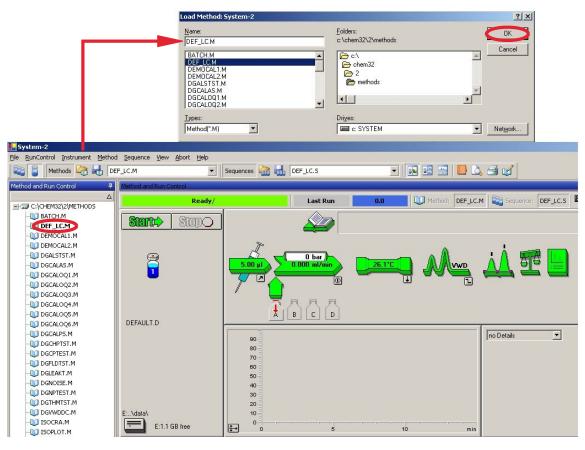


Figure 20 Loading Default LC Method

9 Click on the module icons (Figure 21 on page 65) and open the **Setup** of these modules. Figure 22 on page 66 shows the detector settings (do not change the detector parameters at this time).

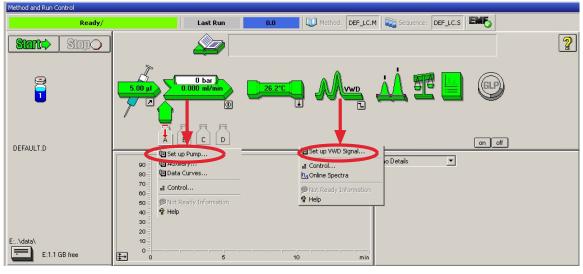


Figure 21 Open the module menu

Setting up an Analysis

WD Signal : System-2	×
Signal Wavelength: 254 nm Peakwidth (Responsetime) > 0.1 min (2 s) ▼	Time Stoptime: as Pump ■ min no Limit ■ min Posttime: Off ■ min
Timetable:	
Line Time Wavelength Bal	lance Scan Append Cut Copy Easte
🖲 Table 🔿 Graphic	
<u> </u>	
	Analog Output Zero Offset: 5 % Attenyation: 1000 mAU

10 Enter the pump parameters mentioned under Table 9 on page 59.

- 1 signal with individual wavelength setting
- · stop and post time can be set (if required)
- time table for programmable actions during the run

- Zero Offset Limits: 1 to 99 % in steps of 1 %
- Attenuation Limits: 0.98 to 4000 mAU at discrete values for either 100 mV or 1 V full scale
- additional signals can be stored with the normal signal (for diagnostics)
- autobalance to zero absorbance (on the analog output plus offset) at begin and/or end of run
- see "Special Setpoints" on page 76.

Figure 22 Detector Settings (default)

- 11 Pump the water/acetonitrile $(30/70 \ \%)$ mobile phase through the column for 10 minutes for equilibration.
- 12 Click the button 🖬 and select Change... to open the Signal Plot information. Select the Pump: Pressure and the VWD A: Signal 254 as signals. Change the Y-range for the VWD to 1 mAU and the offset to 20 % and the pressure offset to 50 %. The X-axis range should be 15 minutes. Press OK to exit this screen.

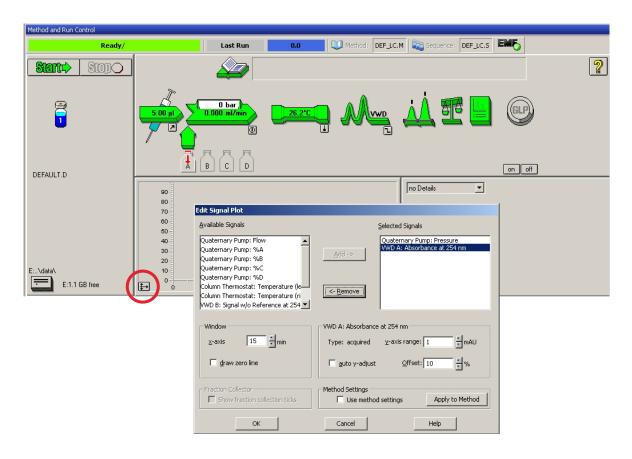


Figure 23

Edit Signal Plot Window

The Online Plot (Figure 24 on page 68) shows both, the pump pressure and the detector absorbance signals. Pressing **Adjust** the signals can be reset to the offset value and **Balance** would do a balance on the detector.

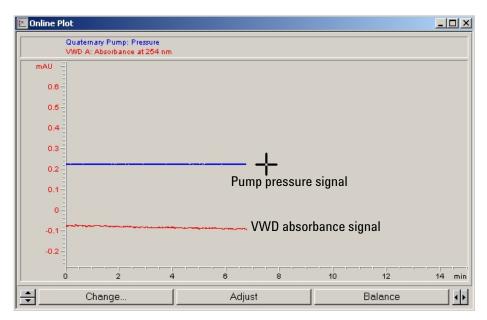


Figure 24 Online Plot Window

13 If both baselines are stable, set the Y-range for the detector signal to 100 mAU.

NOTE

If you start with a new UV-lamp for the first time, the lamp may show initial drift for some time (burn-in effect).

14 Select the menu item **RunControl** > **Sample Info** and enter information about this application (Figure 25 on page 69). Press **OK** to leave this screen.

stem-2		
RunControl Instrument		Sequence View
Kan Hethod	F5	C.M
Sample Info Offline Data Analysis		Sample Info: System-2
Resume Injection		
Run Sequence	F6	
Pause Sequence	FO	S Data File
Resume Sequence		
20 /// Alexand /////		Path: E:\CHEMSTATION\2\DATA\
Stop Run/Inject/Seque	ance Fo	- Manual Filename
DGCALAS.M		ISO_01.D
		C Prefix/Counter
		Lo <u>c</u> ation: Vial 1 (blank run if no entry)
		Sample <u>N</u> ame: Isocratic test sample Sample <u>A</u> mount: 0 Multiplier: 1
		ISTD Amount: 0 Dilution: 1
		Comment: Isocratic test sample, 1 ul, 30/70 H2O/Acetonitrile, 1.5 ml/min
		Run Method OK Cancel Help

Figure 25 Sample Information

15 Fill the content of an isocratic standard sample ampoule into a vial and seal the vial with a cap and place the vial into autosampler tray (position #1).

Running the Sample and Verifying the Results

- 1 To start a run select the menu item RunControl > Run Method.
- **2** This will start the modules and the online plot on the Agilent ChemStation will show the resulting chromatogram.

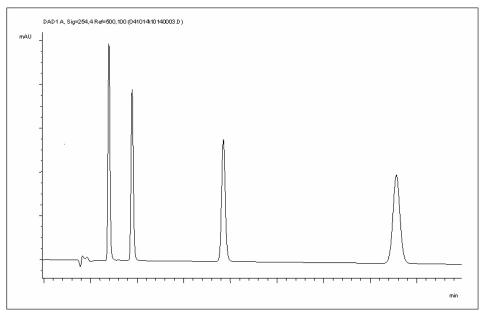
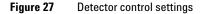


Figure 26 Chromatogram with Isocratic Test Sample

Information about using the Data Analysis functions can be obtained from the Using your ChemStation manual supplied with your system.


NOTE

Special Settings of the Detector

In this chapter special settings of the detector are described.

Control Settings

🔄 Set up VWD Signal	VWD Control : System 2	2 🔀
at Control M_Online Spectra	⊂ on C off	Error Method
	- At <u>P</u> ower On	Analog Output <u>B</u> ange
	Automatic Turn On Turn lamp on at: Date: 21.05.200 Time: 15:56:41 OK	8 <dd.mm.gyygy> <hhr.mm:ss> Cancel Help</hhr.mm:ss></dd.mm.gyygy>

- Lamp: turn on and off of UV-lamp.
- At Power On: automatic lamp-on at power on.
- Error Method: take error method or current method (in case of an error).
- Analog Output Range: can be set to either 100 mV or 1 V full scale, see "Analog Output Settings" on page 75.
- Automatic Turn On: lamps can be programmed (detector must be on for this).
- Help: online help.

Special Settings of the Detector

Configuration Settings

Instrument Method Sequence Vie	w Abort Help
Set up VWD Signals	💌 🗸 Se
More VWD 🔸	Control
Snapshot	Configuration
System On	Sample Scan
System Off	Blank Scan
WWD Configuration : Instrument	2 🗙
- Temperature control	
 Temperature control on 	
C Temperature control off	
UV lamp Tag	
Automatic Mode - only if RFI	D Tag is available
C Use UV lamp anyway	
Lamp Type	~
,	
Cell Tag	
use Cell only if RFID Tag is an end of the second secon	vailable
O use Cell anyway	
<u>O</u> K Cancel	<u>H</u> elp
VWD Status	_

YWD Status		
Prerun		Cell-tag
Wavelength:	254	nm

- **Temperature Control**: the optical unit is kept on constant temperature (some degrees above ambient) and improves the baseline stability in unstable environments. See also note below.
- UV lamp tag: Automatic mode for Agilent lamps with RFIDtags. If no RFID tag lamp is used, detector icon will become gray (lamp tag not ready) and analysis is disabled.

The specifications are based on the lamp with RFID tag.

Use UV lamp anyway - here you can select non-RFID tag lamps, such as of type VWD lor DAD (have different heating mechanismn).

The correct selection is important for optimal performance and lifetime.

- **Cell tag**: for Agilent flow cells with RFID tags. If no RFID tag cell is used, detector icon will become gray (cell tag not ready) and analysis is disabled.
- Help: online help.

The detector status shows "Cell-tag" in yellow in case the flow cell with the RFID tag is not inserted. The detector icon is gray and the system is not ready.

NOTE

If the flow cell temperature is critical for your chromatography or your environment is stable, you may set the Temperature Control to off. This will lower the optical unit and flow cell temperature by some degree.

Online Spectra

1 To view the online spectra select Online Spectra.

NOTE

This online spectrum is taken during a stop-flow condition only while the peak is kept in the flow cell, see "Scanning with the VWD" on page 74.

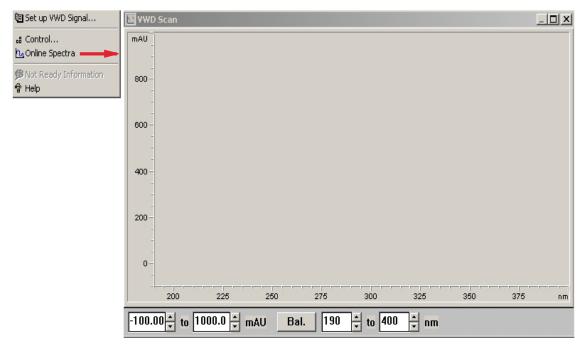
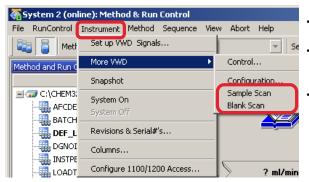


Figure 29 Online Spectra Window

2 Change the absorbance and wavelength range according your needs.

4 Using the Detector

Special Settings of the Detector


Scanning with the VWD

NOTE

Access to the scan feature is only possible during run.

- 1 Set up a run.
- **2** Start a run.
- 3 While running on the baseline, select from the menu Instrument > More VWD > Blank Scan.

A background scan is stored in the memory.

Step 1: **Blank Scan**: scan of the background (solvent) is stored in the memory.

Step 2: **Sample Scan**: scan of the peak of interest is taken while the peak stays in the flow cell (stop-flow condition).

Online Spectrum: Sample Scan minus Blank Scan.

4 When the peak of interest enters the flow cell, stop the flow (set flow rate to zero or open the purge valve) and wait a few moments to stabilize the concentration.

NOTE

Turning off the pump would stop the run and no access to the sample scan is possible.

5 Select from the menu Instrument > More VWD > Sample Scan.

A sample scan is taken in the range defined under "Special Setpoints" on page 76 and the Online Spectra window (see "Online Spectra" on page 73) displays the result (Sample Scan minus Blank Scan).

Analog Output Range: can be set to either 100 mV

Zero Offset:can be set to either 100 mV or 1 V full

Attenuation Limits: 0.98 to 4000 mAU at discrete

values for either 100 mV or 1 V full scale.

Analog Output Settings

- 1 To change the Output Range of the analog outputs select VWD Control.
- 2 To change the offset and the attenuation select VWD Signal > More.

•

•

•

scale.

or 1 V full scale.

🔄 Set up VWD Signal	VWD Control : System 2	2 X
B Control Montrol Online Spectra	_Lamp	Error Method
♥ Not Ready Information ♥ Help	Coff	Take current method
		Analog Output <u>R</u> ange
	At Power On	C 0.1V © 1V
		••
	Turn lamp on at:	
	Date: 21.05.200 Time: 15:56:41	8 <dd.mm.yyyy> <hh:mm:ss></hh:mm:ss></dd.mm.yyyy>
	<u>O</u> K	Cancel <u>H</u> elp

Figure 30 Analog Output Settings

🔄 Set up VWD Signal	VWD Signal : System-2		×
🚜 Control 💁 Online Spectra	Signal	Time	Analog Output
Mot Ready Information Help	Wavelength: 254 nm	<u>S</u> toptime: as Pump ∯ min no Limit	<u>∠ero Unsec</u>
	Peakwidth (Responsetime) > 0.1 min (2 s)	Posttime: Off 🚊 min	Attenyation:

- Figure 31 Analog Output Settings
 - **3** Change the values if required.

Special Setpoints

1 To change the offset and the attenuation select VWD Signal > More > Special Setpoints.

📴 Set up VWD Signal	VWD Special Setpoints : Instrument 2
🔐 Control 💁 Online Spectra	
Not Ready Information Help	Signal Polarity:
	Enable analysis when lamp is off
	Scan Bange: 190 to 400 nm Step 2 nm
	Restore <u>D</u> efaults
	<u>D</u> K Cancel <u>H</u> elp

- Signal Polarity: can be switched to negative (if required).
- Enable analysis when lamp is off: if the VWD is not used in a dual detector setup (lamp off), the not-ready condition is not stopping the analysis.
- Scan Range / Step: Used for stop-flow scanning, see "Scanning with the VWD" on page 74.

Figure 32 Special Setpoints

Peakwidth Settings

NOTE

Do not use peak width shorter than necessary, see details below.

- 1 To change the Peakwidth settings select Setup Detector Signals.
- 2 In the section Peakwidth (Responsetime) click on the drop-down list.
- 3 Change the Peakwidth according to your needs.

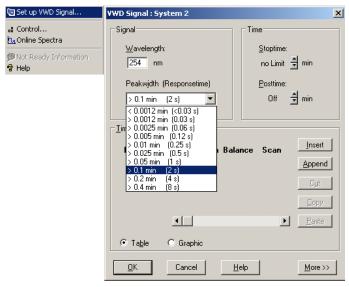


Figure 33 Peakwidth Setting

Peakwidth enables you to select the peak width (response time) for your analysis. The peak width is defined as the width of a peak, in minutes, at half the peak height. Set the peak width to the narrowest expected peak in your chromatogram. The peak width sets the optimum response time for your detector. The peak detector ignores any peaks that are considerably narrower, or wider, than the peak width setting. The response time is the time between 10 % and 90 % of the output signal in response to an input step function.

Limits: When you set the peak width (in minutes), the corresponding response time is set automatically and the appropriate data rate for signal acquisition is selected as shown in Table 10 on page 78, Table 11 on page 78 and Table 12 on page 79.

4 Using the Detector

Special Settings of the Detector

peakwidth at half heigth [min]	Response Time [s]	Data Rate [Hz]
<0.005	<0.12	20
>0.005	0.12	20
>0.01	0.25	20
>0.025	0.5	20
>0.05	1.0	10
>0.10	2.0	5
>0.20	4.0	2.5
>0.40	8.0	1.25

Table 10 Peak Width – Response Time – Data Rate (G1314D)

Table 11 Peak Width - Response Time - Data Rate (G1314F)

peakwidth at half heigth [min]	Response Time [s]	Data Rate [Hz]	
<0.003125	<0.0625	80	
>0.003125	0.0625	80	
>0.00625	0.125	80	
>0.0125	0.25	40	
>0.025	0.5	20	
>0.05	1	10	
>0.1	2	5	
>0.2	4	2.5	
>0.4	8	1.25	

peakwidth at half heigth [min]	Response Time [s]	Data Rate [Hz]	
<0.0012	<0.03	160	
>0.0012	0.03	160	
>0.0025	0.06	160	
>0.005	0.12	80	
>0.01	0.25	40	
>0.025	0.5	20	
>0.05	1.0	10	
>0.1	2.0	5	
>0.2	4.0	2.5	
>0.4	8.0	1.25	

 Table 12
 Peak Width – Response Time – Data Rate (G1314E)

Run Recovery (G1314E)

NOTE This feature is not supported with ChemStation B.03.02 SR1. It will be implemented with ChemStation B.04.01. The figures used in this chapater are from the G1315C DAD VL+. The G1314E VWD figures will look the same.

Run Recovery Settings

 CAUTION
 For this recovery mode the CompactFlash Card must be in the detector.

 If the LAN communiaction is interruppted, no data is stored.

 → Have the CompactFlash Card always inserted.

The detector supports run buffering, which means that an amount of run data (*.uv and *.ch files) is stored in a storage medium (CompactFlash Card) in the detector until either it is overwritten or the detector undergoes a power cycle.

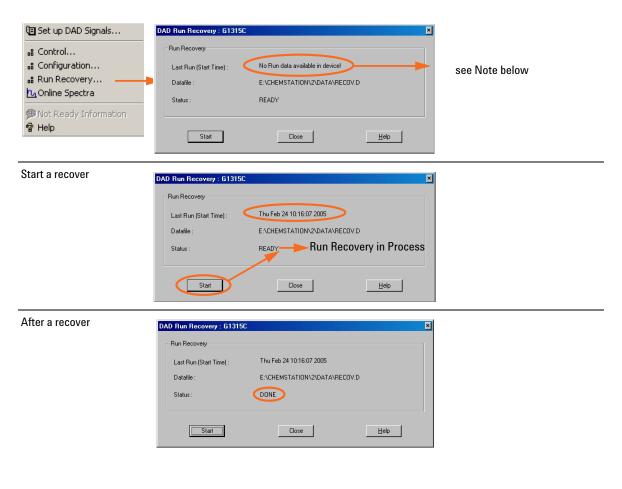
If there is a temporary network failure or the PC is not able to constantly take the data, the stored data is transferred to the ChemStation automatically when the network connection is restored or the PC can take the data, so that no loss of data occurs.

If there is a permanent network failure, the Run Recovery dialog box allows you to restore the stored data to the data directory. From there you can copy the files to the directory where the files are corrupted or not complete.

NOTE	On very large recovery files it may take a long time to restore it to the Agilent ChemStation.
	A sequence will be stopped in case of a network problem.
NOTE	When during recovery an error "Method/Sequence stopped" appears, the instrument logbook shows an entry "No Run data available in device".
	In this case refer to "No Run Data Available In Device" on page 112.

Automated Run Recovery in case of temporary communication failures

	Table 13	Automated Run Recovery	y in case of temporar	y communication failures
--	----------	------------------------	-----------------------	--------------------------

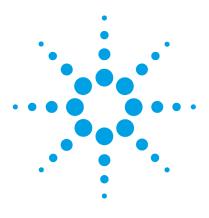

Situation	Reaction	On ChemStation
All OK	 Run in progress - Data Analysis Run / Rawdata Elapsed run time is running Data are stored on PC and on card 	VWD Status Run Rawdata Wavelength: 254 nm
LAN breaks	 Run in progress - Data Analysis Run / Rawdata Error Power Fail Elapsed run time stops Data continues to be stored on card 	VWD Status Run Rawdata Error Wavelength: 254 nm
LAN recovers	 Run in progress - Data Analysis Run / Rawdata Error Power Fail cleared Elapsed run time continues at actual time Spectra counter continues Data continues to be stored on PC and on card ChemStation tries already to add missing data (depends on the data load). 	VWD Status Run Rawdata Wavelength: 254 nm
Stop time elapsed	 Run in progress - Data Analysis Prerun / Rawdata Elapsed run time stops ChemStation continues to add missing data 	VWD Status Prerun Rawdata Wavelength: 254 nm
Run ends	 Ready Run finished Prerun / Ready 	VWD Status Prerun Ready Wavelength: 254 nm

NOTE

If the detector status window is not opened, you will realize only the Power Fail error and the long Run In Progress information until the data is recovered from disk.

4 Using the Detector

Special Settings of the Detector



Manual Run Recovery in case of permanent communication failures

NOTE

When during recovery an error "Method/Sequence stopped" appears, the instrument logbook shows an entry "No Run data available in device".

In this case refer to "No Run Data Available In Device" on page 112.

5

How to optimize the detector

Optimizing the Detector Performance 84 Match the Flow Cell to the Column 85 Set the Detector Parameters 88

This chapter gives hints on how to select the detector parameters and the flow cell.

Optimizing the Detector Performance

The detector has a variety of parameters that can be used to optimize performance.

The information below will guide you on how to get the best detector performance. Follow these rules as a start for new applications. It gives a rule-of-thumb for optimizing the detector parameters.

Match the Flow Cell to the Column

The tables below recommend the flow cell that matches the column used. If more than one selection is appropriate, use the larger flow cell to get the best detection limit. Use the smaller flow cell for best peak resolution.

Standard HPLC Applications

Column length	Typical peak width	Recommended flow cell				
<= 5 cm	0.025 min	Micro flow cell				High
10 cm	0.05 min		Semimicro flow cell			Pressure
20 cm	0.1 min			Standard flow co	ell	flow cell
>= 40 cm	0.2 min					
	Typical flow rate	0.05-0.2 ml/min	0.2- 0.4 ml/min	0.4- 0.8 ml/min	1-2 ml/min	0.01- 5 ml/min
Inter	nal column diameter	1.0 mm	2.1mm	3.0 mm	4.6 mm	

Figure 34 Choosing a Flow Cell (Standard HPLC Applications)

Ultra fast separation with RRLC systems

Column ID	2.1 mm	3.0 mm	4.6 mm
Configuration	No damper	Damper	Damper
	No mixer	Mixer	Mixer
	++		
Flow cell	2 µl, 3 mm	5 µl, 6 mm	14 µl, 10 mm
		+	+
		Т	т

Figure 35 Choosing a Flow Cell for G1314E (for ultra fast separation with RRLC systems)

- (+) For ultra fast analysis with step gradients the micro flow cell (2 $\mu L,$ 3 mm) gives the best performance
- (++) In high resolution analysis time is not the highest priority. Higher delay volumes are accepted. Therefore we recommend to use the damper plus mixer for a highest signal to noise.
- If longer columns (> 50 mm) for higher resolution are used, then the next larger flow cell is the preferred choice for higher sensitivity.

5 How to optimize the detector

Match the Flow Cell to the Column

Flow Cell Path Length

Lambert-Beer's law shows a linear relationship between the flow cell path length and absorbance.

Absorbance =
$$-\log T = \log \frac{I_0}{I} = \varepsilon \times C \times d$$

where

Т	is the transmission, defined as the quotient of the intensity of the transmitted light I divided by the intensity of the incident light, I ₀ ,
е	is the extinction coefficient, which is a characteristic of a given substance under a precisely-defined set of conditions of wavelength, solvent, temperature and other parameters,
C [mol/L]	is the concentration of the absorbing species,
d [m]	is the path length of the cell used for the measurement.

Therefore, flow cells with longer path lengths yield higher signals. Although noise usually increases little with increasing path length, there is a gain in the signal-to-noise ratio. For example, in Figure 36 on page 87 the noise increased by less than 10 % but a 70 % increase in signal intensity was achieved by increasing the path length from 6 mm to 10 mm.

When increasing the path length, the cell volume usually increases – in the example from 5 – 14 μ L. Typically, this causes more peak dispersion. As demonstrated, this did not affect the resolution in the gradient separation in the example that is shown below.

As a rule-of-thumb, the flow cell volume should be about 1/3 of the peak volume at half height. To determine the volume of your peaks, take the peak width as reported in the integration results multiply it by the flow rate and divide it by 3).

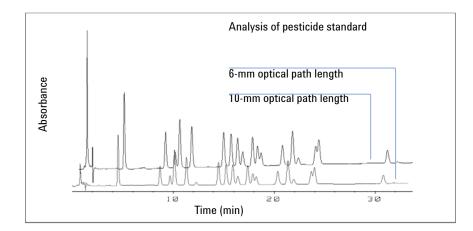


Figure 36 Influence of Cell Path Length on Signal Height

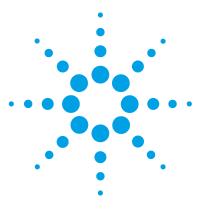
Traditionally LC analysis with UV detectors is based on comparing measurements with internal or external standards. To check photometric accuracy of the detector, it is necessary to have more precise information on path lengths of the flow cells.

The correct response is:

expected response * correction factor

Please find below the details of the flow cells:

 Table 14
 Correction factors for Agilent VWD flow cells


Part number	Path length (actual)	Correction factor
Standard flow cell 10 mm, 14 µL, 40 bar (G1314-60186)	10.15 ± 0.19 mm	10/10.15
Semi-micro flow cell 6 mm, 5 µL (G1314-60183)	6.10 ± 0.19 mm	6/6.10
Micro flow cell 3 mm, 2 µL, 120 bar (G1314-60187)	2.80 ± 0.19 mm	3/2.8
High pressure flow cell 10 mm, 14 µL, 400 bar (G1314-60182)	10.00 ± 0.19 mm	10/10

NOTE

However you have to be aware that there is additional tolerance of gasket thickness and its compression ratio which is supposed to be very small in comparison with the machining tolerance.

Set the Detector Parameters

- **1** Set peakwidth as close as possible to the width (at half height) of a narrow peak of interest.
- 2 Choose the sample wavelength.
 - at a longer wavelength than the cut-off wavelength of the mobile phase,
 - at a wavelength where the analytes have strong absorptivity if you want to get the lowest possible detection limit,
 - at a wavelength with moderate absorptivity if you work with high concentrations, and
 - preferably where the spectrum is flat for better linearity.
- **3** Consider to use time-programming to further optimization.

6

Troubleshooting and Diagnostics

Overview of the Detector's Indicators and Test Functions 90 Status Indicators 91 Power Supply Indicator 91 Module Status Indicator 92 Available Tests versus Interfaces 93 Agilent Lab Advisor Software 94

Overview about the troubleshooting and diagnostic features.

Overview of the Detector's Indicators and Test Functions

Status Indicators

The detector is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the detector. The status indicators provide a quick visual check of the operation of the detector "Status Indicators" on page 91.

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the detector generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided by the user interface. Refer to the Service Manual for details.

Test Functions

A series of test functions are available for troubleshooting and operational verification after exchanging internal components. Refer to the User Interface and/or the Service Manual for details.

Wavelength Verification / Recalibration

Wavelength recalibration is recommended after repair of internal components, and on a regular basis to ensure correct operation of the detector. The detector uses the deuterium alpha and beta emission lines for wavelength calibration, see "Wavelength Verification-Calibration" on page 120.

Diagnostic Signals

The detector has several signals (internal temperatures, voltages and currents of lamps) that can be used for diagnosing baseline problems. Refer to the Service Manual for details.

6

Status Indicators

Two status indicators are located on the front of the detector. The lower left indicates the power supply status, the upper right indicates the detector status.



Figure 37 Location of Status Indicators

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is ON.

Module Status Indicator

The module status indicator indicates one of six possible module conditions:

- When the status indicator is *OFF* (and power switch light is on), the module is in a *prerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the module is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a set point), or while a self-test procedure is running.
- An *error* condition is indicated when the status indicator is *red*. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (e.g. leak, defective internal components). An error condition always interrupts the analysis.

If the error occurs during analysis, it is propagated within the LC system, i.e. a red LED may indicate a problem of a different module. Use the status display of your user interface for finding the root cause/module of the error.

- A *blinking* indicator indicates that the module is in resident mode (e.g. during update of main firmware).
- A *fast blinking* indicator indicates that the module is in a low-level error mode. In such a case try to re-boot the module or try a cold-start (see "Special Settings" on page 191). Then try a firmware update (see "Replacing the Module's Firmware" on page 147). If this does not help, a main board replacement is required.

Available Tests versus Interfaces

NOTE

Depending on the used interface, the available tests and the screens/reports may vary.

Preferred tool should be the Agilent Lab Advisor, see "Agilent Lab Advisor Software" on page 94.

In future, a user interface may not show the Diagnostics/Tests anymore. Then the Agilent Lab Advisor must be used instead.

The Agilent ChemStation may not include any maintenance/test functions.

Table 15 Available Tests versus Interfaces

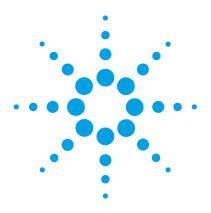
Interface Test	Agilent Lab Advisor	Agilent ChemStation	Instant Pilot G4208A
Wavelength Verification/Re-calibration	yes (*)	Tests (*)	Maintenance (*)
Lamp Intensity	yes (*)	Tests (*)	Diagnosis (*)
Holmium Test	yes (*)	Tests (*)	Diagnosis (*)
Cell Test	yes (*)	Tests (*)	n/a
D/A Converter Test	yes (*)	Tests (*)	n/a
Filter / Grating Motor Test	yes	Tests (*)	command line (***)
Test Chromatogram	yes	command line (**)	command line (***)
Spectrum (Blank, Sample, Holmium)	yes	n/a	Control
Service Dialog	for service only	n/a	for service only

(*) interface provides passed/fail information or a plot.

(**) requires a comand via comand line

(***) requires a comand via comand line in Service Mode

6 Troubleshooting and Diagnostics Agilent Lab Advisor Software


Agilent Lab Advisor Software

The Agilent Lab Advisor software is a standalone product that can be used with or without data system. Agilent Lab Advisor software helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor software provides diagnostic capabilities for all Agilent 1200 Infinity Series modules. This includes diagnostic capabilities, calibration procedures and maintenance routines for all the maintenance routines.

The Agilent Lab Advisor software also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor software help files.

The Instrument Utilities is a basic version of the Lab Advisor with limited functionality required for installation, use and maintenance. No advanced repair, troubleshooting and monitoring functionality is included.

Error Information

7

What Are Error Messages 97 General Error Messages 98 Timeout 98 Shutdown 98 Remote Timeout 99 Lost CAN Partner 100 Leak 100 Leak Sensor Open 101 Leak Sensor Short 101 **Compensation Sensor Open** 102 **Compensation Sensor Short** 102 Fan Failed 103 Open Cover 103 **Detector Error Messages** 104 UV lamp: no current 104 UV lamp: no voltage 105 Ignition Failed 105 No heater current 106 Wavelength calibration setting failed 106 Wavelength holmium check failed 107 Grating or Filter Motor Errors 108 Wavelength test failed 109 Cutoff filter doesn't decrease the light intensity at 250 nm 109 ADC Hardware Error 110 Illegal Temperature Value from Sensor on Main Board 110 Illegal Temperature Value from Sensor at Air Inlet 111 Heater at fan assembly failed 111 Heater Power At Limit 112

7 Error Information

Agilent Lab Advisor Software

No Run Data Available In Device 112 Cover Violation 113

This chapter describes the meaning of detector error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG remote cable (see documentation for the APG interface).

General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

Pr	obable cause	Suggested actions
1	The analysis was completed successfully, and the timeout function switched off the module as requested.	Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.
2	A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.	Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Pr	obable cause	Suggested actions
1	Leak detected in another module with a CAN connection to the system.	Fix the leak in the external instrument before restarting the module.
2	Leak detected in an external instrument with a remote connection to the system.	Fix the leak in the external instrument before restarting the module.
3	Shut-down in an external instrument with a remote connection to the system.	Check external instruments for a shut-down condition.
4	The degasser failed to generate sufficient vacuum for solvent degassing.	Check the vacuum degasser for an error condition. Refer to the <i>Service Manual</i> for the degasser or the 1260 pump that has the degasser built-in.

Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Probable cause		Suggested actions
1	Not-ready condition in one of the instruments connected to the remote line.	Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.
2	Defective remote cable.	Exchange the remote cable.
3	Defective components in the instrument showing the not-ready condition.	Check the instrument for defects (refer to the instrument's documentation).

Lost CAN Partner

Error ID: 0071

Duchahla aguag

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Cummented entires

Suggested actions
Ensure all the CAN cables are connected correctly.
 Ensure all CAN cables are installed correctly.
Exchange the CAN cable.
Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.

Leak

Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

Pr	obable cause	Suggested actions
1	Loose fittings.	Ensure all fittings are tight.
2	Broken capillary.	Exchange defective capillaries.
3	Leaking flow cell.	Exchange flow cell components.

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Pr	obable cause	Suggested actions
1	Leak sensor not connected to the main board.	Please contact your Agilent service representative.
2	Defective leak sensor.	Please contact your Agilent service representative.
3	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable cause		Suggested actions
1	Defective leak sensor.	Please contact your Agilent service representative.
2	Leak sensor incorrectly routed, being pinched by a metal component.	Please contact your Agilent service representative.

Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Probable cause

Suggested actions

Defective main board.

Please contact your Agilent service representative.

Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

representative.

Probable cause Suggested actions Please contact your Agilent service

1 Defective main board.

Fan Failed

Error ID: 0068

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

This limit is given by 2 revolutions/second for longer than 5 seconds.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

Probable cause	Suggested actions
1 Fan cable disconnected.	Please contact your Agilent service representative.
2 Defective fan.	Please contact your Agilent service representative.
3 Defective main board.	Please contact your Agilent service representative.

Open Cover

Error ID: 0205

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed, the fan is switched off, and the error message is generated.

Probable cause		Suggested actions
1	The top foam was removed during operation.	Please contact your Agilent service representative.
2	Foam not activating the sensor.	Please contact your Agilent service representative.
3	Defective sensor or main board.	Please contact your Agilent service representative.

7 Error Information Detector Error Messages

Detector Error Messages

These errors are detector specific.

UV lamp: no current

Error ID: 7450

The lamp anode current is missing. The processor continually monitors the anode current drawn by the lamp during operation. If the anode current falls below the lower current limit, the error message is generated.

Probable cause		Suggested actions
1	Lamp disconnected.	Ensure the lamp connector is seated firmly.
2	Top foam removed while lamp is on.	Please contact your Agilent service representative.
3	Defective or non-Agilent lamp.	Exchange the lamp.
4	Defective main board.	Please contact your Agilent service representative.
5	Defective power supply.	Please contact your Agilent service representative.

UV lamp: no voltage

Error ID: 7451

The lamp anode voltage is missing. The processor continually monitors the anode voltage across the lamp during operation. If the anode voltage falls below the lower limit, the error message is generated.

Probable cause		Suggested actions
1	Defective or non-Agilent lamp.	Exchange the lamp.
2	Defective power supply.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Ignition Failed

Error ID: 7452

The lamp failed to ignite. The processor monitors the lamp current during the ignition cycle. If the lamp current does not rise above the lower limit within 2 - 5 s, the error message is generated.

Probable cause		Suggested actions
1	Lamp disconnected.	Ensure the lamp is connected.
2	Defective or non-Agilent lamp.	Exchange the lamp.
3	Defective power supply.	Please contact your Agilent service representative.
4	Defective main board.	Please contact your Agilent service representative.

No heater current

Error ID: 7453

The lamp heater current in the detector is missing. During lamp ignition, the processor monitors the heater current. If the current does not rise above the lower limit within 1, the error message is generated.

Probable cause		Suggested actions
1	Lamp disconnected.	Ensure the lamp is connected.
2	lgnition started without the top foam in place.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.
4	Defective or non-Agilent lamp.	Exchange the lamp.
5	Defective power supply.	Please contact your Agilent service representative.

Wavelength calibration setting failed

Error ID: 7310

The intensity maximum was not found during wavelength calibration.

Calibration 0 Failed:	Zero-order calibration failed.
Calibration 1 Failed:	656 nm calibration failed.
Probable cause	Suggested actions
1 Lamp is OFF.	Switch on the lamp.
2 Incorrect flow cell installation.	Ensure the flow cell is installed correctly.
3 Flow cell contamination or air bubbles.	Clean/replace flow cell windows or remove air bubbles.

Probable cause		Suggested actions
4	Intensity too low.	Replace lamp.
5	Current step value too far from maximum.	 Repeat the calibration. Please contact your Agilent service representative.
6	Misaligned/defective grating assembly.	Please contact your Agilent service representative.
7	Defective main board.	Please contact your Agilent service representative.

Wavelength holmium check failed

Error ID: 7318

The holmium oxide test in the detector has failed. During the holmium test, the detector moves the holmium filter into the light path, and compares the measured absorbance maxima of the holmium oxide filter with expected maxima. If the measured maxima are outside the limits, the error message is generated.

Probable cause

1 Misaligned/defective grating assembly.

Suggested actions

- Ensure the flow cell is inserted correctly, and is free from contamination (cell windows, buffers, and so on).
- Run the filter-motor test to determine if the filter motor assembly is defective. If defective, please contact your Agilent service representative.
- Run the grating-motor test to determine if the grating assembly is defective. If defective, please contact your Agilent service representative.

Grating or Filter Motor Errors

Error ID: Grating: 7800, 7801, 7802, 7803, 7804, 7805, 7806, 7808, 7809; Filter: 7810, 7811, 7812, 7813, 7814, 7815, 7816

The motor test has failed.

Test 0 Failed:	Filter motor.
Test 1 Failed:	Grating motor.

During the motor tests, the detector moves the motor to the end position while monitoring the end-position sensor. If the end position is not found, the error message is generated.

Probable cause		Suggested actions
1	Motor is not connected.	Please contact your Agilent service representative.
2	Defective motor.	Please contact your Agilent service representative.
3	Defective/missing grating or filter.	Please contact your Agilent service representative.
4	Cable/connector defective.	Please contact your Agilent service representative.

Wavelength test failed

Error ID: 7890

The automatic wavelength check after lamp ignition has failed. When the lamp is switched on, the detector waits 1 min to warm-up the lamp. Then a check of the deuterium emission line (656 nm) via the reference diode is performed. If the emission line is more than 3 nm away from 656 nm, the error message is generated.

Probable cause

Suggested actions

Recalibrate the detector.

1 Calibration incorrect.

Cutoff filter doesn't decrease the light intensity at 250 nm

Error ID: 7813

The automatic filter check after lamp ignition has failed. When the lamp is switched on, the detector moves the cutoff filter into the light path. If the filter is functioning correctly, a decrease in lamp intensity is seen. If the expected intensity decrease is not detected, the error message is generated.

Pr	obable cause	Suggested actions
1	Motor is not connected.	Please contact your Agilent service representative.
2	Defective motor.	Please contact your Agilent service representative.
3	Defective/missing grating or filter.	Please contact your Agilent service representative.
4	Cable/connector defective.	Please contact your Agilent service representative.

ADC Hardware Error

Error ID: 7830, 7831

A/D-Converter hardware is defective.

Probable cause

Suggested actions

1 A/D-Converter hardware is defective.

Please contact your Agilent service representative.

Illegal Temperature Value from Sensor on Main Board

Error ID: 1071

This temperature sensor (located on the detector main board) delivered a value outside the allowed range. The parameter of this event equals the measured temperature in 1/100 centigrade. As a result the temperature control is switched off.

Probable cause		Suggested actions
1	Defective sensor or main board.	Please contact your Agilent service representative.
2	Detector is exposed to illegal ambient conditions.	Verify that the ambient conditions are within the allowed range.

Illegal Temperature Value from Sensor at Air Inlet

Error ID: 1072

This temperature sensor delivered a value outside the allowed range. The parameter of this event equals the measured temperature in 1/100 centigrade. As a result the temperature control is switched off.

Pro	obable cause	Suggested actions
1	The temperature sensor is defect.	Replace the cable to the main board.Please contact your Agilent service
2	Detector is exposed to illegal ambient conditions.	representative. Verify that the ambient conditions are within the allowed range.
	conditions.	

Heater at fan assembly failed

Error ID: 1073

Every time the deuterium lamp or the tungsten lamp (DAD only) is switched on or off a heater self-test is performed. If the test fails an error event is created. As a result the temperature control is switched off.

Probable cause		Suggested actions
1	Defective connector or cable.	Please contact your Agilent service representative.
2	Defective heater.	Please contact your Agilent service representative.

Heater Power At Limit

Error ID: 1074

The available power of the heater reached either the upper or lower limit. This event is sent only once per run. The parameter determines which limit has been hit:

0 means upper power limit hit (excessive ambient temperature drop).

1 means lower power limit hit (excessive ambient temperature increase).

Probable cause

Suggested actions

1 Excessive ambient temperature change. Wait until temperature control equilibrates.

No Run Data Available In Device

In a very rare case the capacity of the CompactFlash Card is not sufficient. This could happen for example when the interrupt of LAN communication takes longer and the detector uses special settings (e.g full data rate at 80 Hz plus full spectra plus all signals) during data buffering.

Probable cause

Suggested actions

1 CompactFlash Card is full.

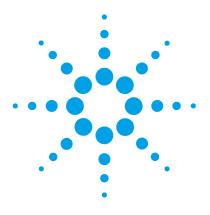
Reduce data rate.

· Correct communication problem.

Cover Violation

Error ID: 7461

The top foam has been removed.


The sensor on the main board detects when the top foam is in place. If the foam is removed while the lamps are on (or if an attempt is made to switch on for example the lamps with the foam removed), the lamps are switched off, and the error message is generated.

representative.

Probable causeSuggested actions1 The top foam was removed during
operation.Please contact your Agilent service
representative.2 Foam not activating the sensor.Please contact your Agilent service

7 Error Information

Detector Error Messages

Test Functions

8

Intensity Test 116 Intensity Test Failed 117 Cell Test 118 Wavelength Verification-Calibration 120 ASTM Drift and Noise Test 122 Quick Noise Test 123 Dark Current Test 124 Dark Current Test Failed 125 Holmium Oxide Test 126 Holmium Oxide Test Failed 127

This chapter describes the detector's built in test functions.

Intensity Test

The intensity test measures the intensity of the deuterium lamp over the full VWD wavelength range (190 - 600 nm). The test can be used to determine the performance of the lamp, and to check for dirty or contaminated flow cell windows. When the test is started, the gain is set to zero. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell. The shape of the intensity spectrum is primarily dependent on the lamp, grating, and diode characteristics. Therefore, intensity spectra will differ slightly between instruments. The figure below shows a typical intensity test spectrum.

The Intensity Test is available in

- Agilent Lab Advisor (preferred tool).
- Agilent Instant Pilot G4208A, via More-Diagnosis-VWD-Lamp Intensity Test.

Intensity Test Evaluation

The Agilent Lab Advisor and the Instant Pilot evaluate three values automatically and display the limits for each value, the average, the minimum and the maximum of all data points and **passed** or **failed** for each value.

Description The test scans the Intensity spectrum generated by the UV Test Name Intensity Test Lamp. Module G1314E:DE81960002 Status Passed Start Time 5/26/2010 12:31:17 PM Stop Time 5/26/2010 12:33:17 PM Test Procedure Result Name Value V 1 Check Prerequisites.. Accumulated UV Lamp Burn Time 1389.33 h ø Perform Intensity Test... 2 UV Lamp On-Time 2.50 h Lowest Intensity 22,970 Counts 3 Evaluate Data.. ø Average Intensity 755,739 Counts Highest Intensity 5,211,248 Counts Intensity Spectrum Intensity [Counts] 5.2112E+06 4E+06 2E+06 22970 300 400 500 600 700 190 800 Wavelength [nm]

Instensity Test with Agilent Lab Advisor

Figure 38 Intensity Test with Agilent Lab Advisor

Intensity Test Failed

Probable causeSuggested actions1 Empty flow cellEnsure the flow cell is filled with water.2 Flow cell windows dirtyRepeat the test with the flow cell removed. If the
test passes, exchange the flow cell windows.3 Optics defectPlease contact your Agilent service representative.4 Defective lamp or optics.Exchange the lamp.

8 Test Functions Cell Test

Cell Test

The cell test compares the intensity of the deuterium lamp measured by the sample and reference diodes (unfiltered and not logarithmized) when the grating is in the zero-order position. The resulting intensity ratio (sample:reference) is a measure of the amount of light absorbed by the flow cell.

The test can be used to check for dirty or contaminated flow cell windows. When the test is started, the gain is set to -1. To eliminate effects due to absorbing solvents, the test should be done with water in the flow cell.

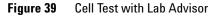
Limits: No real limit. The reason is that it depends on the position/alignment of the reference side (beam splitter – reference slit – reference diode). Therefore the reference side value can be higher/smaller than the sample side value.

With a clean cell the counts for sample and reference (photocurrent) are in the same range. If the sample side shows much lower values than the reference side the flow cell might have a problem.

Pre-requisite:

Flush the flow cell with a flow of 1 mL/min for at least 10 minutes.

Probable Cause	Suggested Action
Cell contaminated	Flush flow cell
Cell windows are contaminated	Clean/replace cell windows
Mechanical problem	Check cell position


In the Agilent Instant Pilot G4208A, the photocurrent readings are available via **More > Diagnosis > VWD > LampIntensity Test**, see Figure 40 on page 119.

Test Name		Cell Test	Description		le signal and the reference signal,
Mod	lule	G1314C:DE60555128		measured in the zero order of t	the grating.
Stat	us	Passed			
Star	t Time	7/6/2011 1:24:55 PM			
Stop Time 7/6/2011 1:26:18 PM		7/6/2011 1:26:18 PM			
	Procedure		Result		
				Name	Value
	1. Chec	k Prerequisites	Accum	Name ulated UV Lamp Burn Time	Value 60.49 h
۰.		k Prerequisites Flow Cell.			
×	2. Flush		UV Lan	ulated UV Lamp Burn Time	60.49 h
	2. Flush 3. Meas	Flow Cell.	UV Lan Intensit	ulated UV Lamp Burn Time np On-Time	60.49 h 4.36 h

.

.....

. ...

- - -

Checking the Photocurrent with the Instant Pilot

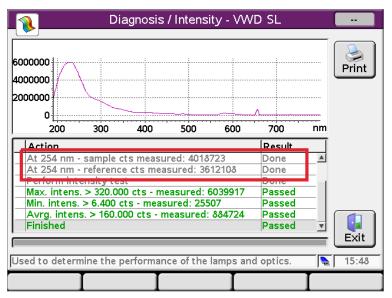


Figure 40 Checking the Photocurrent with the Instant Pilot

8 Test Functions

Wavelength Verification-Calibration

Wavelength Verification-Calibration

Wavelength calibration of the detector is done using the zero-order position and 656 nm emission line position of the deuterium lamp. The calibration procedure involves two steps. First the grating is calibrated on the zero-order position. The stepper-motor step position where the zero-order maximum is detected is stored in the detector. Next, the grating is calibrated against the deuterium emission-line at 656 nm, and the motor position at which the maximum occurs is stored in the detector.

In addition to the zero-order and 656 nm (alpha-emission line) calibration, the beta-emission line at 486 nm and the three holmium lines are used for the complete wavelength calibration process. These holmium lines are at 360.8 nm, 418.5 nm and 536.4 nm.

NOTE The wavelength verification/calibration takes about 2.5 min and is disabled within the first 10 min after ignition of the lamp because initial drift may distort the measurement.

When the lamp is turned **ON**, the 656 nm emission line position of the deuterium lamp is checked automatically.

The Wavelength Verification/Calibration is available in

- Agilent Lab Advisor (preferred tool).
- Agilent Instant Pilot G4208A, via More-Diagnosis-VWD-Calibration.

When to Calibrate the Detector

The detector is calibrated at the factory, and under normal operating conditions should not require recalibration. However, it is advisable to recalibrate:

- after maintenance (flow cell or lamp),
- after repair of components in the optical unit,
- · after exchange of the optical unit or VWM board,
- at a regular interval, at least once per year (for example, prior to an Operational Qualification/Performance Verification procedure), and
- when chromatographic results indicate the detector may require recalibration.

120

Fest Name Module Approx. Time	Wavelength Calibration G1314E:DE81960002 3 min	Description This procedure performs Recalibration.	a Wavelength Verification and
Status	Running		
Test Procedure —		Result	
reservocedare		Name	Value
🖌 1. Check	Prerequisites	Accumulated UV Lamp Burn Time	
🖌 2. Wavele	ength Verification	UV Lamp On-Time	2.86 h
📫 3. Calibrat	e Detector	Time to Wait Before Wavelength	Calibration 0.00 min
y o. calbra	o o o o o o o o o o o o o o o o o o o	Wavelength Gap of previous 0-o	
		Wavelength Gap of previous alph	ia line Calib 0.000 nm
		Wavelength Gap of 0-order Calib	ration -0.100 nm
		Wavelength Gap of alpha line Ca	libration -0.200 nm
Test Name Module	Wavelength Calibration	Description This procedure performs Recalibration.	a Wavelength Verification and
Status	Passed		
Start Time	5/26/2010 12:53:08 PM		
Stop Time	5/26/2010 12:56:39 PM		
-	5/26/2010 12:56:55 PM		
		Result	
Test Procedure		Name	
		IName	Value
	Prerequisites	Accumulated UV Lamp Burn Time	
🖌 1. Check	Prerequisites ength Verification		
1. Check 2. Wavele		Accumulated UV Lamp Burn Time	e 1389.70 h 2.86 h
1. Check 2. Wavele	ength Verification	Accumulated UV Lamp Burn Time	e 1389.70 h 2.86 h Calibration 0.00 min
🖌 1. Check 🖌 2. Wavele	ength Verification	Accumulated UV Lamp Burn Time UV Lamp Dn-Time Time to Wait Before Wavelength	1389.70 h 2.86 h Calibration 0.00 min rder Calibra 0.100 nm
🖌 1. Check 🖌 2. Wavele	ength Verification	Accumulated UV Lamp Burn Time UV Lamp On-Time Time to Wait Before Wavelength Wavelength Gap of previous 0-o	1389.70 h 2.86 h Calibration 0.00 min rder Calibra 0.100 nm taine Calibb 0.000 nm
2. Wavele	ength Verification	Accumulated UV Lamp Burn Time UV Lamp On-Time Time to Wait Before Wavelength Wavelength Gap of previous 0-o Wavelength Gap of previous alph	1389.70 h 2.86 h Calibration 0.00 min rder Calibra 0.100 mm a line Calib 0.000 mm ration -0.100 mm

Wavelength Verification/Calibration with Agilent Lab Advisor

Figure 41 Wavelength Verification/Calibration with Agilent Lab Advisor

ASTM Drift and Noise Test

The ASTM Drift and Noise test determines the detector noise over a period of 20 minutes. The test is done with HPLC-grade water flowing through the flow cell at 1 mL/min. On completion of the test, the noise result is displayed automatically.

Module	ASTM Drift and Noise Test G1314E:DE81960002	Description	The test performs ASTM Drift a reference.	nd Noise evaluation without
Status	Passed			
Start Time	5/26/2010 11:59:46 AM			
Stop Time	5/26/2010 12:19:46 PM			
est Procedure	,	Result		
4			Name	Value
 Che 	ck Prerequisites	Accur	nulated UV Lamp Burn Time	1388.81 h
🖊 2. Mea	asure Noise	UV La	mp On-Time	1.97 h
3. Eva	luate Data	Signal	Drift value at 254 nm (UV)	-0.062 mAU/h
		Signal	Noise value at 254 nm (UV)	0.004 mAU
		UV Signal		
bsorbance [mA	 ມ I]	-		
]			
2.059 =				
2.059 =				
1				
-22.07 -	ne alle Marinem Marine			
-22.07 -	and the second and the second s			
22.059 = -22.07 - -22.08 - -22.09 -	and a man to see a more of the second standing to second a second second second second second second second se			same
-22.07 - -22.08 - -22.09 -	and the second	. A.		and a start a s
-22.07 -	and ware and the second se	What you have the second	Manual	and the second states and the second
-22.07 - -22.08 - -22.09 -		^{yhay} yy ^{hay} y ^{hay} y	12 14 1	

Figure 42 ASTM Drift and Noise Test with Agilent Lab Advisor

Quick Noise Test

The noise test measures the noise of the detector, with HPLC-grade water flowing through the flow cell at 1 mL/min, in one minute intervals over a total of 5 minutes.

The noise of the detector is calculated by using the maximum amplitude for all random variations of the detector signal of frequencies greater than one cycle per hour. The noise is determined for 5 one minute intervals and is based on the accumulated peak-to-peak noise for the intervals. At least seven data points per cycles are used in the calculation.

The cycles in the noise determination are not overlapping.

In order to obtain reliable results, the lamp should be turned on for at least 10 minutes prior to measurement.

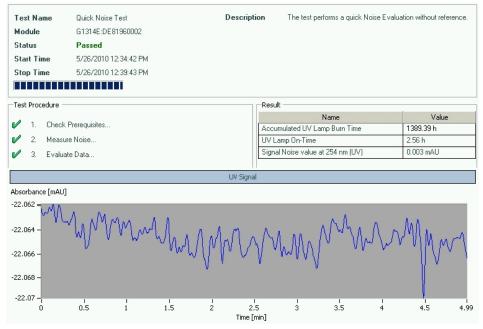


Figure 43 Quick Noise Test with Agilent Lab Advisor

8 Test Functions Dark Current Test

Dark Current Test

The dark-current test measures the leakage current from the sample and reference circuits. The test is used to check for defective sample or reference diodes or ADC circuits which may cause non-linearity or excessive baseline noise. During the test, the shutter is moved into the light path. Next, the leakage current from both diodes is measured.

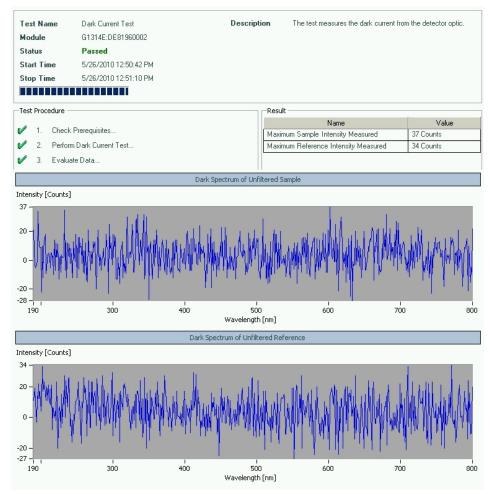


Figure 44 Dark Current Test with Agilent Lab Advisor

Dark Current Test Failed

Probable cause		Suggested actions
1	Defective sample or reference diode.	Please contact your Agilent service representative.
2	Defective sample or reference ADC board.	Please contact your Agilent service representative.
3	Defective main board.	Please contact your Agilent service representative.

Holmium Oxide Test

This test verifies the calibration of the detector against the three wavelength maxima of the built-in holmium oxide filter. The test displays the difference between the expected and measured maxima. The figure below shows a holmium test spectrum.

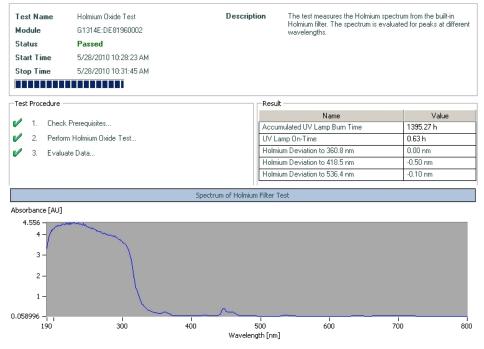
The Holmium Oxide Test is available in

- Agilent Lab Advisor (preferred tool).
- Agilent Instant Pilot G4208A, via More-Diagnosis-VWD-Holmium Spectrum Test.

The test uses the following holmium maxima:

- 360.8 nm
- 418.5 nm
- 536.4 nm

NOTE


See also "Declaration of Conformity for HOX2 Filter" on page 236.

When to do the Test

- after recalibration,
- as part of the Operational Qualification/Performance Verification procedure, or
- after flow cell maintenance or repair.

Interpreting the Results

The test is passed successfully when all three wavelengths are within ± 1 nm of the expected value. This indicates the detector is calibrated correctly.

Holmium Oxide Test with Agilent Lab Advisor

Figure 45 Holmium Oxide Test with Agilent Lab Advisor

Holmium Oxide Test Failed

Pr	obable cause	Suggested actions
1	Detector not calibrated.	Recalibrate the detector.
2	Dirty or defective flow cell.	Repeat the test with the flow cell removed. If the test is OK, exchange the flow cell components.
3	Dirty or defective holmium oxide filter.	Run the holmium oxide filter test. If the test fails, contact your Agilent service representative.
4	Optical misalignment.	Please contact your Agilent service representative.

8 Test Functions

Holmium Oxide Test

Maintenance and Repair

Introduction to Maintenance 130 Warnings and Cautions 131 Overview of Maintenance 133 Cleaning the Module 134 Exchanging a Lamp 135 Exchanging a Flow Cell 138 Repairing the Flow Cells 140 Using the Cuvette Holder 143 Correcting Leaks 145 Replacing Leak Handling System Parts 146 Replacing the Module's Firmware 147

This chapter provides general information on maintenance and repair of the detector.

Introduction to Maintenance

The module is designed for easy maintenance. Maintenance can be done from the front with module in place in the system stack.

NOTE There are no serviceable parts inside. Do not open the module.

Warnings and Cautions

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- → When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- → Do not operate the instrument in an explosive atmosphere.

WARNING Eye damage by detector light

Þ

Eye damage may result from directly viewing the UV-light produced by the lamp of the optical system used in this product.

→ Always turn the lamp of the optical system off before removing it.

WARNING

Electrical shock

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

- → Do not remove the cover of the module.
- → Only certified persons are authorized to carry out repairs inside the module.

9 Maintenance and Repair

Warnings and Cautions

WARNING	Personal injury or damage to the product Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.
	Use your Agilent products only in the manner described in the Agilent product user guides.
CAUTION	 Safety standards for external equipment → If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate
	for the type of external equipment.

Overview of Maintenance

The following pages describe maintenance (simple repairs) of the detector that can be carried out without opening the main cover.

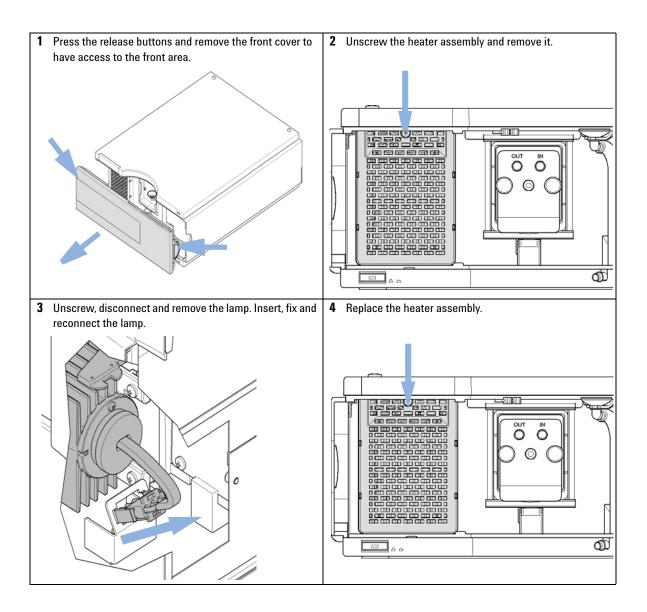
Procedures	Typical Frequency	Notes
Deuterium lamp exchange	If noise and/or drift exceeds your application limits or lamp does not ignite.	A VWD test should be performed after replacement.
Flow cell exchange	If application requires a different flow cell type.	A VWD test should be performed after replacement.
Cleaning flow cell parts cleaning or exchange	If leaking or if intensity drops due to contaminated flow cell windows.	A pressure tightness test should be done after repair.
Leak sensor drying	If leak has occurred.	Check for leaks.
Leak handling system replacement	If broken or corroded.	Check for leaks.

Table 16Simple Repairs

Cleaning the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module


- → Do not use an excessively damp cloth during cleaning.
- → Drain all solvent lines before opening any connections in the flow path.

Exchanging a Lamp

When	If noise or drift exceeds application limits or lamp does not ignite.		
Tools required	Description Screwdriver, Pozidriv #1 PT3		
Parts required	# p/n 1 G1314-60101	Description Deuterium lamp (with RFID tag)	
Preparations	Turn the lamp OFF.		
NOTE	If you want to use an Agilent DAD lamp instead of the VWD lamp, you have to change the lamp settings in the <i>VWD Configuration</i> to the required lamp type. This ensures that the DAD lamp's filament heating is operated like in the DAD.		
NOTE	The specification are based on the the standard RFID tag lamp (G1314-60101) and may be not achieved when other lamp types or aged lamps are used.		
WARNING	Injury by touching hot lamp If the detector has been in use, the lamp may be hot. → If so, wait for lamp to cool down.		
WARNING	Injury by sharp met → Be careful when edges.	t al edges touching the RFI sheet metal at the rear of the fan. There are sharp	
CAUTION	 Electronic boards and components are sensitive to electrostatic discharge (ESD). → To prevent accidental electrostatic discharge when coming into contact with components inside the instrument, touch one of the metal housing panels at the front of the instrument. 		

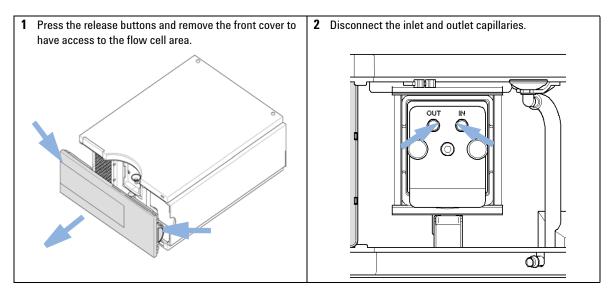
9 Maintenance and Repair

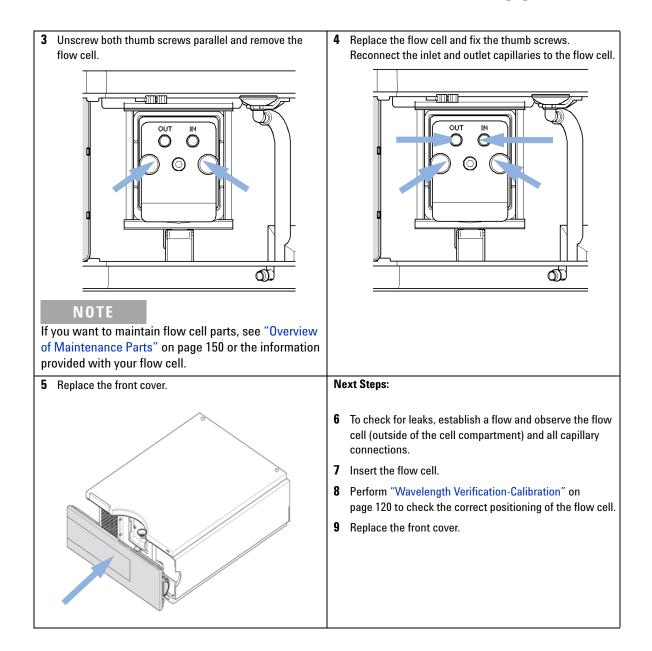
Exchanging a Lamp

Next Steps:

- **5** Replace the front cover.
- 6 Reset the lamp counter as described in the User Interface documentation (required for non-RFID tag lamps only).
- 7 Turn the lamp ON.
- **8** Give the lamp more than 10 minutes to warm-up.
- 9 Perform "Wavelength Verification-Calibration" on page 120 to check the correct positioning of the lamp.

NOTE


If the detector was turned off during the replacement, then the detector requires a warm-up time of 60 minutes. No measurements should be performed during this time.


Exchanging a Flow Cell

When	If application needs a different type of flow cell or the flow cell needs repair.	
Tools required	Description Wrench, 1/4 inch for capillary connections	
Parts required	# Description 1 Flow cell For flow cell details see	
	 "Standard Flow Cell 10 mm / 14 µL" on page 152 "Micro Flow Cell 3 mm / 2 µL" on page 154 "Semi-micro Flow Cell 6 mm / 5 µL" on page 156 "High Pressure Flow Cell 10 mm / 14 µL" on page 158 	

Preparations Tu

Turn the lamp OFF.

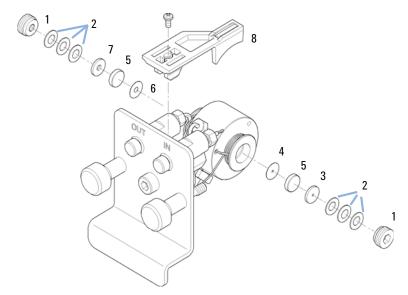
9 Maintenance and Repair Repairing the Flow Cells

Repairing the Flow Cells

Parts required

Description

1 Flow cell


For details on flow cells see

- "Standard Flow Cell 10 mm / 14 µL" on page 152
- "Micro Flow Cell 3 mm / 2 μL " on page 154
- "Semi-micro Flow Cell 6 mm / 5 μL" on page 156
- "High Pressure Flow Cell 10 mm / 14 $\mu L^{\prime\prime}$ on page 158

NOTE

The shown cell parts will differ depending upon the flow cell type. For detailed parts schematics, refer to above mentioned pages.

- 1 Cell screw
- 2 Conical springs
- 3 Ring #1 PEEK
- 4 Gasket #1 (small hole)
- 5 Window Quartz
- 6 Gasket #2 (large hole)
- 7 Ring #2 PEEK
- 8 RFID tag

Figure 46 Standard Flow Cell

- **1** Disassembling the Flow Cell.
 - a Unscrew the cell screw using a 4-mm hexagonal wrench.
 - **b** Remove the SST rings using a pair of tweezers.

CAUTION

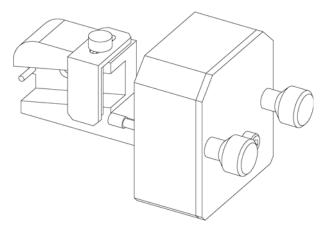
Scratched window surfaces by tweezers

Window surfaces can easily be scratched by using tweezers for removing the windows.

- → Do not use tweezers to remove windows
 - **c** Use adhesive tape to remove the peek ring, the window and the gasket.
 - **d** Repeat step a through step c for the other window (keep the parts separate otherwise they could be mixed!).

Repairing the Flow Cells

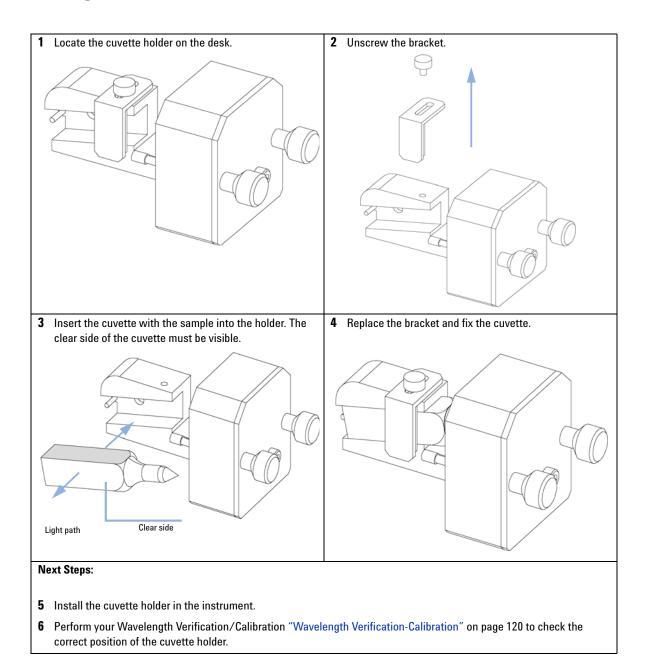
2 Cleaning the Flow Cell Parts


- **a** Pour isopropanol into the cell hole and wipe clean with a piece of lint-free cloth.
- ${\bf b}\,$ Clean the windows with ethanol or methanol. Dry it with a piece of lint-free cloth.

	lint-free cloth.			
NOTE	Always use new gaskets.			
	3 Reassembling the Flow Cell			
	a Hold the flow cell cassette horizontally and place gasket in position. Ensure both cell holes can be seen through the holes of gasket.			
NOTE	The semi-micro #1 and #2 gaskets (items 6 and 7, "Semi-micro Flow Cell 6 mm / 5 μ L" on page 156) look very similar. Do not mix them up.			
	b Place the window on gasket.			
	c Place the peek ring on the window.			
	d Insert the conical springs. Make sure the conical springs point towards the window. Otherwise tightening the cell screw might break the window.			
	Conical springs			
	Ring - Window - Gasket - Arrangement			
	Figure 47 Orientation of conical springs			
	e Screw the cell screw into the flow cell and tighten the screw.			
	4 Repeat the procedure for the other cell side.			
	5 Reconnect the capillaries.			
	6 Perform a leak test. If OK, insert the flow cell.			
	7 Perform "Wavelength Verification-Calibration" on page 120 to check the correct positioning of the flow cell.			
	8 Replace the front cover.			

Using the Cuvette Holder

This cuvette holder can be placed instead of a flow cell in the variable wavelength detector. Standard cuvettes with standards in it, for example, National Institute of Standards & Technology (NIST) holmium oxide solution standard, can be fixed in it.


This can be used for wavelength verifications.

When	If your own standard should be used to checkout the instrument.		
Parts required	#	p/n	Description
	1	G1314-60200	Cuvette Holder
	1		Cuvette with the "standard", e.g. NIST certified holmium oxide sample
Preparations	Remove the normal flow cell.Have cuvette with standard available.		

9 Maintenance and Repair

Using the Cuvette Holder

Correcting Leaks

When If a leakage has occurred in the flow cell area or at the capillary connections.

Tools required

Description Tissue Wrench, 1/4 inch for capillary connections

- **1** Remove the front cover.
- 2 Use tissue to dry the leak sensor area.
- **3** Observe the capillary connections and the flow cell area for leaks and correct, if required.
- **4** Replace the front cover.

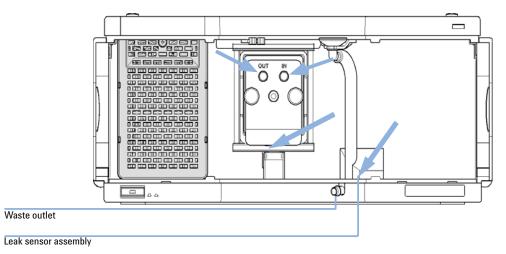


Figure 48 Drying the Leak Sensor

9 Maintenance and Repair

Replacing Leak Handling System Parts

Replacing Leak Handling System Parts

When	If the parts are corroded or broken.		
Tools required	None		
Parts required	#	p/n	Description
	1	5041-8389	Leak funnel holder
	1	5041-8388	Leak funnel
	1	5062-2463	Corrugated tubing, PP, 6.5 mm id, 5 m

- 1 Remove the front cover to have access to the leak handling system.
- 2 Pull the leak funnel out of the leak funnel holder.
- **3** Pull the leak funnel with the tubing out of its location.
- 4 Replace the leak funnel and/or the tubing.
- **5** Insert the leak funnel with the tubing in its position.
- **6** Insert the leak funnel into the leak funnel holder.
- 7 Replace the front cover.

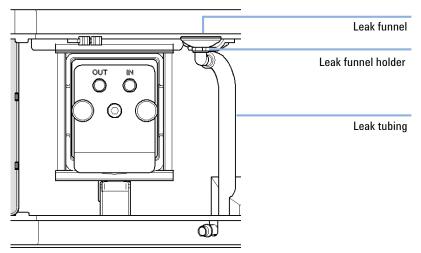


Figure 49 Replacing Waste Handling System Parts

Replacing the Module's Firmware

When	 The installation of newer firmware might be necessary if a newer version solves problems of older versions or to keep all systems on the same (validated) revision.
	 The installation of older firmware might be necessary to keep all systems on the same (validated) revision or if a new module with newer firmware is added to a system or if third party control software requires a special version.
Tools required	Description
	LAN/RS-232 Firmware Update Tool
OR	Agilent Lab Advisor software
OR	Instant Pilot G4208A
	(only if supported by module)
Parts required	# Description
	1 Firmware, tools and documentation from Agilent web site
Preparations	Read update documentation provided with the Firmware Update Tool.
	To upgrade/downgrade the module's firmware carry out the following steps:
	1 Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.
	• http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761
	2 For loading the firmware into the module follow the instructions in the documentation.

9 Maintenance and Repair

Replacing the Module's Firmware

Module Specific Information

Table 17 Module Specific Information

	G1314D	G1314E	G1314F
Initial firmware	B.06.20	B.06.20	B.06.30
Compatibility with 1100 / 1200 series modules	When using the G1314D in a system, all other modules must have firmware revision A.06.10 or B.06.10 or above (main and resident). Otherwise the communication will not work.	When using the G1314E in a system, all other modules must have firmware revision A.06.10 or B.06.10 or above (main and resident). Otherwise the communication will not work.	When using the G1314F in a system, all other modules must have firmware revision A.06.30 or B.06.30 or above (main and resident). Otherwise the communication will not work.
Conversion to / emulation of G1314B or G1314C	Not possible due to different hardware and electronic platform		

10 Parts and Materials for Maintenance

Overview of Maintenance Parts 150 Standard Flow Cell 10 mm / 14 µL 152 Micro Flow Cell 3 mm / 2 µL 154 Semi-micro Flow Cell 6 mm / 5 µL 156 High Pressure Flow Cell 10 mm / 14 µL 158 Cuvette Holder 160 Kits 151 Leak Parts 161

This chapter provides information on parts for maintenance.

10 Parts and Materials for Maintenance Overview of Maintenance Parts

Overview of Maintenance Parts

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m
G1314-60101	Deuterium lamp (with RFID tag)
G1314-60186	Standard flow cell 10 mm, 14 μL, 40 bar (with RFID tag)
G1314-60187	Micro flow cell 3 mm, 2 µL, 120 bar (with RFID tag)
G1314-60183	Semi-micro flow cell 6 mm, 5 µL (with RFID tag)
G1314-60182	High pressure flow cell 10 mm, 14 µL, 400 bar (with RFID tag)
G1314-60200	Cuvette Holder
5067-4691	Front Panel DAD/VWD/FLD (1260/1290)
5065-9982	Front Panel DAD/VWD/FLD (1200)

For details on flow cells, refer to

- "Standard Flow Cell 10 mm / 14 µL" on page 152,
- "Micro Flow Cell 3 mm / 2 μL " on page 154,
- "Semi-micro Flow Cell 6 mm / 5 µL" on page 156 and
- "High Pressure Flow Cell 10 mm / 14 μL " on page 158.

Kits

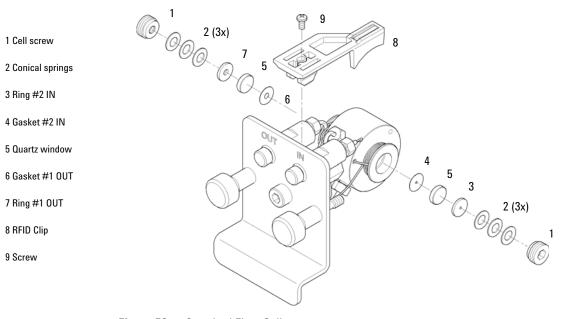
HPLC System Tool Kit

HPLC System Tool Kit (G4203-68708) contains some accessories and tools needed for installation and maintenance of the module.

Accessory Kit

Accessory kit (G1314-68755) contains some accessories and tools needed for installation and repair of the module.

p/n	Description
0100-1516	Fitting male PEEK, 2/pk
5062-8535	Waste accessory kit, PEEK capillary 0.25 mm i.d., 1/16 o.d., 500 mm long plus 2 MT PTFE tubing i.d. 0.8 m, 1/16 o.d.
5063-6527	Tubing assembly, i.d. 6 mm, o.d. 9 mm, 1.2 m (to waste)
5181-1516	CAN cable, Agilent module to module, 0.5 m


10 Parts and Materials for Maintenance

Standard Flow Cell 10 mm / 14 µL

Standard Flow Cell 10 mm / 14 μL

ltem	p/n	Description
	G1314-60186	Standard flow cell 10 mm, 14 μL, 40 bar (with RFID tag)
	5062-8522	Capillary column - detector PEEK 600 mm lg, 0.17 mm i.d., 1/16 inch o.d.
	G1314-65061	Cell Repair Kit, includes 2x Gasket #1, 2x Gasket #2, 2x Window Quartz
1	G1314-65062	Cell screw kit
2	79853-29100	Conical spring kit, 10/pk
3	G1314-65066	Ring #2 kit (IN small hole, i.d. 1 mm) PEEK, 2/pk
4	G1314-65064	Gaskets #2 IN (small hole i.d. 1 mm), KAPTON 10/pk
5	79853-68742	Window quartz kit, 2/pk
6	G1314-65063	Gasket #1 kit (OUT large hole, i.d. 2.4 mm) KAPTON, 2/pk
7	G1314-65065	Ring #1 kit (OUT large hole, i.d. 2.4 mm) PEEK, 2/pk
8	G1314-44010	Clip for RFI ID tag
9	0515-4780	Screw for Clip, M2.2, 4.5 mm long

Standard Flow Cell 10 mm / 14 μL

10 Parts and Materials for Maintenance Micro Flow Cell 3 mm / 2 μL

Micro Flow Cell 3 mm / 2 μL

ltem	p/n	Description
	G1314-60187	Micro flow cell 3 mm, 2 µL, 120 bar (with RFID tag)
	5021-1823	Capillary column – detector SST 400 mm lg, 0.12 mm i.d.
1	79883-22402	Window screw
2	5062-8553	Washer kit (10/pk)
3	79883-28801	Compression washer
4	79883-22301	Window holder
5	1000-0488	Quartz window
6	G1315-68710	Gasket FRONT (PTFE), 1.3 mm hole, inlet side (12/pk)
7	79883-68702	Gasket BACK (PTFE), 1.8 mm hole, outlet side (12/pk)
8	G1314-44010	Clip for RFI ID tag
9	0515-4780	Screw for Clip, M2.2, 4.5 mm long
	G1314-87301	Capillary IN (0.12 mm, 310 mm lg)
	G1314-87302	Capillary OUT (0.17 mm, 120 mm lg)
	G1315-68713	Cell repair kit semi-micro, includes window screw kit, Gasket Kit BACK, Gasket Kit FRONT and 4 mm hexagonal wrench
	79883-68703	Window screw kit, includes 2 quartz windows, 2 compression washers, 2 window holders, 2 window screws and 10 washers

Micro Flow Cell 3 mm / 2 µL

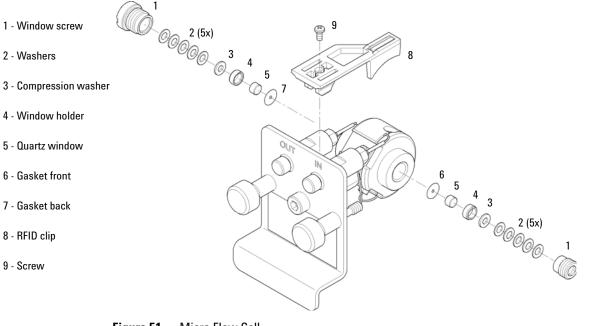
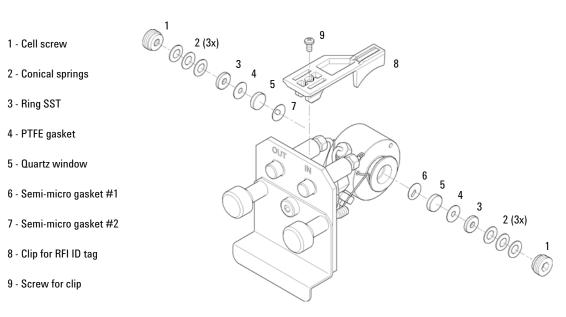


Figure 51 **Micro Flow Cell**

10 Parts and Materials for Maintenance

Semi-micro Flow Cell 6 mm / 5 μL


Semi-micro Flow Cell 6 mm / 5 μL

NOTE

The semi-micro #1 and #2 gaskets (items 6 and 7) look very similar. Do not mix them up.

ltem	p/n	Description
	G1314-60183	Semi-micro flow cell 6 mm, 5 µL (with RFID tag)
	5021-1823	Capillary column – detector SST 400 mm lg, 0.12 mm i.d.
1	G1314-20047	Cell screw
	G1314-65056	Semi-micro cell kit, includes two quartz windows, one gasket #1, one #2 and two PTFE gaskets.
2	79853-29100	Conical spring kit, 10/pk
3	79853-22500	Ring SST, 2/pk
4	79853-68743	PTFE gasket (round hole i.d. 2.5 mm, o.d. 8 mm), (10/pk)
5	79853-68742	Window quartz kit, 2/pk
6		Semi-micro #1 gasket (long hole 1.5 x 3.5 mm), PTFE
7		Semi-micro #2 gasket (long hole 2 x 4 mm), PTFE
8	G1314-44010	Clip for RFI ID tag
9	0515-4780	Screw for Clip, M2.2, 4.5 mm long

Semi-micro Flow Cell 6 mm / 5 μ L

10 Parts and Materials for Maintenance

High Pressure Flow Cell 10 mm / 14 μL

High Pressure Flow Cell 10 mm / 14 μL

ltem	p/n	Description
	G1314-60182	High pressure flow cell 10 mm, 14 μL, 400 bar (with RFID tag)
	G1315-87311	Capillary ST 0.17 mm x 380 mm S/S
1	G1314-20047	Cell screw
	G1314-65054	Cell kit Agilent, comprises: two windows, two KAPTON gaskets and two PEEK rings
2		Ring PEEK kit
3		Window quartz kit
4		Gasket kit, KAPTON
5	G1314-44010	Clip for RFI ID tag
6	0515-4780	Screw for Clip, M2.2, 4.5 mm long

Parts and Materials for Maintenance 10

High Pressure Flow Cell 10 mm / 14 μL

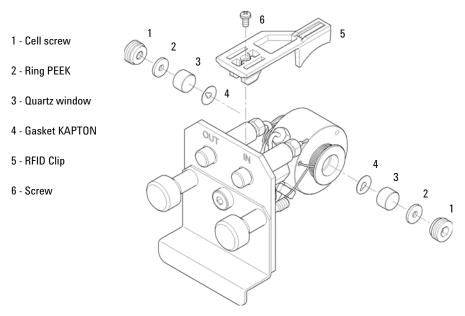


Figure 53 High Pressure Flow Cell

10 Parts and Materials for Maintenance Cuvette Holder

Cuvette Holder

For information the use of the cuvette holder, refer to "Using the Cuvette Holder" on page 143.

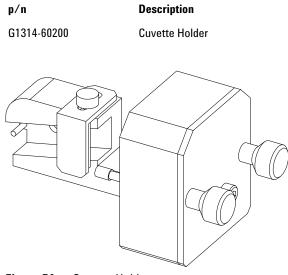


Figure 54 Cuvette Holder

Leak Parts

ltem	p/n	Description
3	5041-8388	Leak funnel
4	5041-8389	Leak funnel holder
5	5041-8387	Tube clip
6	5062-2463	Corrugated tubing, PP, 6.5 mm id, 5 m
7	5062-2463	Corrugated tubing, PP, 6.5 mm id, 5 m

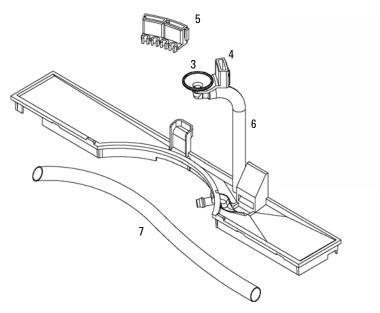
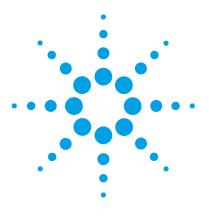



Figure 55 Leak Parts

10 Parts and Materials for Maintenance

Leak Parts

11 Identifying Cables

Cable Overview 164 Analog Cables 166 Remote Cables 168 BCD Cables 171 CAN/LAN Cables 173 RS-232 Cables 174

This chapter provides information on cables used with the Agilent 1200 Infinity Series modules.

Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Analog cables

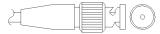
p/n	Description
35900-60750	Agilent module to 3394/6 integrators
35900-60750	Agilent 35900A A/D converter
01046-60105	Analog cable (BNC to general purpose, spade lugs)
Remote cables	
p/n	Description
p∕n 03394-60600	Description Agilent module to 3396A Series I integrators
-	•
-	Agilent module to 3396A Series I integrators 3396 Series II / 3395A integrator, see details in section "Remote
03394-60600	Agilent module to 3396A Series I integrators 3396 Series II / 3395A integrator, see details in section "Remote Cables" on page 168

BCD cables

p/n	Description
03396-60560	Agilent module to 3396 integrators
G1351-81600	Agilent module to general purpose

CAN cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m


LAN cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

RS-232 cables

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 3394/6 Integrators

p/n 35900-60750	Pin 3394/6	Pin Agilent module	Signal Name
	1		Not connected
	2	Shield	Analog -
	3	Center	Analog +

Agilent Module to BNC Connector

p/n 8120-1840	Pin BNC	Pin Agilent module	Signal Name
	Shield	Shield	Analog -
	Center	Center	Analog +

Agilent Module to General Purpose

p/n 01046-60105	Pin	Pin Agilent module	Signal Name
	1		Not connected
5	2	Black	Analog -
- AL	3	Red	Analog +
	3		
	~		

Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

Agilent Module to 3396A Integrators

p/n 03394-60600	Pin 3396A	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	5,14	7 - Red	Ready	High
	1	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series II / 3395A Integrators

Use the cable Agilent module to 3396A Series I integrators (03394-60600) and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.

p/n 03396-61010	Pin 33XX	Pin Agilent module	Signal Name	Active (TTL)
	9	1 - White	Digital ground	
80 15	NC	2 - Brown	Prepare run	Low
	3	3 - Gray	Start	Low
	NC	4 - Blue	Shut down	Low
	NC	5 - Pink	Not connected	
	NC	6 - Yellow	Power on	High
	14	7 - Red	Ready	High
	4	8 - Green	Stop	Low
	NC	9 - Black	Start request	Low
	13, 15		Not connected	

Agilent Module to 3396 Series III / 3395B Integrators

Agilent Module to Agilent 35900 A/D Converters

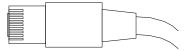
'n 5061-3378	Pin 35900 A/D	Pin Agilent module	Signal Name	Active (TTL)
	1 - White	1 - White	Digital ground	
	2 - Brown	2 - Brown	Prepare run	Low
50 09	3 - Gray	3 - Gray	Start	Low
	4 - Blue	4 - Blue	Shut down	Low
	5 - Pink	5 - Pink	Not connected	
	6 - Yellow	6 - Yellow	Power on	High
	7 - Red	7 - Red	Ready	High
	8 - Green	8 - Green	Stop	Low
	9 - Black	9 - Black	Start request	Low

)/n 01046-60201	Wire Color	Pin Agilent module	Signal Name	Active (TTL)
	White	1	Digital ground	
	Brown	2	Prepare run	Low
	Gray	3	Start	Low
	Blue	4	Shut down	Low
	Pink	5	Not connected	
S 0 15	Yellow	6	Power on	High
	Red	7	Ready	High
	Green	8	Stop	Low
	Black	9	Start request	Low

Agilent Module to General Purpose

BCD Cables

One end of these cables provides a 15-pin BCD connector to be connected to the Agilent modules. The other end depends on the instrument to be connected to


Agilent Module to General Purpose

p/n G1351-81600	Wire Color	Pin Agilent module	Signal Name	BCD Digit
	Green	1	BCD 5	20
	Violet	2	BCD 7	80
	Blue	3	BCD 6	40
	Yellow	4	BCD 4	10
	Black	5	BCD 0	1
	Orange	6	BCD 3	8
	Red	7	BCD 2	4
	Brown	8	BCD 1	2
	Gray	9	Digital ground	Gray
	Gray/pink	10	BCD 11	800
	Red/blue	11	BCD 10	400
	White/green	12	BCD 9	200
	Brown/green	13	BCD 8	100
	not connected	14		
	not connected	15	+ 5 V	Low

Agilent Module to 3396 Integrators

p/n 03396-60560	Pin 3396	Pin Agilent module	Signal Name	BCD Digit
	1	1	BCD 5	20
8 = 15	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
● ○ ● ○ 1 ● ● 9	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Digital ground	
	NC	15	+ 5 V	Low

CAN/LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

p/n	Description
5181-1516	CAN cable, Agilent module to module, 0.5 m
5181-1519	CAN cable, Agilent module to module, 1 m

LAN Cables

p/n	Description
5023-0203	Cross-over network cable, shielded, 3 m (for point to point connection)
5023-0202	Twisted pair network cable, shielded, 7 m (for point to point connection)

11 Identifying Cables RS-232 Cables

RS-232 Cables

p/n	Description
G1530-60600	RS-232 cable, 2 m
RS232-61601	RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.
5181-1561	RS-232 cable, 8 m

12 Hardware Information

Firmware Description 176 **Electrical Connections** 179 Rear View of the Module 180 Information on Instrument Serial Number 181 Interfaces 182 Overview Interfaces 185 Setting the 8-bit Configuration Switch 189 Special Settings 191 Instrument Layout 193 Early Maintenance Feedback (EMF) 194 EMF Counter 194 Using the EMF Counters 195

This chapter describes the detector in more detail on hardware and electronics.

Firmware Description

The firmware of the instrument consists of two independent sections:

- a non-instrument specific section, called resident system
- an instrument specific section, called main system

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'main system'

Main System

Its properties are:

- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- · ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like

- run synchronization through APG remote,
- error handling,
- diagnostic functions,
- or module specific functions like
 - internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.

Firmware Updates

Firmware updates can be done using your user interface:

- · PC and Firmware Update Tool with local files on the hard disk
- · Instant Pilot (G4208A) with files from a USB Flash Disk
- Agilent Lab Advisor software B.01.03 and above

The file naming conventions are:

PPPP_RVVV_XXX.dlb, where

PPPP is the product number, for example, 1315AB for the G1315A/B DAD,

R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 102 is revision 1.02,

XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

NOTE

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.

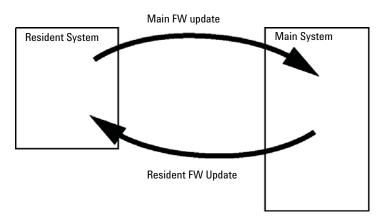


Figure 56 Firmware Update Mechanism

12 Hardware Information

Firmware Description

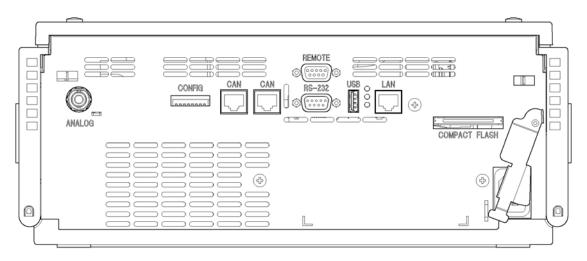
NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case the feature set of the target type are use and the feature set of the original are lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.


• http://www.chem.agilent.com/_layouts/agilent/downloadFirmware.aspx?whid=69761

Electrical Connections

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal module data transfer and synchronization.
- One analog output provides signals for integrators or data handling systems.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch.
- The power input socket accepts a line voltage of 100 240 VAC ± 10 % with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Rear View of the Module

Figure 57 Rear View of Detector

NOTE

The Compact Flash card slot is used for the G1314E VWD only.

Information on Instrument Serial Number

Serial Number Information 1200 Series and 1290 Infinity

The serial number information on the instrument labels provide the following information:

CCYWWSSSSS	Format
СС	 country of manufacturing DE = Germany JP = Japan CN = China
YWW	year and week of last major manufacturing change, e.g. 820 could be week 20 of 1998 or 2008
SSSSS	real serial number

Serial Number Information 1260 Infinity

The serial number information on the instrument labels provide the following information:

CCXZZ00000	Format
CC	Country of manufacturing • DE = Germany • JP = Japan • CN = China
Х	Alphabetic character A-Z (used by manufacturing)
ZZ	Alpha-numeric code 0-9, A-Z, where each combination unambiguously denotes a module (there can be more than one code for the same module)
00000	Serial number

12 Hardware Information Interfaces

Interfaces

The Agilent 1200 Infinity Series modules provide the following interfaces:

 Table 18
 Agilent 1200 Infinity Series Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Pumps							
G1310B Iso Pump G1311B Quat Pump G1311C Quat Pump VL G1312B Bin Pump K1312B Bin Pump Clinical Ed. G1312C Bin Pump VL 1376A Cap Pump G2226A Nano Pump G5611A Bio-inert Quat Pump	2	Yes	No	Yes	1	Yes	
G4220A/B Bin Pump G4204A Quat Pump	2	No	Yes	Yes	No	Yes	CAN-DC- OUT for CAN slaves
G1361A Prep Pump	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves
Samplers							
G1329B ALS G2260A Prep ALS	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B
G1364B FC-PS G1364C FC-AS G1364D FC-µS G1367E HiP ALS K1367E HiP ALS Clinical Ed. G1377A HiP micro ALS G2258A DL ALS G5664A Bio-inert FC-AS G5667A Bio-inert Autosampler	2	Yes	No	Yes	No	Yes	THERMOSTAT for G1330B/K1330B CAN-DC- OUT for CAN slaves
G4226A ALS	2	Yes	No	Yes	No	Yes	

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
Detectors							
G1314B VWD VL G1314C VWD VL+	2	Yes	No	Yes	1	Yes	
G1314E/F VWD K1314F Clinical Ed.	2	No	Yes	Yes	1	Yes	
G4212A/B DAD K4212B DAD Clinical Ed.	2	No	Yes	Yes	1	Yes	
G1315C DAD VL+ G1365C MWD G1315D DAD VL G1365D MWD VL	2	No	Yes	Yes	2	Yes	
G1321B FLD K1321B FLD Clinical Ed. G1321C FLD	2	Yes	No	Yes	2	Yes	
G1362A RID	2	Yes	No	Yes	1	Yes	
G4280A ELSD	No	No	No	Yes	Yes	Yes	EXT Contact AUTOZERO
Others							
G1170A Valve Drive	2	No	No	No	No	No	1
G1316A/C TCC K1316C TCC Clinical Ed.	2	No	No	Yes	No	Yes	
G1322A DEG K1322A DEG Clinical Ed.	No	No	No	No	No	Yes	AUX
G1379B DEG	No	No	No	Yes	No	Yes	
G4225A DEG K4225A DEG Clinical Ed.	No	No	No	Yes	No	Yes	

Table 18 Agilent 1200 Infinity Series Interfaces

12 Hardware Information Interfaces

Module	CAN	LAN/BCD (optional)	LAN (on-board)	RS-232	Analog	APG Remote	Special
G4227A Flex Cube	2	No	No	No	No	No	CAN-DC- OUT for CAN slaves 1
G4240A CHIP CUBE	CHIP CUBE 2 Yes		No	Yes	No	Yes	CAN-DC- OUT for CAN slaves THERMOSTAT for G1330A/B (NOT USED), K1330B

Table 18 Agilent 1200 Infinity Series Interfaces

Requires a HOST module with on-board LAN (e.g. G4212A or G4220A with minimum firmware B.06.40 or C.06.40) or with additional G1369C LAN Card

NOTE

The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- CAN connectors as interface to other modules
- · LAN connector as interface to the control software
- RS-232C as interface to a computer
- · REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output

Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for an LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flex Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

NOTE

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

RS-232C (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module at the rear of the module. Refer to *Communication Settings for RS-232C*.

NOTE

There is no configuration possible on main boards with on-board LAN. These are pre-configured for

- 19200 baud,
- 8 data bit with no parity and
- one start bit and one stop bit are always used (not selectable).

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

12 Hardware Information

Interfaces

Pin	Direction	Function
1	In	DCD
2	In	RxD
3	Out	TxD
4	Out	DTR
5		Ground
6	In	DSR
7	Out	RTS
8	In	CTS
9	In	RI

 Table 19
 RS-232C Connection Table

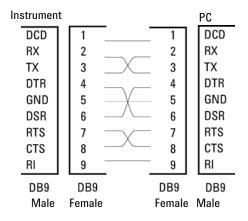


Figure 58 RS-232 Cable

Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module's main board.

APG Remote

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).

12 Hardware Information

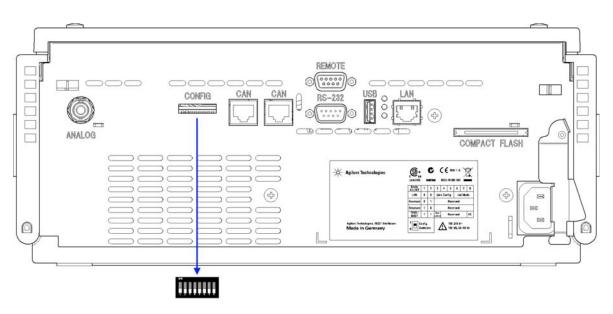
Interfaces

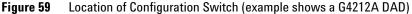
Pin	Signal	Description
1	DGND	Digital ground
2	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.
3	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.
4	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.
5		Not used
6	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.
7	READY	(H) System is ready for next analysis. Receiver is any sequence controller.
8	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.
9	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.

Special Interfaces

There is no special interface for this module.

Setting the 8-bit Configuration Switch


The 8-bit configuration switch is located at the rear of the module. Switch settings provide configuration parameters for LAN, serial communication protocol and instrument specific initialization procedures.


All modules with on-board LAN:

- Default is ALL switches DOWN (best settings).
 - · Bootp mode for LAN and
 - 19200 baud, 8 data bit / 1 stop bit with no parity for RS-232
- For specific LAN modes switches 3-8 must be set as required.
- For boot/test modes switches 1+2 must be UP plus required mode.

NOTE

For normal operation use the default (best) settings.

12 Hardware Information

Setting the 8-bit Configuration Switch

NOTE

To perform any LAN configuration, SW1 and SW2 must be set to OFF. For details on the LAN settings/configuration refer to chapter LAN Configuration.

	Mode		Function					
	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8
LAN	0	0	Link	Configuratio	n	Init	Mode Sele	ction
Auto-ne	gotiation		0	x	x	x	х	х
10 MBit,	half-duplex		1	0	0	x	x	х
10 MBit,	full-duplex		1	0	1	x	x	x
100 MBit, half-duplex		1	1	0	x	x	x	
100 MBit, full-duplex			1	1	1	x	x	x
Bootp		x	x	x	0	0	0	
Bootp	& Store		x	x	x	0	0	1
Using	Stored		x	x	x	0	1	0
DHCP		x	x	x	1	0	0	
Using	Default		x	x	x	0	1	1
TEST	1	1	System					NVRA
Boot Resident System		1					x	
Revert to Default Data (Coldstart)		x	x	x	İ		1	

Table 21 8-bit Configuration Switch (with on-board LAN)

Legend:

0 (switch down), 1 (switch up), x (any position)

NOTE

When selecting the mode TEST, the LAN settings are: Auto-Negotiation & Using Stored.

NOTE

For explanation of "Boot Resident System" and "Revert to Default Data (Coldstart)" refer to "Special Settings" on page 191.

Special Settings

The special settings are required for specific actions (normally in a service case).

NOTE The tables include both settings for modules – with on-board LAN and without on-board LAN. They are identified as LAN and no LAN.

Boot-Resident

Firmware update procedures may require this mode in case of firmware loading errors (main firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident mode. It is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

 Table 22
 Boot Resident Settings (On-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	1	0	0	0	0	0

12 Hardware Information

Setting the 8-bit Configuration Switch

Forced Cold Start

A forced cold start can be used to bring the module into a defined mode with default parameter settings.

CAUTION

Loss of data

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are calibration settings, diagnosis and repair log books which will not be erased.

→ Save your methods and data before executing a forced cold start.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

 Table 23
 Forced Cold Start Settings (On-board LAN)

Mode Select	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
TEST/BOOT	1	1	0	0	0	0	0	1

Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.

12 Hardware Information

Early Maintenance Feedback (EMF)

Early Maintenance Feedback (EMF)

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the instrument and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counter

The detector module provides an EMF counter for the lamp. The counter increments with lamp use, and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Dependig on the lamp type the counter can be reset to zero after the lamp is exchanged.

Lamp Type	Counter Reset	Comment
lamp with RFID tag	NO	
lamp without RFID tag	YES	via Lab Advisor or Instant Pilot

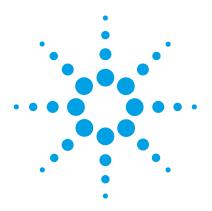
The detector provides the following EMF counters:

- Deuterium Lamp On-Time
- Number of UV lamp ignitions

Using the EMF Counters

The user-settable EMF limits for the EMF counters enable the early maintenance feedback to be adapted to specific user requirements. The useful lamp burn time is dependent on the requirements for the analysis (high or low sensitivity analysis, wavelength etc.), therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits


The setting of the EMF limits must be optimized over one or two maintenance cycles. Initially, no EMF limit should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by lamp counters. Enter these values (or values slightly less than the displayed values) as EMF limits, and then reset the EMF counters to zero. The next time the EMF counters exceed the new EMF limits, the EMF flag will be displayed, providing a reminder that maintenance needs to be scheduled.

NOTE

This function is only available via Agilent Lab Advisor or Instant Pilot.

12 Hardware Information

Early Maintenance Feedback (EMF)

13 LAN Configuration

What you have to do first 198 TCP-IP parameter configuration 199 Configuration Switches 200 Initialization mode selection 201 Dynamic Host Configuration Protocol (DHCP) 205 General Information (DHCP) 205 Setup (DHCP) 206 Link configuration selection 208 Automatic configuration with Bootp 209 About Agilent BootP Service 209 How BootP Service Works 210 Situation: Cannot Establish LAN Communication 210 Installation of BootP Service 211 Two Methods to Determine the MAC Address 213 Assigning IP Addresses Using the Agilent BootP Service 214 Changing the IP Address of an Instrument Using the Agilent BootP Service 217 Manual Configuration 219 With Telnet 220 With the Instant Pilot (G4208A) 224 PC and User Interface Software Setup 225 PC Setup for Local Configuration 225 User Interface Software Setup 226

This chapter provides information on connecting the detector to the Agilent ChemStation PC.

What you have to do first

What you have to do first

The module has an on-board LAN communication interface.

1 Note the MAC (Media Access Control) address for further reference. The MAC or hardware address of the LAN interfaces is a world wide unique identifier. No other network device will have the same hardware address. The MAC address can be found on a label at the rear of the module underneath the configuration switch.

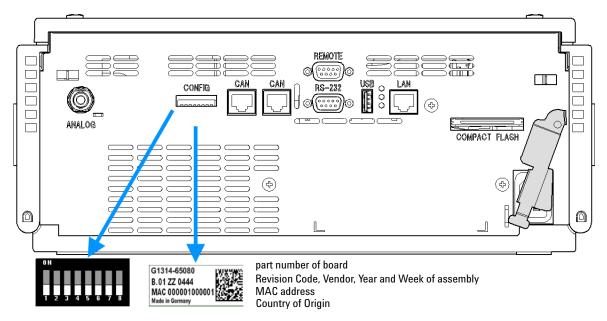


Figure 60 Location of Configuration Switch and MAC Label

- 2 Connect the instrument's LAN interface to
 - the PC network card using a crossover network cable (point-to-point) or
 - a hub or switch using a standard LAN cable.

TCP-IP parameter configuration

To operate properly in a network environment, the LAN interface must be configured with valid TCP/IP network parameters. These parameters are:

- IP address
- Subnet Mask
- Default Gateway

The TCP/IP parameters can be configured by the following methods:

- by automatically requesting the parameters from a network-based BOOTP Server (using the so-called Bootstrap Protocol)
- by automatically requesting the parameters from a network-based DHCP Server (using the so-called Dynamic Host Configuration Protocol). This mode requires a LAN-onboard Module or a G1369C LAN Interface card, see "Setup (DHCP)" on page 206
- by manually setting the parameters using Telnet
- by manually setting the parameters using the Instant Pilot (G4208A)

The LAN interface differentiates between several initialization modes. The initialization mode (short form 'init mode') defines how to determine the active TCP/IP parameters after power-on. The parameters may be derived from a Bootp cycle, non-volatile memory or initialized with known default values. The initialization mode is selected by the configuration switch, see Table 25 on page 201.

Configuration Switches

The configuration switch can be accessed at the rear of the module, see figure below.

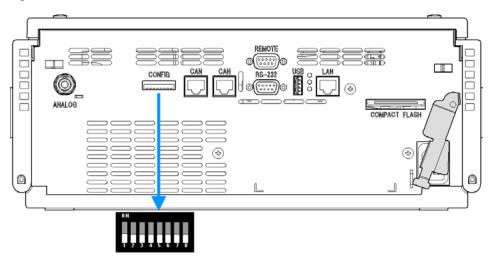


Figure 61 Location of Configuration Switch

The module is shipped with all switches set to OFF, as shown above.

To perform any LAN configuration, SW1 and SW2 must be set to OFF.

Table 24 Factory Default Settings

Initialization ('Init') Mode	Bootp, all switches down. For details see Figure 62 on page 201
Link Configuration	speed and duplex mode determined by auto-negotiation, for details see "Link configuration selection" on page 208

NOTE

Initialization mode selection

The following initialization (init) modes are selectable:

 Table 25
 Initialization Mode Switches

	SW 6	SW 7	SW 8	Init Mode
ON	OFF	OFF	OFF	Bootp
	OFF	OFF	ON	Bootp & Store
	OFF	ON	OFF	Using Stored
1 2 3 4 5 6 7 8	OFF	ON	ON	Using Default
	ON	OFF	OFF	DHCP ¹

¹ Requires firmware B.06.40 or above. Modules without LAN on board, see G1369C LAN Interface Card

Bootp

When the initialization mode **Bootp** is selected, the module tries to download the parameters from a **Bootp** Server. The parameters obtained become the active parameters immediately. They are not stored to the non-volatile memory of the module. Therefore, the parameters are lost with the next power cycle of the module.

Figure 62 Bootp (Principle)

Initialization mode selection

Bootp & Store

When **Bootp & Store** is selected, the parameters obtained from a **Bootp** Server become the active parameters immediately. In addition, they are stored to the non-volatile memory of the module. Thus, after a power cycle they are still available. This enables a kind of bootp once configuration of the module.

Example: The user may not want to have a **Bootp** Server be active in his network all the time. But on the other side, he may not have any other configuration method than **Bootp**. In this case he starts the **Bootp** Server temporarily, powers on the module using the initialization mode **Bootp & Store**, waits for the **Bootp** cycle to be completed, closes the **Bootp** Server and powers off the module. Then he selects the initialization mode Using Stored and powers on the module again. From now on, he is able to establish the TCP/IP connection to the module with the parameters obtained in that single **Bootp** cycle.

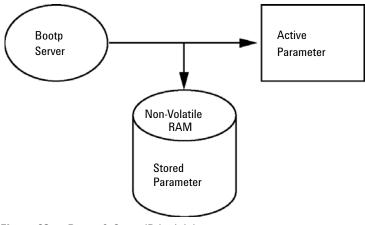


Figure 63 Bootp & Store (Principle)

NOTE

Use the initialization mode **Bootp & Store** carefully, because writing to the non-volatile memory takes time. Therefore, when the module shall obtain its parameters from a **Bootp** Server every time it is powered on, the recommended initialization mode is **Bootp**!

Using Stored

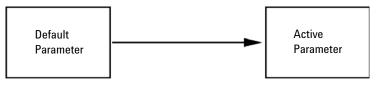

When initialization mode **Using Stored** is selected, the parameters are taken from the non-volatile memory of the module. The TCP/IP connection will be established using these parameters. The parameters were configured previously by one of the described methods.

Figure 64 Using Stored (Principle)

Using Default

When **Using Default** is selected, the factory default parameters are taken instead. These parameters enable a TCP/IP connection to the LAN interface without further configuration, see Table 26 on page 204.

Figure 65 Using Default (Principle)

NOTE

Using the default address in your local area network may result in network problems. Take care and change it to a valid address immediately.

13 LAN Configuration

Initialization mode selection

Table 26	Using Default Parameters
----------	--------------------------

IP address:	192.168.254.11
Subnet Mask:	255.255.255.0
Default Gateway	not specified

Since the default IP address is a so-called local address, it will not be routed by any network device. Thus, the PC and the module must reside in the same subnet.

The user may open a Telnet session using the default IP address and change the parameters stored in the non-volatile memory of the module. He may then close the session, select the initialization mode Using Stored, power-on again and establish the TCP/IP connection using the new parameters.

When the module is wired to the PC directly (e.g. using a cross-over cable or a local hub), separated from the local area network, the user may simply keep the default parameters to establish the TCP/IP connection.

NOTE

In the **Using Default** mode, the parameters stored in the memory of the module are not cleared automatically. If not changed by the user, they are still available, when switching back to the mode Using Stored.

Dynamic Host Configuration Protocol (DHCP)

General Information (DHCP)

The Dynamic Host Configuration Protocol (DHCP) is an auto configuration protocol used on IP networks. The DHCP functionality is available on all Agilent HPLC modules with on-board LAN Interface or LAN Interface Card, and "B"-firmware (B.06.40 or above).

When the initialization mode "DHCP" is selected, the card tries to download the parameters from a DHCP Server. The parameters obtained become the active parameters immediately. They are not stored to the non-volatile memory of the card.

Besides requesting the network parameters, the card also submits its hostname to the DHCP Server. The hostname equals the MAC address of the card, e.g. *0030d3177321*. It is the DHCP server's responsibility to forward the hostname/address information to the Domain Name Server. The card does not offer any services for hostname resolution (e.g. NetBIOS).

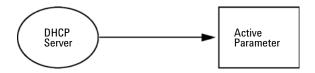


Figure 66 DHCP (Principle)

NOTE

- 1 It may take some time until the DHCP server has updated the DNS server with the hostname information.
- 2 It may be necessary to fully qualify the hostname with the DNS suffix, e.g. 0030d3177321.country.company.com.
- **3** The DHCP server may reject the hostname proposed by the card and assign a name following local naming conventions.

13 LAN Configuration

Dynamic Host Configuration Protocol (DHCP)

Setup (DHCP)

Software required

The modules in the stack must have at least firmware from set A.06.34 and the above mentioned modules B.06.40 or above (must from the same firmware set).

1 Note the MAC address of the LAN interface (provided with G1369C LAN Interface Card or Main Board). This MAC address is on a label on the card or at the rear of the main board, e.g. 0030d3177321.

On the Instant Pilot the MAC address can be found under **Details** in the LAN section.

	System Info	
	be i	
Property	Value	
	oller : DE12345678 (G4208A)	Reload
Main Revision	B.02.12 [0001]	(Cloud
	D : DE64260019 (G1315D)	
Main Revision	B.06.41 [0002]	
Resident Revison	B.06.40 [0007]	Print
On-time	3d 01:33h	_ <u></u>
Installed Options	Dhcp	
LAN TCP/IP Mode	DHCP	
LAN TCP/IP Address	130.168.132.219	
LAN MAC Address	0030D314F89E	
Board ID	TYPE=G1315-66565, SER=MAC, REV=AC, MFG=	
Lamp	2140-0820 : 848728	
Cell	no info	
		Exit
nformation on each m	odule.	10:08
T		

Figure 67 LAN Setting on Instant Pilot

2 Set the Configuration Switch to DHCP either on the G1369C LAN Interface Card or the main board of above mentioned modules.

 Table 27
 G1369C LAN Interface Card (configuration switch on the card)

SW 4	SW 5	SW 6	SW 7	SW 8	Initialization Mode
ON	OFF	OFF	OFF	OFF	DHCP

 Table 28
 LC Modules inclusive 1120/1220 (configuration switch at rear of the instrument)

SW 6	SW 7	SW 8	Initialization Mode
ON	OFF	OFF	DHCP

- **3** Turn on the module that hosts the LAN interface.
- 4 Configure your Control Software (e.g. Agilent ChemStation, Lab Advisor, Firmware Update Tool) and use MAC address as host name, e.g. 0030d3177321.

The LC system should become visible in the control software (see Note in section "General Information (DHCP)" on page 205).

Link configuration selection

Link configuration selection

The LAN interface supports 10 or 100 Mbps operation in full- or half-duplex modes. In most cases, full-duplex is supported when the connecting network device - such as a network switch or hub - supports IEEE 802.3u auto-negotiation specifications.

When connecting to network devices that do not support auto-negotiation, the LAN interface will configure itself for 10- or 100-Mbps half-duplex operation.

For example, when connected to a non-negotiating 10-Mbps hub, the LAN interface will be automatically set to operate at 10-Mbps half-duplex.

If the module is not able to connect to the network through auto-negotiation, you can manually set the link operating mode using link configuration switches on the module.

	SW 3	SW 4	SW 5	Link Configuration
0N	OFF	-	-	speed and duplex mode determined by auto-negotiation
	ON	OFF	OFF	manually set to 10 Mbps, half-duplex
1 2 3 4 5 6 7 8	ON	OFF	ON	manually set to 10 Mbps, full-duplex
	ON	ON	OFF	manually set to 100 Mbps, half-duplex
	ON	ON	ON	manually set to 100 Mbps, full-duplex

Table 29 Link Configuration Switches

Automatic configuration with Bootp

NOTE	All examples shown in this chapter will not work in your environment. You need your own IP-, Subnet-Mask- and Gateway addresses.
NOTE	Assure that the detector configuration switch is set properly. The setting should be either BootP or BootP & Store , see Table 25 on page 201.
NOTE	Assure that the detector connected to the network is powered off.
NOTE	If the Agilent BootP Service program is not already installed on your PC, then install it from your Agilent ChemStation DVD, located in folder BootP .

About Agilent BootP Service

The Agilent BootP Service is used to assign the LAN Interface with an IP address.

The Agilent BootP Service is provided on the ChemStation DVD. The Agilent BootP Service is installed on a server or PC on the LAN to provide central administration of IP addresses for Agilent instruments on a LAN. The BootP service must be running TCP/IP network protocol and cannot run a DHCP server.

Automatic configuration with Bootp

How BootP Service Works

When an instrument is powered on, an LAN Interface in the instrument broadcasts a request for an IP address or host name and provides its hardware MAC address as an identifier. The Agilent BootP Service answers this request and passes a previously defined IP address and host name associated with the hardware MAC address to the requesting instrument.

The instrument receives its IP address and host name and maintains the IP address as long as it is powered on. Powering down the instrument causes it to lose its IP address, so the Agilent BootP Service must be running every time the instrument powers up. If the Agilent BootP Service runs in the background, the instrument will receive its IP address on power-up.

The Agilent LAN Interface can be set to store the IP address and will not lose the IP address if power cycled.

Situation: Cannot Establish LAN Communication

If a LAN communication with BootP service cannot be established, check the following on the PC:

- Is the BootP service started? During installation of BootP, the service is not started automatically.
- Does the Firewall block the BootP service? Add the BootP service as an exception.
- Is the LAN Interface using the BootP-mode instead of "Using Stored" or "Using Default" modes?

Installation of BootP Service

Before installing and configuring the Agilent BootP Service, be sure to have the IP addresses of the computer and instruments on hand.

- 1 Log on as Administrator or other user with Administrator privileges.
- 2 Close all Windows programs.
- **3** Insert the Agilent ChemStation software DVD into the drive. If the setup program starts automatically, click **Cancel** to stop it.
- 4 Open Windows Explorer.
- **5** Go to the BootP directory on the Agilent ChemStation DVD and double-click **BootPPackage.msi**.
- 6 If necessary, click the Agilent BootP Service... icon in the task bar.
- 7 The Welcome screen of the Agilent BootP Service Setup Wizard appears. Click Next.
- 8 The End-User License Agreement screen appears. Read the terms, indicate acceptance, then click Next.
- **9** The **Destination Folder** selection screen appears. Install BootP to the default folder or click **Browse** to choose another location. Click **Next**.

The default location for installation is:

C:\Program Files\Agilent\BootPService\

10 Click **Install** to begin installation.

13 LAN Configuration

Automatic configuration with Bootp

ootP Tab File: C\Documents and Sett	ings\All Users\Application Data\Agilent\BootP\TabFile
Create Tab File	Edit BootP Addresses
Logging Do you want to log BootP Log File: C:\Documents and Se	g bootP requests?
Datault Calificati	
Default Settings	0.0.0

11 Files load; when finished, the **BootP Settings** screen appears.

Figure 68 BootP Settings screen

12 In the **Default Settings** part of the screen, if known, you can enter the subnet mask and gateway.

Defaults can be used:

- The default subnet mask is 255.255.255.0
- The default gateway is 192.168.254.11
- **13** On the **BootP Settings** screen, click **OK**. The **Agilent BootP Service Setup** screen indicates completion.
- 14 Click Finish to exit the Agilent BootP Service Setup screen.
- 15 Remove the DVD from the drive.

This completes installation.

16 Start BootP Service in the Windows[®] services: On the Windows[®] desktop click right on Computer icon, select Manage > Services and Applications > Services. Select the Agilent BootP Service and click Start.

Two Methods to Determine the MAC Address

Enabling logging to discover the MAC address using BootP

If you want to see the MAC address, select the **Do you want to log BootP** requests? check box.

- 1 Open BootP Settings from Start > All Programs > Agilent BootP Service > EditBootPSettings.
- 2 In BootP Settings... check Do you want to log BootP requests? to enable logging.

Figure 69 Enable BootP logging

The log file is located in

C:\Documents and Settings\All Users\Application Data\Agilent\BootP\LogFile

It contains a MAC address entry for each device that requests configuration information from BootP.

- 3 Click **OK** to save the values or **Cancel** to discard them. The editing ends.
- **4** After each modification of the BootP settings (i.e. **EditBootPSettings**) a stop or start of the BootP service is required for the BootP service to accept changes. See "Stopping the Agilent BootP Service" on page 217 or "Restarting the Agilent BootP Service" on page 218.
- **5** Uncheck the **Do you want to log BootP requests?** box after configuring instruments; otherwise, the log file will quickly fill up disk space.

Determining the MAC address directly from the LAN Interface card label

- **1** Turn off the instrument.
- 2 Read the MAC address from the label and record it.

The MAC address is printed on a label on the rear of the module. It is the number below the barcode and after the colon (:) and usually begins with the letters AD, see Figure 60 on page 198.

3 Turn on the instrument.

Automatic configuration with Bootp

Assigning IP Addresses Using the Agilent BootP Service

The Agilent BootP Service assigns the Hardware MAC address of the instrument to an IP address.

Determining the MAC address of the instrument using BootP Service

- **1** Power cycle the Instrument.
- **2** After the instrument completes self-test, open the log file of the BootP Service using Notepad.
 - The default location for the logfile is C:\Documents and Settings\All Users\Application Data\Agilent\BootP\LogFile.
 - The logfile will not be updated if it is open.

The contents will be similar to the following:

02/25/10 15:30:49 PM

Status: BootP Request received at outermost layer

Status: BootP Request received from hardware address: 0010835675AC

Error: Hardware address not found in BootPTAB: 0010835675AC

Status: BootP Request finished processing at outermost layer

- **3** Record the hardware (MAC) address (for example, 0010835675AC).
- **4** The Error means the MAC address has not been assigned an IP address and the Tab File does not have this entry. The MAC address is saved to the Tab File when an IP address is assigned.
- 5 Close the log file before turning on another instrument.
- **6** Uncheck the **Do you want to log BootP requests?** box after configuring instruments to avoid having the logfile use up excessive disk space.

Adding each instrument to the network using BootP

- 1 Follow Start > All Programs > Agilent BootP Service and select Edit BootP Settings. The BootP Settings screen appears.
- **2** Uncheck the **Do you want to log BootP requests?** once all instruments have been added.

The **Do you want to log BootP requests?** box must be unchecked when you have finished configuring instruments; otherwise, the log file will quickly fill up disk space.

- **3** Click Edit BootP Addresses... The Edit BootP Addresses screen appears.
- 4 Click Add... The Add BootP Entry screen appears.

IP Address
Comment
Subnet Mask 255 . 255 . 255 . 0
Gateway · · ·

Figure 70 Enable BootP logging

- **5** Make these entries for the instrument:
 - MAC address
 - Host name, Enter a Hostname of your choice.

The Host Name must begin with "alpha" characters (i.e. LC1260)

- IP address
- Comment (optional)

13 LAN Configuration

Automatic configuration with Bootp

- Subnet mask
- Gateway address (optional)

The configuration information entered is saved in the Tab File.

- 6 Click OK.
- 7 Leave Edit BootP Addresses by pressing Close.
- 8 Exit BootP Settings by pressing OK.
- **9** After each modification of the BootP settings (i.e. EditBootPSettings) a stop or start of the BootP service is required for the BootP service to accept changes. See "Stopping the Agilent BootP Service" on page 217 or "Restarting the Agilent BootP Service" on page 218.
- **10** Power cycle the Instrument.

OR

If you changed the IP address, power cycle the instrument for the changes to take effect.

11 Use the PING utility to verify connectivity by opening a command window and typing:

Ping 192.168.254.11 for example.

The Tab File is located at

C:\Documents and Settings\All Users\Application Data\Agilent\BootP\TabFile

Changing the IP Address of an Instrument Using the Agilent BootP Service

Agilent BootP Service starts automatically when your PC reboots. To change Agilent BootP Service settings, you must stop the service, make the changes, and then restart the service.

Stopping the Agilent BootP Service

1 From the Windows control panel, select Administrative Tools > Services. The Services screen appears.

Ble Action Yew ⊢ → ITE IC	Belp Belp				
Services (Local)	^비 값 Services (Local)				
	Select an item to view its description.	Name A	Description	Status	112
		Agilent Bootp Service			
	1	Application Layer G	Provides s		
	1	Application Manage	Provides s		
	1	ASP.NET State Serv	Provides s		- 1
	1	Automatic Updates	Enables th	Started	
	1	Background Intellig	Uses idle n		
	1	ClipBook.	Enables Cli		- 1
	1	COM+ Event System	Supports S	Started	- 1
	1	COM+ System Appl	Manages t		
	1	Computer Browser	Maintains a	Started	
	1	Cryptographic Servi	Provides th	Started	
	1	DefWatch		Started	- 1
	1	CHCP Client	Manages n	Started	- 1
	1	Distributed Link Tra	Maintains II	Started	- 1
	1	Distributed Transac	Coordinate		- 1
			A 1	A 1.1	ыÎ
	Extended Standard				<u></u>

Figure 71Windows Services screen

- 2 Right-click Agilent BootP Service.
- 3 Select Stop.
- **4** Close the **Services and Administrative Tools** screen.

Automatic configuration with Bootp

Editing the IP address and other parameters in EditBootPSettings

- 1 Select Start > All Programs > Agilent BootP Service and select Edit BootP Settings. The BootP Settings screen appears.
- **2** When the **BootP Settings** screen is first opened, it shows the default settings from installation.
- 3 Press Edit BootP Addresses... to edit the Tab File.

Hardware Address	Host Name	IP Address	Comment	Subnet Mask	Gateway
006000111999 005000222888	AgilentLC1 AgilentLC2	10.1.1.101 101.1.1.102	Agilent LC1 right Agilent LC2 left	255.255.255.0 255.255.255.0	0.0.0.0 0.0.0.0
4					

Figure 72 Edit BootP Adresses screen

4 In the **Edit BootP Addresses...** screen press **Add...** to create a new entry or select an existing line from the table and press **Modify...** or **Delete** to change the IP address, comment, subnet mask, for example, in the Tab File.

If you change the IP address, it will be necessary to power cycle the instrument for the changes to take effect.

- 5 Leave Edit BootP Addresses... by pressing Close.
- 6 Exit BootP Settings by pressing OK.

Restarting the Agilent BootP Service

- In the Windows control panel, select Administrative Tools > Services. The Services screen appears, see Figure 71 on page 217.
- 2 Right-click Agilent BootP Service and select Start.
- **3** Close the Services and Administrative Tools screens.

Manual Configuration

Manual configuration only alters the set of parameters stored in the non-volatile memory of the module. It never affects the currently active parameters. Therefore, manual configuration can be done at any time. A power cycle is mandatory to make the stored parameters become the active parameters, given that the initialization mode selection switches are allowing it.

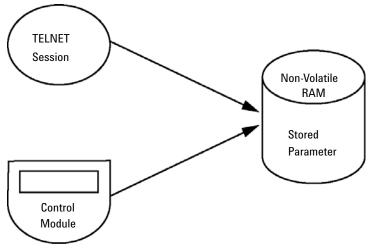


Figure 73 Manual Configuration (Principle)

Manual Configuration

With Telnet

Whenever a TCP/IP connection to the module is possible (TCP/IP parameters set by any method), the parameters may be altered by opening a Telnet session.

- 1 Open the system (DOS) prompt window by clicking on Windows **START** button and select "**Run...**". Type "cmd" and press OK.
- 2 Type the following at the system (DOS) prompt:

```
c:\>telnet <IP address> or
c:\>telnet <host name>
c:\>telnet <host name>
c:\>telnet 134.40.27.104_
```

Figure 74 Telnet - Starting a session

where <IP address> may be the assigned address from a Bootp cycle, a configuration session with the Local Controller, or the default IP address (see "Configuration Switches" on page 200).

When the connection was established successfully, the module responds with the following:

Figure 75 A connection to the module is made

3 Type ? and press enter to see the available commands.

Agilent Technologie	s G1314E DE81900002
command syntax	description
? / ip <x.x.x.x> sm <x.x.x.x> gw <x.x.x.x> exit ></x.x.x.x></x.x.x.x></x.x.x.x>	display help info display current LAN settings set IP Address set Subnet Mask set Default Gateway exit shell

Value	Description
?	displays syntax and descriptions of commands
/	displays current LAN settings
ip <x.x.x.x></x.x.x.x>	sets new ip address
sm <x.x.x.></x.x.x.>	sets new subnet mask
gw <x.x.x.></x.x.x.>	sets new default gateway
exit	exits shell and saves all changes

Table 30	Telnet Commands

- **4** To change a parameter follows the style:
 - parameter value, for example:

ip 134.40.27.230

Then press [Enter], where parameter refers to the configuration parameter you are defining, and value refers to the definitions you are assigning to that parameter. Each parameter entry is followed by a carriage return.

13 LAN Configuration

Manual Configuration

🔤 Telnet 134.40.27.104	
Agilent Technologies G1314E DE81900002 >/ LAN Status Page	information about the LAN interface
MAC Address : 0030D30611BD	MAC address, initialization mode
Init Mode : Using Stored	Initialization mode is Using Stored
TCP/IP Properties - active - IP Address : 134.40.27.104 Subnet Mask : 255.255.248.0 Def. Gateway : 134.40.24.1	active TCP/IP settings
TCP/IP Status : Ready	TCP/IP status - here ready
Controllers : no connections >_	connected to PC with controller softw here not connected

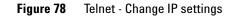
5 Use the "/" and press Enter to list the current settings.

Figure 77 Telnet - Current settings in "Using Stored" mode

6 Change the IP address (in this example 134.40.27.99) and type "/" to list current settings.

🗪 Telnet 134.40.2	7.1	04	
>ip 134.40.27	. 9	9	
LAN Status Pag	je		
MAC Address	:	0030D30611BD	_
Init Mode	:	Using Stored	_
TCP/IP Propert	ti	es	_
— active — IP Address	=	134.40.27.104	
Subnet Mask	=	255.255.248.0	
Def. Gateway - stored -	:	134.40.24.1	
IP Address	=	134.40.27.99	
Subnet Mask	=	255.255.248.0	
Def. Gateway	=	134.40.24.1	_
TCP/IP Status	:	Ready	
Controllers ≻_	:	no connections	_

change of IP setting to


Initialization mode is Using Stored

active TCP/IP settings

stored TCP/IP settings in non-volatile memory

TCP/IP status - here ready

connected to PC with controller software here not connected

7 When you have finished typing the configuration parameters, type **exit** and press [Enter] to exit with storing parameters.

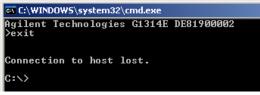


Figure 79 Closing the Telnet Session

NOTE

If the Initialization Mode Switch is changed now to "Using Stored" mode, the instrument will take the stored settings when the module is re-booted.

With the Instant Pilot (G4208A)

To configure the TCP/IP parameters before connecting the detector to the network, the Instant Pilot (G4208A) can be used.

- 1 From the Welcome screen press the More button.
- 2 Select Configure.
- **3** Press the **VWD** button.
- 4 Scroll down to the LAN settings.

N	Configure - VWD SL	
		Edit
Setting	Value	
Symbolic Name	<u> </u>	Bal.
UV lamp	Stays off at power on	
Temperature Control	ON	
UV-Lamp Type	Auto detect from RFID tag info	
Cell Tag	Use only cells with RFID tag	
Analog Out	0V - 1V output range	
LAN IP	134.40.27.104	
LAN Subnet Mask	255.255.248.0	
LAN Def. Gateway	134.40.24.1	
	v	Exit
	_	12:11
System Contro	iller VWD SL	

Figure 80 Instant Pilot - LAN Configuration

- **5** Press the **Edit** button (only visible if not in Edit mode), perform the required changes and press the **Done** button.
- 6 Leave the screen by clicking Exit.

PC and User Interface Software Setup

PC Setup for Local Configuration

This procedure describes the change of the TCP/IP settings on your PC to match the module's default parameters in a local configuration (see also "Initialization mode selection" on page 201).

al Area Connection Properties 🔹 🔋 🗙	Internet Protocol (TCP/	IP) Properties	7 ×
eneral	General		
Connect using:		assigned automatically if your network, you need to ask your network adr	
Configure Components checked are used by this connection: Components checked are used by this connection: Components checked are used by this connection: Components checked are used by this connected Components checked are used by this connected	C Desirrant adde C Uge the following I JP address Subnet mask: Default gateway: C Option DNS Inte C Usg the follo Ereferred DNS : Alternate DNS :	P address 192.168.254 255.255.248 rnet Protocol (TCP/IP) Proper eneral You can get IP settings assigned au	ties tomatically if your network supports to ask your network administrator for
OK Cancel		(P address: Sybnet mask	
omatic IP address via DHCP quires special IT setup of the network)		Default gateway	
		C Use the following DNS server Breferred DNS server Alternate DNS server	addresses

Figure 81 Changing the TCP/IP settings of the PC

13 LAN Configuration

PC and User Interface Software Setup

User Interface Software Setup

Install you user interface software according the provided *User Interface* Software Setup Guide.

14 Appendix

General Safety Information 228 Safety Symbols 228 General Safety Information 229 Safety Standards 229 Operation 229 Radio Interference 231 Sound Emission 232 UV Radiation 233 234 Solvent Information Declaration of Conformity for HOX2 Filter 236 Agilent Technologies on Internet 237

This chapter provides addition information on safety, legal and web.

General Safety Information

Safety Symbols

Table 31 Safety Symbols	Table 3	31	Safety	Sym	bols
-------------------------	---------	----	--------	-----	------

Symbol	Description
⚠	The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.
¥	Indicates dangerous voltages.
	Indicates a protected ground terminal.
	Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.
<u>A</u>	The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for

General Safety Information

replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents, observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

Radio Interference

Cables supplied by Agilent Technologies are screened to provide optimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

Sound Emission

Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

UV Radiation

Emissions of ultraviolet radiation (200 – 315 nm) from this product is limited such that radiant exposure incident upon the unprotected skin or eye of operator or service personnel is limited to the following TLVs (Threshold Limit Values) according to the American Conference of Governmental Industrial Hygienists:

Table 32 UV radiation limits

Exposure/day	Effective irradiance
8 h	0.1 μW/cm ²
10 min	5.0 μW/cm ²

Typically the radiation values are much smaller than these limits:

Table 33UV radiation typical values

Position	Effective irradiance
Lamp installed, 50 cm distance	average 0.016 μW/cm ²
Lamp installed, 50 cm distance	maximum 0.14 μW/cm ²

Solvent Information

Observe the following recommendations on the use of solvents.

Flow Cell

Avoid the use of alkaline solutions (pH > 9.5) which can attack quartz and thus impair the optical properties of the flow cell.

Prevent any crystallization of buffer solutions. This will lead into a blockage/damage of the flow cell.

If the flow cell is transported while temperatures are below 5 $^{\circ}$ C, it must be assured that the cell is filled with alcohol.

Aqueous solvents in the flow cell can built up algae. Therefore do not leave aqueous solvents sitting in the flow cell. Add small % of organic solvents (for example, acetonitrile or methanol ~5 %).

Solvents

Brown glass ware can avoid growth of algae.

Always filter solvents, small particles can permanently block the capillaries. Avoid the use of the following steel-corrosive solvents:

- Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on).
- High concentrations of inorganic acids like nitric acid, sulfuric acid especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

 $2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl}$

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1 % solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.

14 Appendix

Declaration of Conformity for HOX2 Filter

Declaration of Conformity for HOX2 Filter

Declaration of Conformity							
We herewith inform you that the							
Holmium Oxide Glass Filter							
used in Agilents absorbance dete Standards and Technology (NIST					ional Institute of		
According to the publication of 1 oxide glass filters are inherently expanded uncertainty of the certi	table with respect to the	wavelength sca					
Agilent Technologies guarantees representing the inherently existe			of the	filters is holmi	um oxide glass		
Test wavelengths:							
Product Number	Series	Measured Waveleng		Wavelength Accuracy	Optical Bandwidth		
79883A	1090	361.0 nm		+/- 1 nm	2 nm		
79854A	1050	418.9 nm					
G1306A	1050	453.7 nm					
G1315A, G1365A	1100	536.7 nm					
G1315B/C, G1365B/C	1100 / 1200 / 1260						
G1600A, G7100A	CE						
79853C	1050	360.8nm 418.5nm 536.4nm		+/- 2 nm	6 nm		
G1314A/B/C	1100 / 1200 / 1260	360.8nm		+/- 1 nm	6 nm		
G1314D/E/F	11007 12007 1200	418.5nm					
G4286,, 90A/B/C	1120 / 1220	536.4nm					
*) The variation in Measured Wa	velength depends on the o	different Optic	al Ba	ndwidth.			
	May 19, 2010						
/	(Date)						
Thomas for		6. 69Me					
(R&D Manager)		(Quality Manager)					
P/N 89550-90501	Revision: H Effective by: May 19, 2010		hnologies				

Appendix 14 Agilent Technologies on Internet

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

8

8-bit configuration switch on-board LAN 189

A

absorbance Lambert-Beer 86 Agilent Lab Advisor software 94 Agilent Lab Advisor 94 Agilent on internet 237 User Interface Software Setup 225 algea information 234 ambient non-operating temperature 23 ambient operating temperature 23 analog out put 31, 28, 25 analog signal 186 analog cable 166 output range 75 output settings 75 apg remote 187 ASTM Drift 122 automatic configuration with Bootp 209

B

band width 6.5 nm 24, 27, 30 BCD cable 171 beam splitter 15 Beer-Lambert absorbance 86 bench space 22 boards photodiode boards (ADC) 15 BootP service installation 211 restart 218 settings 218 stop 217 Bootp 202 & Store automatic configuration 209 initialization modes 201 using default 203 using stored 203

C

cable analog 166 BCD 171 CAN 173 connecting APG remote 42 connecting CAN 42 connecting LAN 42 connecting the ChemStation 42 connecting the power 42 LAN 173 remote 168 RS-232 174 cables analog 164 BCD 164 CAN 165 LAN 165 overview 164 remote 164

RS-232 165 CAN cable 173 cautions and warnings 131 cell test 118 chromatogram 60 134 cleaning communications 25, 28, 31 compensation sensor open 102 compensation sensor short 102 condensation 22 configuration switch location 200 configuration one stack 37, 37, 39 RFID tag (lamp and cell) 72 stack 36 72 temperature control two stack front 43 two stack rear 44 two stack 41, 43 control and data evaluation 25, 28, 31 correction factors for flow cells 87 cutoff filter 14 cuvette holder 143 parts 160

D

data rate sampling rate 30, 27, 24 data recovery DRC 80 declaration of conformity 236 defect on arrival 34 delivery checklist 35 detection type 24, 27, 30 detector error messages 104 DHCP general information 205 setup 206 diagnostic signals 90 test functions 115 dimensions 23 DRC run recovery 80 drift 24, 27, 30, 63 initial 68

E

electrical connections descriptions of 179 EMF early maintenance feedback 194 setting limits 195 using counters 195 entrance slit assembly 13 environment 22 error message ADC hardware error 110 error messages calibration failed 106 102 compensation sensor open compensation sensor short 102 detector 104 fan failed 103 filter check failed 109 grating/filter motor defective 108 heater current missing 106 heater failed 111 heater power at limit 112 holmium oxide test failed 107 ignition without cover 103, 103

illegal temperature value from sensor at air inlet 111 illegal value from sensor on main board 110 lamp current missing 104 105 lamp ignition failed lamp voltage missing 105 leak sensor open 101 101 leak sensor short leak 100 lost CAN partner 100 no run data available in device 112 remote timeout 99 shutdown 98 timeout 98 wavelength check failed 109

F

fan failed 103 features GLP 31, 28, 25 safety and maintenace 31, 28, 25 firmware description 176 main system 176 resident system 176 update tool 177 updates 177, 147, 147 upgade/downgrade 147 upgrade/downgrade 147 flow cell configuration 72 correction factors 87 high pressure (parts) 158 micro (parts) 154 semimicro (parts) 156 standard (parts) 152 types and data 30, 27, 24 with RFID tag 12 flow cells matching for application 85

frequency range 23

G

general error messages 98 grating assembly 15

Η

holmium oxide declaration of conformity 236 filter 14 test 126 humidity 23

information on cuvette holder 143 on solvents 234 on sound emission 232 233 on UV radiation initialization mode selection 201 installation bench space 22 of flow connections 52 of the detector 49 Instant Pilot G4208A 10 instrument layout 193 interfaces 182 internet 237 introduction 10 to optical system 11

L

lamp configuration 72 initial drift 68 intensity test 116 type 30, 27, 24 with RFID tag 13

LAN

automatic configuration with Bootp 209 Bootp & Store 202 Bootp 201 173 cable configuration switches 200 configuration 197 initialization mode selection 201 link configuration selection 208 manual configuration with telnet 220 manual configuration 219 PC and User Interface Software Setup 225 TCP/IP parameter configuration 199 using default 203 using stored 203 what you have to do first 198 leak sensor open 101 leak sensor short 101 leak correcting 145 parts 161 line frequency 23 line voltage 23 linearity 24, 27, 30 link configuration selection 208 lost CAN partner 100

Μ

MAC address determine 214 maintenance correcting leaks 145 definition of 130 exchanging flow cell 138 exchanging lamps 135 exchanging leak handling system 146

for parts see 'parts for maintenance' 149 introduction 129 overview 133 replacing firmware 147. 147 standard flow cell 140 using the cuvette holder 143 manual configuration of LAN 219 message ADC hardware error 110 calibration failed 106 calibration lost 109 filter check failed 109 grating/filter motor defective 108 heater current missing 106 heater failed 111 heater power at limit 112 holmium oxide test failed 107 ignition without cover 103, 103 illegal temperature value from sensor at air inlet 111 illegal value from sensor on main board 110 lamp current missing 104 lamp ignition failed 105 lamp voltage missing 105 no run data available in device 112 remote timeout 99 wavelength check failed 109 method load 64 mirror assemblies 15

Ν

Noise and Linearity specifications 32, 29, 26 Noise Test 122 noise, short term 24, 27, 30 non-operating altitude 23 non-operating temperature 23

0

online plot 68 spectra 73 operating Altitude 23 operating temperature 23 optical unit beam splitter assembly 15 entrance slit assembly 13 filter assembly 14 filter 14 flow cell 12 arating assembly 15 lamp 13 mirrors 15 photodiode assemblies 15 photodiode boards 15 source lens assembly 13 stepper motor 15 optimization detector performance 84 of the system 61 overview optical path 11 optical system 11 system overview 11

Ρ

packaging damaged 34 parameters detector 65 parts for maintenance cuvette holder 160 high pressure flow cell 158 leak parts 161 micro flow cell 154

semimicro flow cell 156 standard flow cell 152 parts and materials for maintenance PC and User Interface Software Setup 225 peakwidth settings 76 performance optimization 84 specifications 24 photodiode assemblies 15 boards 15 87 photometric accuracy physical specifications 23 physical specifications 23 power consumption 23 power cords 21 power considerations 20 preparing the HPLC system 61

0

quick noise test 123

R

Radio Frequency Identification flow cell and lamp 10 radio interference 231 recalibration of wavelength 90 remote cable 168 repairs cautions and warnings 131 introduction 129 overview of simple repairs 133 replacing firmware 147, 147

RFID Radio Frequency Identification 10 RS-232C cable 174 run recovery automatic 81 manual 82 no run data available in 112 running the sample 70

S

149

safety class I 229 safety general information 229 standards 23 228 symbols sample info 69 sampling rate 30. 27. 24 data rate scanning 74 serial number information 181, 181 setting up an analysis 57 settinas analog output settings 75 peakwidth 76 setup of detector 65 shutdown 98 signal 90 diagnostic plot 67 site requirements 22 environment power considerations 20 power cords 21 solvent information 234 sound emission 232 source lens assembly 13 special interfaces 188

special setpoints 76 special settings 191 boot-resident forced cold start 192 specification physical 23 specifications 26. 29. 32 32. 29. 26 noise and linearity performance 24 physical 23 spectra online 73 tools 31, 28, 25 stable baseline 63 stack configuration front view 41 rear view 42 status indicators 90, 91 92 status indicator stepper motor 15 stop-flow condition 73

Т

TCP/IP parameter configuration 199 telnet configuration 220 temperature control configuration 72 temperature sensor 100 test functions 90, 115 tests available tests vs interface 93 holmium oxide 126 intensity of deuterium lamp 116 wavelength calibration 120 timeout 98 tool kit hplc system 151 troubleshooting

available tests vs interface 93 diagnostic signals 90 error messages 90, 97 overview 90 status indicators 90, 91 test functions 115, 90

U

unpacking 34 using analog output settings 75 control settings 71 detector parameters 65 drift 63 EMF 194 load method 64 online plot 68 online spectra 73 peakwidth settings 76 preparing the HPLC system 61 priming and purging the system 57 requirements and conditions 59 running the sample 70 sample info 69 scanning 74 setting up an analysis 57 setup of detector 65 signal plot 67 special setpoints 76 special settings 71 stable baseline 63 stop-flow condition 73 143 the cuvette holder the detector 55 turn on 62 typical chromatogram 60 warm up 63 UV radiation 233

V

voltage range 23

W

warm-up of detector 63 warnings and cautions 131 wavelength accuracy 30, 27, 24 calibration 120 range 190-600 nm 30, 27, 24 recalibration 90 weight 23

www.agilent.com

In This Book

This manual contains technical reference information about the Agilent 1290 Infinity Variable Wavelength Detector (G1314E), the Agilent 1260 Infinity Variable Wavelength Detector (G1314F) and the Agilent 1200 series Variable Wavelength Detector (G1314D) (obsolete).

The manual describes the following:

- introduction and specifications,
- installation,
- using and optimizing,
- · troubleshooting and diagnose,
- · maintenance and repair,
- parts identification,
- hardware information,
- safety and related information.

© Agilent Technologies 2008, 2010-2012, 2013

Printed in Germany 11/2013

G1314-90034 Rev. B

