Hydrogen generator
Use only pure water > 10MΩ
Tank Capacity : 2.3 liters

Increase pressure water
Allows a best speed of water through the cell to avoid overheating

Contains deionizer bag and dust water filter

Separate hydrogen and Oxygen
2H₂O => 4H⁺ + 4e⁻ + O₂

Electronic gas liquid separator with 2 levels of sensors safety
Hydrogen generator
ND series

- ND-H2 Purity > 99.9995%
- Pressure up to 10 bar
- Simple dessicant cartridge + Nafion tube
Hydrogen generator
PAR series

- Purity > 99.9999%
- Pressure up to 12 bar, on request 16 bar
- Single column dryer with programmable automatic regeneration via integrated clever calendar
Hydrogen generator
WM series

- Purity >99.9999%
- Automatic dryer regeneration
- Pressure up to 12 bar, on request 16 bar
Touch Screen

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real outlet pressure</td>
</tr>
<tr>
<td>2</td>
<td>Pressure set by user (set-point)</td>
</tr>
<tr>
<td>3</td>
<td>System status and Pre-alarms display, see table 1 and 3</td>
</tr>
<tr>
<td>4</td>
<td>H2 Flow %</td>
</tr>
<tr>
<td>5</td>
<td>Water tank level</td>
</tr>
<tr>
<td>6 (WM.H2)</td>
<td>Water quality in percentages (100% GOOD – 0% BAD)</td>
</tr>
<tr>
<td>7</td>
<td>Date / Time</td>
</tr>
<tr>
<td>8</td>
<td>Touching this label an HELP windows will be shown</td>
</tr>
<tr>
<td>9 (PAR.H2)</td>
<td>Internal dryer residual life</td>
</tr>
<tr>
<td>10 (PAR.H2)</td>
<td>Quality of water : GOOD, NORMAL, BAD</td>
</tr>
<tr>
<td>Displayed on screen</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OFF</td>
<td>The system is STOPPED and does not produce H2</td>
</tr>
<tr>
<td>STARTING</td>
<td>The system is generating internal pressure before opening the OUTLET valve</td>
</tr>
<tr>
<td>CHECKING</td>
<td>When the system is pressurized, before to open the OUTLET valve, the unit make an automatic check of any internal leak.</td>
</tr>
<tr>
<td>FILLING</td>
<td>The system is filling the line connected ON the OUTLET with the maximum available flow</td>
</tr>
<tr>
<td>WORKING</td>
<td>The system is working and the line pressure has reached the VALUE set by the user</td>
</tr>
<tr>
<td>STANDBY</td>
<td>The system is internally pressurized and ready, but the OUTLET valve is close</td>
</tr>
</tbody>
</table>
START UP

1- Open the front door and fill water tank with pure water (Deionized, ASTM II, <0.1 uS)

2- Remove the plugs from the back fittings of the generator

3- Connect the hose to the hydrogen output fitting

4- Connect the voltage wire to the power socket and Turn on the power switch
Set the work set-point

1- Touch the screen on the center for at least 2 seconds
2- Select « Adjust Pressure »
3- Increase or decrease the pressure with the arrows.
4- Touch the screen to valid it
START UP

Touch the blue key or slide your finger right to left

Choose START CLOSED or OPEN
<table>
<thead>
<tr>
<th>System status</th>
<th>Control screen</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>![Buttons](START OPEN START CLOSE)</td>
<td>When the machine is in the OFF state (production stopped) you can give the START command with subsequent opening of the outlet valve (START/OPEN) or not (START/CLOSE)</td>
</tr>
<tr>
<td>STARTING WORKING FILLING</td>
<td>![Buttons](STOP CLOSE)</td>
<td>During operation we can give the command to STOP or closure of the outlet valve</td>
</tr>
<tr>
<td>STANDBY</td>
<td>![Buttons](STOP OPEN)</td>
<td>In the STANDBY state can give the command STOP or opening of the outlet valve</td>
</tr>
</tbody>
</table>
MENU

Change working pressure

User parameter

Alarm and prealarm history

Voltage, current, power values

Working time and H2 produced

Service Submenu

Leak test

Management of internal water tank
MENU: Parameter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Typical</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Drop Delay</td>
<td>If the system cannot bring the H2 pipes up to pressure, after having waited for the time set in this parameter production is interrupted with a buzzer and visual alarm (“Out Pressure error”).</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>min</td>
</tr>
<tr>
<td>Pressure Rise</td>
<td>During the filling stage of pipes connected on the H2 outlet, if the pressure does not rise with a minimum slope defined by this parameter, production is interrupted with a buzzer and visual alarm (“Low Out Press”). When the value is set to 0.0, this check will be disabled.</td>
<td>0</td>
<td>100</td>
<td>0.3</td>
<td>psi/min</td>
</tr>
<tr>
<td>Autostart</td>
<td>"Enabled": when power is restored after a black-out the system restart and goes into the working mode. "Disabled", when power is restored after a black-out, the system stays in OFF status.</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Pressure Unit</td>
<td>Defines the pressure unit: psi, bar</td>
<td>Psi</td>
<td>Bar</td>
<td>Bar</td>
<td></td>
</tr>
<tr>
<td>Temperature Unit</td>
<td>Defines the temperature unit: °F,°C</td>
<td>°C</td>
<td>°F</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
MENU: Parameter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Typical</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Refill Water</td>
<td>Enables the automatic external tank automatic filling function. If Enabled when the level of internal water tank go below 5% the auto fill start and terminate when the level arrive to 95%.</td>
<td>Disabled</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Min</td>
<td>Max</td>
<td>Typical</td>
<td>Unit of measure</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ZeroAir Module</td>
<td>Add a Air Zero generator to connect a combine generator</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

Air Zero

Hydrogen
When the customer use hydrogen as carrier gas, the only drawback is the danger of explosion in case of a leak in the column oven.
MENU: Parameter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Typical</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>User flow limit</td>
<td>Allows to restrict the flow</td>
<td>50%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Default Parameter</td>
<td>By selecting YES, all the parameters are set to their default values</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Mode</td>
<td>Defines the method used for line pressurization:</td>
<td>Normal</td>
<td>Fast</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal: The outlet valve is opened only after the internal circuit has been pressurized and after having automatically performed an “internal leak test”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fast: The valve is opened when the internal pressure is greater than the set-point set by the user and no "internal leak test" is carried out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Address</td>
<td>Logical address in case of connection of the unit in a communication bus</td>
<td>1</td>
<td>1</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Baud Rate RS485</td>
<td>Speed of communication of the RS485 port</td>
<td>2400</td>
<td>38400</td>
<td>38400</td>
<td></td>
</tr>
</tbody>
</table>
MENU: Diagnostic

- PEM cell voltage
- Peak PEM cell voltage
- PEM current
- PEM cell power supply
- H2 Cell flow produced (cc/min)

- Internal pressure
- External pressure
- Actual H2 Flow produced cc/min
- Water conductivity uS

- Column temperature
- Power Supply temperature
- power supply voltage no. 1
- power supply voltage no. 2 (only models with flow rates over 400 cc/min)
<table>
<thead>
<tr>
<th>Operation</th>
<th>Interval</th>
<th>Spare parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change water deioniser bag</td>
<td>4000 working hours or 1 year</td>
<td>SP.H2.DB01</td>
</tr>
<tr>
<td>Check the water filter</td>
<td>1000 working hours or 1 year</td>
<td>SP.H2.WFILT.M</td>
</tr>
<tr>
<td>Run an Automatic dryer regeneration program for PAR serie</td>
<td>As required or 12 months</td>
<td></td>
</tr>
<tr>
<td>Change the dessicant cartridge for ND series</td>
<td>As required or 12 months</td>
<td></td>
</tr>
</tbody>
</table>
Change water deioniser bag and water filter

Unscrew the three screws

Pull the top cover and remove O-ring and deionizer bag

Remove black O-ring

Remove water filter

This command must be given when the DEIONIZER BAG is changed and the filter is cleared. It resets the counter that registers filter and deionizer bag's life as well as any correlated pre-alarms.

An additional confirmation is requested from the operator; to do so the operator touches the Touch Screen for 0.5 seconds.
Run an Automatic dryer regeneration PAR serie

The procedure occurs for 3:30 hours

To access the dryer regeneration function, touch the Touch Screen for 0.5 seconds.

To immediately enable dryer regeneration, select this option by touching the Touch Screen for 0.5 seconds.
Hydrogen production will be suspended up to the end of the regeneration cycle.

The advancement bar and the time signal tell the operator when the operation will end.
Scrolling from top to bottom interrupts dryer regeneration.

An additional confirmation is requested.
To confirm, touch this option for 0.5 seconds. Instead, scrolling from top to bottom returns the screen to the display of the advancement of the process in course.

NOTE:
any "Dryer Saturated" pre-alarm is cancelled only upon the conclusion of the regeneration cycle.
This procedure can be enabled in case of emergency and when there is no instrument to measure the pressure in output from the machine. Close the output with the special plug and run the procedure.

This procedure is enabled whenever the measurement of the internal pressure sensors needs calibration. Connect the sample instrument to the exit of the generator and run the procedure.

To update the display or main board firmware of the generator.
Remote control

- A free potential contact (terminals 1 and 2) which is normally closed and opens when there is a stop of the production for any alarm.
- A digital input opto-isolated with which it can activate / stop the generation of hydrogen. When this input (terminals 3 and 4) is feeding the generator begins to produce, when you open the generator stops and goes into the OFF state.
Ask your customer to connect his laptop on the USB port on the back of his H2 generator.
ETHERNET CONNECTION

ASK YOUR CUSTOMER TO:
- DOWNLOAD TEAMVIEWER PROGRAM
- EXECUTED THE PROGRAM
- BEGIN TEAMVIEWER WITHOUT INSTALLING THE APPLICATION

THIS WINDOWS APPEAR:

- HE NEEDS TO GIVE YOU HIS ID AND PASSWORD TO HAVE ACCESS TO HIS COMPUTER

WHEN YOU HAVE THE HAND ON YOUR CUSTOMER COMPUTER:
- CREATE AN H2 FOLDER TO REGISTER THE PROGRAM AND DOWNLOAD THE PROGRAM
- EXECUTE THE PROGRAM AND COLLECT DATA
Upgrade

Firmware Upgrade
The correct sequence of upgrade the firmware of H2 generators is:
– Upgrade firmware MAIN board
– Upgrade firmware LCD board
– Update configurations settings

Example: MAIN board Firmware Upgrade
Connect the Generator to a PC by USB cable or serial RS-232 port.
Install the driver if needed.
Run the program Firmware-MB-V504-HW4.exe, this program is valid for all models: ND, PAR, WM.
Before to proceed you have to confirm with “Continue” button.
After confirm “DON'T TOUCH THE GENERATOR, DON'T SWITCH OFF, DON'T STOP THE PROGRAM” until you see “Upload complete” on the white window
PARALLEL MODE

The “parallel mode” is a system that allows you to add up the flow of multiple machines on a single line where each contributes in proportion to their ability. Maximum 10 units.

4x NM-H2-500
99.9999 % H₂
max. 2000 ml/min
max. 10 BAR
incl. I/O board and RS-232 remote control
Connect the RS-485 controller with the BOX of 485 # 1 of the first generator and the RS 485 to RS # 2 of this 485 # 1 of the second and so on until the last generator.
BOX controller acts as the master and controls all the generators connected to it. This "BOX controller" has 3 LEDs and a button. The meaning of the LEDs is specified in the follow table.

<table>
<thead>
<tr>
<th>Green Led</th>
<th>Yellow Led</th>
<th>Red Led</th>
<th>Functionning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>Controller is not powered</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>no device connected</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>In configuration mode</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>No Master flow</td>
</tr>
<tr>
<td>Regular</td>
<td></td>
<td></td>
<td>Good communication</td>
</tr>
<tr>
<td>Random</td>
<td></td>
<td></td>
<td>Bad communication</td>
</tr>
<tr>
<td>FLASHING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td></td>
<td></td>
<td>Alarm or generator off line</td>
</tr>
<tr>
<td>Slow</td>
<td></td>
<td></td>
<td>Generator in pre alarm mode</td>
</tr>
<tr>
<td>ON</td>
<td></td>
<td></td>
<td>System in production</td>
</tr>
<tr>
<td>FLASHING</td>
<td></td>
<td></td>
<td>system ready for production</td>
</tr>
</tbody>
</table>

All LEDs blink when the controller BOX (Master Box) can not communicate with the generators connected to it (Slaves)

Pressing the start / stop button is activated or not the production.
SYSTEM IDs CONFIGURATION

In order for the system to work properly you must assign a unique number (ID) for each generator.

Holding down the button on the BOX controller for more than 10 seconds to start the search procedure of the generators connected to it (see par. 1.2)

Once activated the setup of all generators connected to the currently displayed "1" on the display.

At this point

1. hold the center button on one of the generators for about half a second
2. the system will "beep" and all the other generators will see the number 2
3. Repeat the step 1 until the last generator
4. Press the button on the controller BOX

If everything works correctly, the yellow LED should flash controller of the BOX and evenly on the top LEFT of the display of each generator should see a "P".

The P in "reverse" indicates that the machine is being used by the system to read the line pressure and control it ("master flow controller")

The P is not in reverse indicates that the generator is simply a "slave"
SYSTEM’S STATUS

From any machine connected to the system you can:
– activate or stop the production
– open or close the outlet valve
– change the set of output pressure
– Check the status of each generator connected to the system

To access the status window, simply make a scroll from right to left on the touch screen

<table>
<thead>
<tr>
<th>Parallel Status # 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Master</td>
</tr>
<tr>
<td>2 Slave</td>
</tr>
<tr>
<td>3 Slave</td>
</tr>
<tr>
<td>4 Slave</td>
</tr>
<tr>
<td>5 Slave</td>
</tr>
<tr>
<td>6 Slave</td>
</tr>
<tr>
<td>7 Slave</td>
</tr>
<tr>
<td>8 Slave</td>
</tr>
<tr>
<td>9 Slave</td>
</tr>
<tr>
<td>10 Slave</td>
</tr>
</tbody>
</table>

The list is displayed for each unit the following records:

<table>
<thead>
<tr>
<th>Master</th>
<th>Unit to be used to read the line pressure and control it (Master flow controller)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave</td>
<td>Unit connected to the system as a slave</td>
</tr>
<tr>
<td>Out line</td>
<td>Unit off-line: interrupted communication with the controller</td>
</tr>
<tr>
<td>Alarm</td>
<td>Units on alarm</td>
</tr>
<tr>
<td>Pre-Alarm</td>
<td>Units on prealarm</td>
</tr>
</tbody>
</table>
Normally, the system chooses the car with ID 1 as the "master flow controller" that is the machine designed to read and control the line pressure.
If you want to force the system to choose another press for half a second about the touch screen and displays the status

```
<table>
<thead>
<tr>
<th>Parallel Status # 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Master</td>
</tr>
<tr>
<td>Slave</td>
</tr>
<tr>
<td>Slave</td>
</tr>
<tr>
<td>Slave</td>
</tr>
<tr>
<td>Slave</td>
</tr>
</tbody>
</table>
```

Press the touch screen for half a second

Force to Master flow?

Confirm by pressing the touch screen for half a second.
Troubleshooting
ALARM / PREALARM

During operation, the system executes other automatic checks.

In case of serious anomalies, the display turns red, the buzzer is rapid and intermittent, a message identifying the problem is displayed and hydrogen production is immediately interrupted.

In case of anomalies which are not serious, the LDC display turns yellow, the buzzer sounds every 5 seconds and pre-alarm messages are displayed.
<table>
<thead>
<tr>
<th>Displayed on screen</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
</table>
| Power Supply T. Too High | Temperature of electronic power supply too high | - Check that the system working ambient temperature is less than 40°C
- Check that the intake/ventilation fans are not blocked and that the corresponding filters are clean, see |
| Bad Water Quality | Poor quality of the water in the tank | - Change the water using better quality water
- Check the water filter and deioniser bag |
| Water Tank Level Low | Water level less than 5% of the tank capacity | Fill manually the internal tank with new deionised water |
| Dryer Saturated | Dryer saturated. This alarm continues until a dryer regeneration cycle is completed. | Run a dryer regeneration cycle |
| Clock Not Set | Internal clock not set or working poorly | Reset system date and time |
| Check A. Refill | Failed attempt to automatically fill of internal water tank | Check that the external water tank is correctly connected and there is water inside |
| Check Power Supply | Input power voltage not correct | Try turning off and turning on the system. |
| Change Deionizer | Water deionization filter saturated | Clean the water filter, replace the deionizer bag and reset the filter remaining life counter using the appropriate function from the “MAINTENANCE” menu |
Alarm Displayed on LCD

<table>
<thead>
<tr>
<th>Displayed on LCD</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Int. Press.</td>
<td>When the internal pressure cannot reach the value pre-set by the manufacturer</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>Low Out Press.</td>
<td>When the external pressure does not reach the outlet pressure set in the correct time</td>
<td>Check that the line is connected to the H2 outlet port</td>
</tr>
<tr>
<td>Refill Water</td>
<td>When the internal water tank level goes below the minimum level</td>
<td>Fill manually the internal tank with new water</td>
</tr>
<tr>
<td>Bad Water Q.</td>
<td>When the quality of the water is too poor</td>
<td>Completely replace the water in the tank, replace the deionizer bag if necessary and check the water filter</td>
</tr>
<tr>
<td>Hight Cell V.</td>
<td>When the cell voltage exceeds the alarm threshold</td>
<td>Try to restart the system; if the problem persists.</td>
</tr>
<tr>
<td>Over Current</td>
<td>When the cell current exceeds the alarm threshold</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>Over Int. Press</td>
<td>When the internal pressure exceeds the alarm threshold</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>P.S. Temp.</td>
<td>When the electronic power source temperature exceeds the maximum threshold</td>
<td>Check that ambient temperature is less than 35°C - Check that the intake/ventilation fans are not blocked and that the corresponding filters are clean, see picture 2, point 7 and 8</td>
</tr>
<tr>
<td>Out Pressure error</td>
<td>When the outlet pressure remains lower than the working set-point during the time set by the user parameter (during the line filling phase).</td>
<td>Check the connections pipes on the H2 outlet port</td>
</tr>
<tr>
<td>Memory data</td>
<td>When an error is detected in the reading of the saved parameters</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Solution</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Memory damage</td>
<td>When the parameter and alarm chronology storage device fails</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>G.L.S. failure</td>
<td>When a malfunction of the gas-liquid separator is detected</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>Power Supply</td>
<td>When the input power voltage of the electronic section is not correct</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>P.S. damage</td>
<td>When a power source voltage failure is detected</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>Pump failure</td>
<td>When the internal water pump is blocked</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>Leak Int.Pres.</td>
<td>When an internal pressure leak is detected</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
<tr>
<td>Leak Out Pres.</td>
<td>When an external pressure leak is detected</td>
<td>Check that the gas line is connected to the output</td>
</tr>
<tr>
<td>Heater damage</td>
<td>When the dryer heater does not function</td>
<td>Try to restart the system; if the problem persists, call for service</td>
</tr>
</tbody>
</table>
Open the generator

Remove the five screw

Disconnect the screen of the main board (C037)
Main Alarm message

Low internal pressure
Pump failure
High cell voltage
Gas Liquid Separator failed
Power supply failure
Other Alarms
Low internal pressure

Raison:
Not enough pressure

Possible causes:
• Leaks
• Gas Liquid separator valve still open
• Problem with dryer
• Problem with the sensor
• Problem with the cell
Leak test

Use a leak detector

Never use soap inside the generator

Check all the quick connections
Gas Liquid separator valve still open

Check if there are bubbles in the transparent tube.

In this case, remove it and test the purge valve.
How to remove the GLS

- Disconnect CO35
- Disconnect pipes on quick connections
- Unscrew the 2 screws with Allen key
 - Disconnect the “black” wire and then remove the clear tube,

How to Clean the GLS valve

- Unscrew the central nut
- Unscrew the two screws at the top left and bottom right and remove the valve
- Unscrew the two screws at the top right and bottom left to open the valve
- Clean the valve
Check the dryer

- Regenerating tube
- Column 1
- Column 2
- V1 and V2: Proportionnal Valves
- V3 and V4: Inlet valves
- V5 and V6: Purge valves
- Equillibrating time: 1200s
- Operating time: 10800s
- Regeneration ratio: 10%
Check the dryer:
Check proportional valve

1- Put an external cap and start the generateur with the command START CLOSED

2- Go to MENU => MAINTENANCE => SERVICE
Enter the code 345 => SWITCH DRYER COLUMN

3- Check if the output pressure stay at 0 bar. In the other case, remove the proportional valve of the opposite column and check it

4- Push Two times on the screen to change the column. If in this 2 operations, the output pressure stay at 0, check the inlet and purge valve.
Example:
Regeneration column 1:
V1, V2, V4 and V5 are closed
V3 and V6 is opened

The output pressure increase the valve V2 is opened and damaged
Check the dryer:
Check inlet and purge valve

1- Remove the grey silencer and exchange it by a cap

2- Start the generator and check if the generator increase and pressure.

3- Go to MENU => MAINTENANCE => SERVICE
Enter the code 345 => SWITCH DRYER COLUMN.
Push Two times on the screen to change the regenerating column. If in this 2 operations, the internal pressure reach correctly, check the inlet and purge valve.

If the pressure still be at 0, check the pressure sensor or the cell.
Remove the dryer

- Disconnect the terminal block central green
- Disconnect CO6, CO14, CO17, CO32, CO33, CO34
- Disconnect the two pipes on quick connections
- Unscrew the four mounting screws
Check or remove inlet/purge valve

Unscrew the central nut.

Unscrew the two screws at the top left and bottom right and remove the valve.

Then unscrew the remaining two screws and clean the internal components after verification of the presence of impurities.
Check or remove proportional valve

Unscrew the two screws at the top left and bottom right and remove the valve.

Then unscrew the remaining two screws and clean the internal components after verification of the presence of impurities.
Check the pressure sensor

1. Put a gauge between GLS and dryer
2. START CLOSED tht generator
3. Go to MENU => DIAGNOSTIC
4. Compare manometer and the value

If the pressure gauge increase and the screen value still be 0, change pressure transmitter
Remove the sensor

1. Disconnect the connector
2. Turn left the sensor, unplug it and replace it
3. Repeat everything for the second sensor
4. Start the calibration
Sensor calibration

1. Put an external gauge
2. Go to MENU => MAINTENANCE => SERVICE => MANUAL CALIBRATION
3. In the display menu select "manual pressure calibration" and start the procedure
4. Wait for the terms automatically until the pressure reach 10 bar
5. Read the pressure gauge on the exact set on the generator and press the center of the display to save and exit the menu
Remove the cell

Unscrew the two screws on the cables of the cell power

Remove the two screws below

Disconnect the two transparent tubes inlet and outlet water

Disconnect the two white tubes
PUMP Failure

Raison:
The message « Pump failure » means that the pump don’t work

Possible causes:
• The pump is disconnected, check the connector C061
• The pump need to be replace
Replace the pump

- Empty the water tank
- Unplug the connector CO61, located at the end of the wires yellow / red / black and

Unscrew the two screws located below the generator

Disconnect the two transparent tubes
High cell Voltage

Raison:
The voltage of the cell is too high

Possible causes:
• The fan is damaged and the temperature increase
• The quality of water is bad
• The water filter is full of dust
• Problem of the pump
• The cell is damaged, most probability
• The main board is damaged
Check and replace the main board

Unscrew the four screws

Remove the water cap

Unplug the central green connector

Cut the three fixing wires

Disconnect the cable connection of the cooling fans

Disconnect the cables connecting the power supply and the earth

Disconnect the cable "flat" and the power cords of the cell
Check and replace the main board

- Unscrew the four front screws
- Unscrew the five screws on the rear panel
- Disconnect the cable "flat"
- Pull the rack
- Unscrew the six screws
GLS Failure

Raison:
The message « GLS failure » means that the second IR sensor has detect water

Possible causes:
- The valve doesn’t open well
- There is a ball of water between 2 IR sensors
- There is a defect on the IR sensors
The valve doesn’t open well

Solutions:

- Check the valve
- Remove Valve
- Remove GLS
How to Check the IR sensors

Go to: MAINTENANCE ▶ SERVICE ▶ PASSWORD 345 ▶ COMPLETE TEST

When the test is finished, take a picture of the screen or write down all the data

LEAK TEST:
C1 PASS
C2 PASS
GLS PASS
IR1: xx xxx xxx
IR2: xx xxx

The first number of IR1 must be under 20

The first number of IR2 must be under 30, but the last numbers of IR2 must be above 100 (if not, means the second IR sensor has a problem)
Power supply failure

Raison:
The power supply is damaged

Possible causes:
• Check the power supply
• Check the electrical connection