Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.
Contents

1 Introduction

Safety Information 8
 Important safety warnings 8
 Hydrogen safety 8
 Safety symbols 9
 Safety and regulatory information 9
 General safety precautions 10

Shipping Instructions 13

Cleaning 13

Instrument Disposal 13

2 Instrument Overview

Front View 16

Back View 17

Inside View 18

Carrier Gas Connection 21

Sample Gas 23
 Handling a sample 23
 Using the external filter unit 23
 Heated sample lines 24
 Connecting to a heated sample line 25

Power 26
 Power source 26
 Power Requirements 26
 Disposal 26
 Specifications 27

Ambient Pressure 27

Ambient Temperature 27

Maximum Operation Altitude 27
 28
3 Installation and Use

Pre-Installation Requirements 30
Inspect the Shipping Packages 30
Unpack the Micro GC 31
Review the Packing List 32
Install the 490 Micro GC 33
Step 1: Install gas regulators and set pressures 33
Step 2: Connect carrier gas 33
Step 3: Connect to the checkout sample 33
Step 4: Connect to power 33
Step 5: Connect to the data system computer (or LAN) 34
Step 6a: Assign an IP address - for a Micro GC with main board CP740010 34
Step 6b: Assign an IP address - for a Micro GC with main board G3581-65000 37
Step 7: Note the Micro GC startup cycle 40
Step 8: Complete Micro GC configuration in the data system 40
Create the Test Method 41
Perform a Series of Runs 42
Shut Down Procedure 43
Long Storage Recovery Procedure 43

4 GC Channels

Carrier Gas 46
Micro Electronic Gas Control (EGC) 47
Injector 47
Column 48
Molsieve 5Å columns 49
CP-Sil 5 CB columns 50
CP-Sil CB columns 51
PoraPlot 10m column 52
Hayesep A 40 cm heated column 53
COX and AL203/KCl columns 54
MES (NGA) and CP-WAX 52 CB columns 55
Column conditioning 56
Backflush Option 57
Tuning 59
To disable backflush 59
TCD Detector 60
5 Communications

Access the Connection Ports 62
490 Chromatography Data Systems 63
Ethernet Networks 64
 IP Addresses 65
 Example network configurations 66
 To restore the factory default IP address 69
 To change the Micro GC network settings 70
Frequently Asked Questions (FAQ) 71
 Glossary of network terms 71
External Digital I/O 73
External Analog I/O 74
Micro GC Cycle with Constant Pressure 75
Micro GC Cycle with Ramped Pressure 76

6 Errors

Error Handling 78
Error List 79
This chapter provides important information about using the Agilent 490 Micro Gas Chromatograph (Micro GC) safely. To prevent any injury to you or any damage to the instrument it is essential that you read the information in this chapter.
Safety Information

Important safety warnings

There are several important safety notices that you should always keep in mind when using the Micro GC.

WARNING When handling or using chemicals for preparation or use within the Micro GC, all applicable local and national laboratory safety practices must be followed. This includes, but is not limited to, correct use of Personal Protective Equipment, correct use of storage vials, and correct handling of chemicals, as defined in the laboratory’s internal safety analysis and standard operating procedures. Failure to adhere to laboratory safety practices could lead to injury or death.

Hydrogen safety

Hydrogen is a commonly used GC carrier gas. When mixed with air, hydrogen can form explosive mixtures and has other dangerous characteristics.

WARNING When using hydrogen (H₂) as the carrier gas, be aware that hydrogen gas can create a fire or explosion hazard. Be sure that the supply is turned off until all connections are made.

Hydrogen is flammable. Leaks, when confined in an enclosed space, may create a fire or explosion hazard. In any application using hydrogen, leak test all connections, lines, and valves before operating the instrument. Always turn off the hydrogen supply at its source before working on the instrument.

- Hydrogen is combustible over a wide range of concentrations. At atmospheric pressure, hydrogen is combustible at concentrations from 4% to 74.2% by volume.
- Hydrogen has the highest burning velocity of any gas.
- Hydrogen has a very low ignition energy.
- Hydrogen that is allowed to expand rapidly from high pressure into the atmosphere can self-ignite.
- Hydrogen burns with a nonluminous flame which can be invisible under bright light.
Safety symbols

Warnings in the manual or on the instrument must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions violates safety standards of design and the intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

WARNING: Shock hazard
Indicates dangerous voltage. (Terminals fed from the interior by voltage exceeding 1000 V must be so marked.)

WARNING: Burn hazard
Indicates parts that may cause burns when touched.

Instruction Manual
Indicates that the user should refer to the manual before operating the equipment.

Protective Conductor terminal
Indicates sharp or suddenly moving parts such as injection needles that may cause injury.

Skin puncture
Indicates instrument contains parts that can be damaged by electrostatic discharge. Take care for proper grounding before handling.

Static discharge Warning

Do not touch
Touching this item may result in damage to the instrument or personal injury.

Safety and regulatory information

This instrument and its accompanying documentation comply with the CE specifications and the safety requirements for electrical equipment for measurement, control, and laboratory use (CEI/IEC 1010-1), CSAUS and FCC-b.

This device has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

NOTICE This instrument has been tested per applicable requirements of EMC Directive as required to carry the European Union CE Mark. As such, this equipment may be susceptible to radiation/interference levels or frequencies, which are not within the tested limits.

General safety precautions

Follow the following safety practices to ensure safe equipment operation:

- Perform periodic leak checks on all supply lines and pneumatic plumbing.
- Do not allow gas lines to become kinked or punctured. Place lines away from foot traffic and extreme heat or cold.
- Store organic solvents in fireproof, vented and clearly labeled cabinets so they are easily identified as either toxic, or flammable, or both types of materials.
- Do not accumulate waste solvents. Dispose of such materials through a regulated disposal program and not through municipal sewage lines.

WARNING This instrument is designed for chromatographic analysis of appropriately prepared samples. It must be operated using appropriate gases or solvents and within specified maximum ranges for pressure, flows, and temperatures as described in this manual. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
Avoid exposure to potentially dangerous voltages. Disconnect the instrument from all power sources before removing protective panels.

When it is necessary to use a non-original power cord and plug, make sure the replacement cord adheres to the color coding and polarity described in the manual and all local building safety codes.

Replace faulty or frayed power cords immediately with the same type and rating.

Place this instrument in a location with sufficient ventilation to remove gases and vapors. Make sure there is enough space around the instrument for it to cool off sufficiently.

Before plugging the instrument in or turning the power on, always make sure that the voltage and fuses are set appropriately for your local power source.

Do not turn on the instrument if there is a possibility of any kind of electrical damage. Instead, disconnect the power cord and contact your local Agilent sales office.

The supplied power cord must be inserted into a power outlet with a protective ground connection. When using an extension cord, make sure that the cord is also properly grounded.

Do not change any external or internal grounding connections, as this could endanger you or damage the instrument.

The instrument is properly grounded when shipped. You do not need to make any changes to the electrical connections or to the instrument chassis to ensure safe operation.

When working with this instrument, follow the regulations for Good Laboratory Practices (GLP). Take care to wear safety glasses and appropriate clothing.

Do not place containers with flammable liquids on this instrument. Spilling liquid over hot parts may cause fire.
• This instrument may use flammable or explosive gases, such as hydrogen gas under pressure. Before operating the instrument be sure to be familiar with and to follow accurately the operation procedures prescribed for those gases.

• Never try to repair or replace any component that is not described in this manual without the assistance of an Agilent service engineer. Unauthorized repairs or modifications will result in rejection of warranty claims.

• Always disconnect the AC power cord before attempting any type of maintenance.

• Use proper tools when working on the instrument to prevent danger to you or damage to the instrument.

• Do not attempt to replace any battery or fuse in this instrument other than as specified in the manual.

• Damage can result if the instrument is stored under unfavorable conditions for prolonged periods. (For example, damage will occur if stored while subject to heat, water, or other conditions exceeding the allowable operating conditions).

• Do not shut off column flow when the oven temperature is high, since this may damage the column.

• This unit has been designed and tested in accordance with recognized safety standards and designed for use indoors.

• If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.

• Substituting parts or performing any unauthorized modification to the instrument may result in a safety hazard.

• Changes or modifications not expressly approved by the responsible party for compliance could void the user's authority to operate the equipment.
Shipping Instructions

If your Micro GC must be shipped for any reason, it is very important to follow these additional shipping preparation instructions:

- Place all the vent caps on the back of the Micro GC (see Figure 2 on page 17).
- Always include the power supply.
- Include, if used, the inlet filter(s).

Cleaning

To clean the surface of the Micro GC:

1. Switch the Micro GC off.
2. Remove the power cable.
3. Put protection plugs on the sample and carrier gas inlets.
4. Put protection plugs on the column vents.
5. Use a soft brush (not hard or abrasive) to carefully brush away all dust and dirt.
6. Use a soft, clean cloth dampened with mild detergent to clean the outside of the instrument.
 - Never clean the inside of the instrument.
 - Never use alcohol or thinners to clean the instrument; these chemicals can damage the case.
 - Be careful not to get water on the electronic components.
 - Do not use compressed air to clean the instrument.

Instrument Disposal

When the Micro GC or its parts have reached the end of their useful life, dispose of them in accordance with the environmental regulations that are applicable in your country.
There are several versions of the Agilent 490 Micro GC. All of them use GC channels, each of which consists of an Electronic Gas Control (EGC) injector, column, and detector.

The Micro GC is a self-contained package with all of the normal GC components. It is available as a dual channel cabinet version (one or two GC channels) or a quad channel cabinet version (up to four GC channels). A computer with a chromatography data system (CDS) is needed to complete the system.

This chapter provides a brief overview of the 490 Micro GC.
Front View

- **Ready LED**
 - LED OFF: System not ready
 - LED ON: System is ready

- **Run LED**
 - LED OFF: No run
 - LED blinking: Run in progress

- **Error LED**
 - LED OFF: No error
 - LED blinking: Error present
 - See “Error List” on page 79

- **Power LED**
 - LED OFF: No power
 - LED ON: Power OK
 - LED blinking: Voltage < 10 Volt

- **Sample 1 and Sample 2**
 - Sample gas inlet connector (for unheated front inlets)
 - See “Sample Gas” on page 23

- **Power On/Off Switch**
 - Switch the Micro GC ON or OFF

Figure 1 Front view of the 490 Micro GC
Back View

Vents
It is possible to connect long vent lines to these fittings in order to safely guide hazardous fumes to a fume hood or other appropriate vent.

Carrier gas input
Carrier gas input connector
See “Carrier Gas Connection” on page 21

Power connector
Power connector (male)
See “Power” on page 26

Figure 2 Back view of the 490 Micro GC (shown with shipping caps in place)
Inside View

Open the right side cover and the cable connectors will be visible. See Figure 3 and Figure 4.

Assign IP address button
Hold down this button during power up to assign an IP address.
See “Ethernet Networks” on page 64.

LAN indicators
Red LED: Transmit data
Green LED: Receive data

Ethernet (LAN) connector
Ethernet RJ45 connector.
See “Ethernet Networks” on page 64.

COM 1
RS-232 (2-wire) communication interface.
See “490 Chromatography Data Systems” on page 63.

COM 2
RS-232 (2-wire) communication interface.
See “490 Chromatography Data Systems” on page 63.

COM 3
RS-485 (4-wire) communication interface.
See Table 1 on page 20.

Analog I/O
External analog I/O signals.
See “External Analog I/O” on page 75.

Digital I/O
Digital input and output signals, such as start_stop, ready_out, and start_in.
See “External Digital I/O” on page 74.
Assign IP address switch
See “Ethernet Networks” on page 64.

LAN indicators
Red LED: Transmit data
Green LED: Receive data

Ethernet (LAN) connector
Ethernet RJ45 connector.
See “Ethernet Networks” on page 64.

COM 2
RS-232 (2-wire)
communication interface.
See “490 Chromatography Data Systems” on page 63.

COM 3 and COM 4
RS-485 (4-wire)
communication interface.
See Table 1 on page 20.

Analog I/O
External analog I/O signals.
See “External Analog I/O” on page 75.

Digital I/O
Digital input and output signals, such as start_stop, ready_out, and start_in.
See “External Digital I/O” on page 74.

Figure 4 Cable connectors (main board G3581-65000 shown)
The Micro GC provides communications ports as shown in Table 1, depending on the model.

Table 1 Micro GC communication ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Connection</th>
<th>490 Micro GC (with CP740010)</th>
<th>490 Micro GC (with G3581-65000)</th>
<th>490-PRO Micro GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>Ethernet</td>
<td>Interface with PC</td>
<td>Interface with PC</td>
<td>Interface with PC</td>
</tr>
<tr>
<td>COM 1</td>
<td>RS232</td>
<td>Not available</td>
<td>Not available</td>
<td>Valco stream selector; Serial MODBUS*</td>
</tr>
<tr>
<td>COM 2</td>
<td>RS232</td>
<td>Valco stream selector</td>
<td>Valco stream selector</td>
<td>Valco stream selector; Serial MODBUS*; LCD display†</td>
</tr>
<tr>
<td>COM 3</td>
<td>RS485, RS232, RS422</td>
<td>Not available</td>
<td>Not available</td>
<td>Serial MODBUS*</td>
</tr>
<tr>
<td>COM 4</td>
<td>RS485, RS232, RS422</td>
<td>Not available</td>
<td>Not available</td>
<td>Serial MODBUS*</td>
</tr>
<tr>
<td>Analog I/O</td>
<td>Analog I/O</td>
<td>Analog I/O</td>
<td>Analog I/O</td>
<td>Analog I/O</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>Digital I/O; ready in - ready out; start in - start out; extension boards‡</td>
<td>Digital I/O; ready in - ready out; start in - start out; extension boards‡</td>
<td>Digital I/O; ready in - ready out; start in - start out; extension boards‡</td>
<td></td>
</tr>
<tr>
<td>USB</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
</tbody>
</table>

* Optional PRO license required
† LCD display not included
‡ Extension boards not included
**Extension boards not included
Carrier Gas Connection

The carrier gas line is connected to the Micro GC at the back panel Carrier 1 or Carrier 2 port.

CAUTION
Do not use any kind of plastic tubing since air will diffuse through the tubing, which may cause noisy baselines and decreased sensitivity. The metal tubing must be clean for GC use. Buy either flamed or chromatographically clean tubing.

Specifications for the carrier gas:

- **Pressure:** 550 kPa ± 10% (80 psi ± 10%)
- **Purity:** 99.995% minimum
- **Dry and free of particles:** Gas Clean filters recommended

Gas Clean filters are recommended to remove any traces of moisture and oxygen. For low-level analysis, consider using a better grade of carrier gas.

Gas Clean filters are filled with nitrogen. If you are not using nitrogen as the carrier gas, flush filters and gas lines after installation of a new filter.

The type of analysis you want to perform dictates the type of carrier gas to use. The difference between the relative thermal conductivity of the carrier gas and the sample components should be as high as possible. See Table 2 for several relative thermal conductivities.

<table>
<thead>
<tr>
<th>Carrier gas</th>
<th>Relative thermal conductivities</th>
<th>Carrier gas</th>
<th>Relative thermal conductivities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>47.1</td>
<td>Ethane</td>
<td>5.8</td>
</tr>
<tr>
<td>Helium</td>
<td>37.6</td>
<td>Propane</td>
<td>4.8</td>
</tr>
<tr>
<td>Methane</td>
<td>8.9</td>
<td>Argon</td>
<td>4.6</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6.8</td>
<td>Carbon dioxide</td>
<td>4.4</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>6.6</td>
<td>Butane</td>
<td>4.3</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WARNING Your Micro GC is configured for a specific carrier gas, either He and H₂ or N₂ and Ar. Make certain that any carrier gas selection in your Agilent data system corresponds to the carrier gas physically connected to your Micro GC. Use only the carrier gas corresponding to this configuration. If you change the carrier gas type plumbed to the Micro GC, you must change the corresponding carrier gas type in the data system.

WARNING Hydrogen is flammable. If you are using hydrogen as a carrier gas, pay particular attention to possible leaks at connections inside and outside of the Micro GC (use an electronic leak tester).
Sample Gas

The Micro GC is built for the analysis of gases and vapors only. You are advised to prepare a noncondensing gaseous standard sample for routine checkup of the instrument. Sample pressure should be between 0 and 100 kPa (0 to 15 psi), the temperature between 0 and 110 °C ± 5 °C of the analyzer ambient temperature, and it must be filtered, preferably through a 5-mm filter. Agilent always recommends the use of the external filter kit (CP736729).

For more details, see “Using the external filter unit” on page 23.

CAUTION

Liquids will seriously damage the instrument and should be avoided!

Handling a sample

If possible, filter and dry the sample before introducing it to the Micro GC. Agilent advises using an external sample filter unit between the injector and the sampling device.

Using the external filter unit

The male part of the filter must be hand-tightened into the female part, followed by a 1/8 turn with a 7/16-inch wrench. See Figure 5 as shown below and Figure 6 on page 24. Orient the arrow on the female half of the filter towards the fingertight fitting.

Replace the external filter unit at regular intervals. See “Review the Packing List” on page 32 for part numbers.
Whenever possible, remove moisture from samples introduced to the Micro GC.

Heated sample lines

A heated sample line is always combined with a heated injector. A heated injector and sample line is an option for a channel unit, and is used to prevent sample from condensing in the sample lines when analyzing condensable samples.

The heated sample and injector can be controlled between 30 °C and 110 °C.
Connecting to a heated sample line

WARNING Before connecting a heated sample line, allow the sample line heater to cool down to ambient temperature. The metal surfaces of the sample line heater are very hot and could burn your skin.

1. Open the side panel to expose the heater.
2. Remove the insulation (Figure 7 on page 25). The sample line connector will be visible (Figure 8 on page 25).

![Figure 7](image1.png) Removing the insulation

![Figure 8](image2.png) Sample line connector

CAUTION Insulate the sample line coming into the Micro GC to prevent damage to any communications cables.

3. Connect the sample line
2 Instrument Overview

Power

Power source

- 90 to 264 Vac, frequency between 47 to 63 Hz.
- The room power outlet circuit must be exclusively reserved for the instrument(s).
- The network should be properly grounded.
- Installation Category (overvoltage category): II

Power Requirements

The Micro GC requires 12 V Vdc, 150 W.

The Gasifier requires 12 V Vdc, 150 W.

CAUTION Only use the power supply provided with your Micro GC.

This Power Supply, see Figure 9, is tailored to meet the power needs of your Micro GC. See Table 3 on page 27 for specifications.

![Power Supply Image](image)

Figure 9 Model FRA180-S120-4 (P/N CP742999)

Disposal

Disposal of the Power Supply must be carried out in accordance with all environmental regulations applicable in your country.
Specifications

Table 3 Power supply specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Model: FRA180-S120-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>90 Vac to 264 Vac</td>
</tr>
<tr>
<td>Input frequency</td>
<td>47-63 Hz</td>
</tr>
<tr>
<td>Inrush current</td>
<td>50 A/100 V, 100 A/240 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>12.0 Vdc</td>
</tr>
<tr>
<td>Voltage adjust</td>
<td>± 5 %</td>
</tr>
<tr>
<td>Output power</td>
<td>150 W</td>
</tr>
<tr>
<td>Over voltage protection</td>
<td>110 %-150 % rated output voltage</td>
</tr>
<tr>
<td>Ripple and noise</td>
<td>± 0.5 % (1 % p-p max)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 °C to +50 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20 °C to +85 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>20 % to 90 % non condensing</td>
</tr>
<tr>
<td>Safety standard</td>
<td>UL60950-1, TUV EN60950-1, BSMI CNS14336 Approved</td>
</tr>
<tr>
<td>RFI/EMC standard</td>
<td>In compliance with CISPR22 (EN55022) Class B and</td>
</tr>
<tr>
<td></td>
<td>FCC class B, CNS13438 class B, EN61000-3-2,</td>
</tr>
<tr>
<td></td>
<td>EN61000-3-3, EN61000-4-2, EN61000-4-3, EN61000-4-4,</td>
</tr>
<tr>
<td></td>
<td>EN61000-4-5, EN61000-4-6, EN61000-4-8, EN61000-4-11</td>
</tr>
<tr>
<td></td>
<td>(light industry level, criteria A)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>170 × 85 × 44 mm (L×W×H)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.650 kg approximately</td>
</tr>
</tbody>
</table>

Ambient Pressure

The Micro GC automatically shuts down if the ambient pressure is greater than 120 kPa.

Ambient Temperature

The Micro GC automatically shuts down if the ambient temperature exceeds 65 °C.

Maximum Operation Altitude

The maximum operation altitude is 2000 meters.
2 Instrument Overview
3 Installation and Use

Pre-Installation Requirements 30
Inspect the Shipping Packages 30
Unpack the Micro GC 31
Review the Packing List 32
Install the 490 Micro GC 33
Create the Test Method 41
Perform a Series of Runs 42
Shut Down Procedure 43
Long Storage Recovery Procedure 43

This chapter describes how to install and use the instrument. For an initial installation, an example of a typical packing list is also included. The actual packing list and included parts depend on the options ordered.
Pre-Installation Requirements

Prepare the installation site as described in the Site Preparation Guide (G3581-90002), including the recommended Gas Clean filters.

Inspect the Shipping Packages

The Micro GC will arrive in one large box and one or more smaller cartons. Inspect the cartons carefully for damage or signs of rough handling. Report damage to the carrier and to your local Agilent office.
Unpack the Micro GC

Unpack the Micro GC and accessories carefully and transfer them to the work area using proper handling techniques. Inspect the instrument and accessories carefully for damage or signs of rough handling. Report damage to the carrier and to your local Agilent office.

WARNING
Avoid back strain or injury by following all safety precautions when lifting heavy objects.

CAUTION
The instrument has been protected during shipment by protective caps. See Figure 10. Before use, remove these caps, including those on the back panel.

![Figure 10 Protective shipping caps](image-url)
Review the Packing List

Table 4 shows a typical packing list. The actual packing list and included parts depend on the options ordered.

Table 4 Typical Micro GC packing list

<table>
<thead>
<tr>
<th>Item</th>
<th>Part number</th>
<th>Quantity</th>
<th>Units of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Kit Micro GC</td>
<td>CP740388</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>CD-ROM - Micro GC - User Information</td>
<td>G3581-90010</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>Ethernet crossover cable 2.8m</td>
<td>CP740292</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>Locking nut</td>
<td>CP420200</td>
<td>4</td>
<td>EA</td>
</tr>
<tr>
<td>Male luer</td>
<td>CP420100</td>
<td>4</td>
<td>EA</td>
</tr>
<tr>
<td>Fittings 1/8 inch Brass 20/pk</td>
<td>5080-8750</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>Tee, 1/8 inch Brass Union 2/PK</td>
<td>5180-4160</td>
<td>1</td>
<td>PK</td>
</tr>
<tr>
<td>1/8 in x .96in Copper Tubing, 50 Ft, coil</td>
<td>5180-4196</td>
<td>1.5</td>
<td>M</td>
</tr>
<tr>
<td>External Sample Filter kit</td>
<td>CP736729</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>Front and Back ferrule 1/16</td>
<td>CP471201</td>
<td>3</td>
<td>EA</td>
</tr>
<tr>
<td>1/16inch Ferrule set SST</td>
<td>0100-1490</td>
<td>3</td>
<td>EA</td>
</tr>
<tr>
<td>Stainless Nut 1/16 in</td>
<td>0100-0053</td>
<td>3</td>
<td>EA</td>
</tr>
<tr>
<td>Manual User Ext. Sample Filter</td>
<td>CP505260</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>Capil. Ext. Filter</td>
<td>CP736879</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>Tubing,SS,pre-tsd,1/16in. ODx1.0mmID,1/p</td>
<td>CP4008</td>
<td>80</td>
<td>MM</td>
</tr>
<tr>
<td>Tubing, SS,1/16in. ODx1.0mmID,1 mL,1/p</td>
<td>CP4009</td>
<td>0.080</td>
<td>M</td>
</tr>
<tr>
<td>Fingertight Fitting PEEK</td>
<td>CP23050</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>5 FILTERS for EXT. FILTER Assembly</td>
<td>CP736467</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>External Filter Male</td>
<td>CP736737</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>External Filter FeMale</td>
<td>CP736736</td>
<td>1</td>
<td>EA</td>
</tr>
<tr>
<td>Micro GC power supply, 12V, 150W</td>
<td>CP742999</td>
<td>1</td>
<td>EA</td>
</tr>
</tbody>
</table>
Install the 490 Micro GC

If you are installing the 490 Micro GC for the first time, follow the steps as described below.

If you are performing a re-installation, see “Long Storage Recovery Procedure” on page 43.

Step 1: Install gas regulators and set pressures

Carrier gas cylinders should have a two-stage pressure regulator to adjust the carrier gas pressure to 550 kPa ± 10% (80 psi ± 10%). Set cylinder regulator pressure to match the gas inlet pressure.

Step 2: Connect carrier gas

The Micro GC supports the use of helium, nitrogen, argon and hydrogen. The recommended purity for carrier gas is 99.995% minimum. Connect the carrier gas to the Micro GC Carrier 1 fitting (and Carrier 2 fitting, if available) and turn on the gas flow. See “Carrier Gas Connection” on page 21.

Step 3: Connect to the checkout sample

Install the external filter unit as described in “Using the external filter unit” on page 23.

For an unheated GC channel: Connect the sample to the Micro GC using the sample-in connector situated at the front of the instrument (see “Front View” on page 16).

For a heated GC channel: Connect the sample to the heated sample as described in “Connecting to a heated sample line” on page 25.

Step 4: Connect to power

Connect the power connector to the Micro GC, and then plug the power cord into an appropriate power source. See “Power” on page 26. Be sure the power supply is placed in such a way that the mains appliance inlet or adapter is easy to reach for the operator, as it functions as a power disconnect switch.
Step 5: Connect to the data system computer (or LAN)

The Micro GC must be connected to a external workstation for setting up the method and acquiring data. The Agilent data system requires an Ethernet (LAN) connection.

- Connect the Micro GC to the data system computer.
 - For Micro GC’s with main board CP740010 installed a crossover cable (CP740292) is required as described in “Peer-to-peer” on page 66.
 - For Micro GC’s with main board G3581-6500 installed either a crossover cable (CP740292) can be used or a regular (non-crossed) patch cable can be used as described in “Peer-to-peer” on page 66.
- If the Agilent data system is not installed, install it now.

Step 6a: Assign an IP address - for a Micro GC with main board CP740010

The procedure for assigning an IP address depends on which main board your Micro GC has installed. Below is the procedure to follow if your Micro GC has main board CP740010.

- For Micro GCs with main board G3581-6500, follow the procedures described in “Step 6b: Assign an IP address - for a Micro GC with main board G3581-65000” on page 37.

1. Make sure the Micro GC is switched off.
2. Be sure the Micro GC is connected directly to a PC using a crossover cable.
In the Micro-GC Communication Setup screen, click Setup IP Address to open the Setup Ethernet Connection window.

Figure 11 Micro GC Communication Setup screen

Figure 12 Network webpage
5 Type the IP address, hostname, subnet mask and gateway you want to assign to the Micro GC in the corresponding fields.

- The Domain is not required for correct operation of the Micro GC. Consult the network administrator if required.
- The Hostname should only contain numeric or alphanumeric characters, minus sign (“-“) or underscore (“_”) and should not be longer than 19 characters.

6 Start up the Micro GC with the IP button pressed until the Power LED and Ready LED starts blinking (see Figure 13).

![IP button](image)

Figure 13 IP button

7 In the Setup Ethernet Connection window, click **Assign IP address**.

After receiving the IP address, the Micro GC will continue its startup sequence by blinking all LEDs in sequence. The Service Tool responds with a Confirmation message that the IP address was assigned (see Figure 14).
After the LED blinking sequence has stopped, the Power LED will remain lit. When only the power LED is on, the Micro GC ready for use.

Step 6b: Assign an IP address - for a Micro GC with main board G3581-65000

The procedure for assigning an IP address depends on which main board your Micro GC has installed. This procedure is for Micro GC’s with main board G3581-6500.

- For Micro GC’s with main board CP740010, follow the procedures described in “Step 6a: Assign an IP address - for a Micro GC with main board CP740010” on page 34.

Upon arrival from the factory, the Micro GC has a default static IP address configured. The active IP address is specified on the sticker together with the MAC address and the main board serial number (see Table 5).

Table 5

<table>
<thead>
<tr>
<th>Default IP address</th>
<th>192.168.100.100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Host name</td>
<td>microgc</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>N/A (not used)</td>
</tr>
</tbody>
</table>
1 To complete this procedure, the Micro GC must be in static IP address Mode. To verify this, be sure the DHCP switch, is in the left position. The DHCP switch is located on the back of the main board. (See Figure 15).

2 Change the IP address of your laptop or PC to an address in the same range as the current IP address as the Micro GC.

3 Start up your web browser.

4 Connect to the Micro GC’s website. Type the IP address of the Micro GC in the address field of the web browser.

5 On the web page, click **Network**.

6 Log in as administrator. Use the factory default login and password:
 - Login name: admin
 - Password: agilent
In the network webpage, the upper section shows the current IP configuration. Type the **IP Address**, **Subnet mask**, and **Gateway** you want to assign to the Micro GC in the corresponding fields.

Figure 16 Web server authentication

Figure 17 Micro GC website
8 Click **Save** to save the applied IP configuration.

9 This IP address is now the active IP address. Communication with the Micro GC will be lost, since the active IP address has changed.

10 To reestablish communication, type the new saved IP address in the web browser address bar, and click **Activate Communication**.

Step 7: Note the Micro GC startup cycle

The **Ready LED** should light (after two minutes) when ready. (See “Front View” on page 16.)

Your Micro GC is shipped from the factory with default settings. The following is relevant information on the factory default states and settings:

- When the Micro GC is turned on, the power LED lights up and the system begins the *flush cycle* procedure. The flush cycle is a 2-minute cycle in which the various valves are activated and deactivated in order to flush entrapped air from the manifold, valves, and tubing.
- After the flush cycle is finished, the method (the default method in this case), which was last active before the instrument was shutdown, is activated.
- All heated zones are set at 30 °C.
- The detector filaments are set to OFF.

Step 8: Complete Micro GC configuration in the data system

1 If not already configured, complete any additional configuration for the Micro GC in the data system. Especially make sure the carrier gas types match the gas actually supplied to the Micro GC.

2 Start the Micro GC’s online instrument session.

3 Refer to the data system online Help and User Manuals for more details if necessary.
Create the Test Method

At first startup, perform a checkout to make sure the Micro GC is functioning properly.

A test method for each standard column type has been provided in the sections listed in Table 6.

CAUTION
If you ordered a Molsieve column, make sure it is conditioned before use. See Table 8 on page 49 for parameters.

Table 6 Test method listings

<table>
<thead>
<tr>
<th>Column type</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molsieve 5Å</td>
<td>Table 8 on page 49</td>
</tr>
<tr>
<td>CP Sil 5 CB</td>
<td>Table 9 on page 50</td>
</tr>
<tr>
<td>CP Sil CB</td>
<td>Table 10 on page 51</td>
</tr>
<tr>
<td>PoraPlot 10 m</td>
<td>Table 11 on page 52</td>
</tr>
<tr>
<td>Hayesep A 40 cm</td>
<td>Table 12 on page 53</td>
</tr>
<tr>
<td>COx 1 m and AL₂O₃/KCl</td>
<td>Table 13 on page 54</td>
</tr>
<tr>
<td>MES(NGA) and CP-WAX 52 CB</td>
<td>Table 14 on page 55</td>
</tr>
</tbody>
</table>

Use the data system to set up the checkout parameters for each GC channel. Apply the checkout method settings to the Micro GC and allow the instrument to stabilize at the initial operating conditions. Monitor the instrument status using the data system’s status display (refer to the data system help for details).

Each test method has been designed to determine if the instrument channel is functioning properly and includes an example test chromatogram.
Perform a Series of Runs

1. Create a short sequence of at least three runs using the test sample and method.
2. Run the sequence.
3. After the first run, the results for each channel should become similar to the example chromatograms.
Shut Down Procedure

The detector can be damaged by improper shut down. If shutting down the instrument for more than a few days, carry out the procedure below.

1. Create a method for all channels with these settings:
 - Filaments switched OFF.
 - Column temperature set at 30 °C.
 - Injector temperature set at 30 °C.
 - Pressure set at 50 kPa.

2. Apply the method to the Micro GC.

3. Wait until the temperature of the columns and injectors are < 40 °C (to protect the column), then switch off the Micro GC.

4. Remove the carrier gas tubing and plug all the vents and carrier gas connections with 1/8-inch brass nuts or plastic caps.

Before using the instrument again, perform the “Long Storage Recovery Procedure” described below.

Long Storage Recovery Procedure

Follow this recovery procedure if your Micro GC has been stored for a long period of time.

1. Remove the 1/8-inch brass nuts and plastic caps from all of the vents and carrier gas connections.

2. Connect the carrier gas tubing and apply pressure to the Micro GC. Refer to the Site Preparation Guide for supply pressures and other gas requirements.

3. Wait at least 10 minutes before switching ON the Micro GC.

4. Immediately check if the detector filaments are switched OFF. Switch OFF if necessary.
5 Set the column(s) temperature(s) to the maximum allowed temperature (160 °C or 180 °C depending on the column limit).

6 Condition the GC column, preferably overnight. This will ensure that all the water has been removed from the column module and no damage will occur to the TCD filaments.
4 GC Channels

Carrier Gas 46
Micro Electronic Gas Control (EGC) 47
Injector 47
Column 48
Backflush Option 57
TCD Detector 60

The instrument contains up to 2 channels in a dual channel cabinet, or up to 4 channels for a quad channel cabinet. A GC channel contains a gas regulator, an injector, a column, and a TCD detector. See Figure 18 on page 46.

This chapter provides a brief discussion on the major components in the Micro GC and the backflush option.
The Micro GC is configured for use with either He and H₂ or N₂ and Ar.

Agilent recommends you use gases with a minimum purity of 99.995%. Since the injection valve is operated pneumatically, there is a limit of 550 kPa ± 10% (80 psi ± 10%) to the main gas supply.

CAUTION Your Micro GC is configured either for carrier gas He and H₂ or N₂ and Ar. Use the carrier gas type for which your instrument is configured, otherwise the detector filaments can be damaged.

Figure 18 Gas flow diagram
Micro Electronic Gas Control (EGC)

The Micro GCs have built-in regulators that can be adjusted to get a constant or programmed pressure control, which, once constant or programmed pressure control is obtained, results in a constant or programmed flow through the injector, column and detector. The pressure range is from 50 to 350 kPa (7 to 49 psi). This pressure sets a continuous flow of carrier gas of about 0.2 to 4.0 mL/min (depending on column length and type).

A typical pressure rise is 200 kPa/min, which will give a significant pressure increase during the run without excessive baseline disturbance. In most cases baseline subtraction may improve the quality of chromatograms that suffer from baseline drift.

Injector

The injector has a built-in 10-µL sample loop that is filled with the gaseous sample. The pressure of the sample should be between 0 and 100 kPa (0 to 15 psi) and the sample temperature within 5 to 110 °C ± 5 °C of the analyzer.

When the chromatographic data system sends a START command, the vacuum pump draws the gas sample through the loop and the injector injects the gas sample from the sample loop into the gas stream. A typical injection time is 40 milliseconds (ms). This equals an average injection volume of 200 nL. Injection time will be rounded to a multiple of 5 ms. A practical minimum value is 40 ms. A value of 0 to 20 milliseconds might result in no injection.
Column

A variety of column configurations are possible on the Micro GC. The columns you require for your specific analyses have been installed at the factory. Other configurations are, of course, possible, but altering the GC channels is a delicate matter that can only be handled by an Agilent service engineer. Table 7 shows several standard columns as supplied in the Micro GCs and selected applications. Other columns are available by contacting Agilent Technologies.

Table 7 Agilent Micro GC columns and applications

<table>
<thead>
<tr>
<th>Column/Phase type</th>
<th>Target components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molsieve 5Å</td>
<td>Permanent gases (N2/O2 separation), methane, CO, NO, and so forth. 20 m required for O2-Ar baseline separation). Natural gas and biogas analysis. Optional Retention Time Stability (RTS) configuration.</td>
</tr>
<tr>
<td>Hayesep A</td>
<td>Hydrocarbons C1–C3, N2, CO2, air, volatile solvents, natural gas analysis.</td>
</tr>
<tr>
<td>CP-Sil 5 CB</td>
<td>Hydrocarbons C3–C10, aromatics, organic solvents, natural gas analysis.</td>
</tr>
<tr>
<td>CP-Sil 19 CB</td>
<td>Hydrocarbons C4–C10-high boiling solvents, BTX.</td>
</tr>
<tr>
<td>CP-WAX 52 CB</td>
<td>Polar volatile solvents, BTX.</td>
</tr>
<tr>
<td>PLOT Al2O3/KCl</td>
<td>Light hydrocarbons C1–C6 saturated and unsaturated. Refinery gas analysis.</td>
</tr>
<tr>
<td>PoraPLOT U</td>
<td>Hydrocarbons C1–C6, halocarbons/freons, anesthetics, H2S, CO2, SO2, volatile solvents. Separation of ethane, ethylene, and acetylene.</td>
</tr>
<tr>
<td>PoraPLOT Q</td>
<td>Hydrocarbons C1–C6, halocarbons/freons, anesthetics, H2S, CO2, SO2, volatile solvents. Separation of propylene and propane, coelution of ethylene and acetylene.</td>
</tr>
<tr>
<td>CP-COX</td>
<td>CO, CO2, H2, Air (coelution of N2 and O2), CH4.</td>
</tr>
<tr>
<td>CP-Sil 19CB for THT</td>
<td>THT and C3–C6+ in Natural Gas Matrix.</td>
</tr>
<tr>
<td>CP-Sil 13CB for TBM</td>
<td>TBM and C3–C6+ in Natural Gas Matrix.</td>
</tr>
<tr>
<td>MES NGA</td>
<td>Unique column specially tested for MES in natural gas (1 ppm).</td>
</tr>
</tbody>
</table>

CAUTION All columns except the HayeSep A (160 °C) and MES (110 °C) columns can be used up to 180 °C, the maximum temperature of the column oven. Exceeding this temperature will cause the column to lose efficiency instantly and the column module will need replacement. All channels have a built-in protection that prevents a setpoint above the maximum temperature.
Molsieve 5Å columns

The Molsieve 5Å column is designed to separate: hydrogen, carbon monoxide, methane, nitrogen, oxygen, and some noble gases. Higher molecular weight components have much higher retention times on this column.

Table 8 Molsieve 5Å instrument parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4m Heated</th>
<th>10m Unheated</th>
<th>20m Unheated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column temperature</td>
<td>110°C</td>
<td>40°C</td>
<td>40 °C</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>110°C</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Column pressure</td>
<td>100 kPa (15 psi)</td>
<td>150 kPa (21 psi)</td>
<td>200 kPa (28 psi)</td>
</tr>
<tr>
<td>Sample time</td>
<td>30 s</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Injection time</td>
<td>40 ms</td>
<td>40 ms</td>
<td>40 ms</td>
</tr>
<tr>
<td>Run time</td>
<td>25 s</td>
<td>140 s</td>
<td>210 s</td>
</tr>
<tr>
<td>Detector sensitivity</td>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Peak 1</td>
<td>Hydrogen 1.0%</td>
<td>Neon 18 ppm</td>
<td>Neon 18 ppm</td>
</tr>
<tr>
<td>Peak 2</td>
<td>Argon/Oxygen 0.4%</td>
<td>Hydrogen 1.0%</td>
<td>Hydrogen 1.0%</td>
</tr>
<tr>
<td>Peak 3</td>
<td>Nitrogen 0.2%</td>
<td>Argon 0.2%</td>
<td>Argon 0.2%</td>
</tr>
<tr>
<td>Peak 4</td>
<td>————</td>
<td>Oxygen 0.2%</td>
<td>Oxygen 0.2%</td>
</tr>
<tr>
<td>Peak 5</td>
<td>————</td>
<td>Nitrogen 0.2%</td>
<td>Nitrogen 0.2%</td>
</tr>
</tbody>
</table>
CP-Sil 5 CB columns

The natural gas components, mostly hydrocarbons, separate in the same order on the non-polar and medium-polar CP-Sil CB columns. Nitrogen, methane, carbon dioxide, and ethane are not separated on these columns. They produce a composite peak. For separation of these components, consider a HayeSep A column.

Table 9 CP-Sil 5 CB instrument parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>4m Heated</th>
<th>6m Unheated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column temperature</td>
<td>50 °C</td>
<td>50 °C</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>110 °C</td>
<td>NA</td>
</tr>
<tr>
<td>Column pressure</td>
<td>150 kPa (21 psi)</td>
<td>150 kPa (21 psi)</td>
</tr>
<tr>
<td>Sample time</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Injection time</td>
<td>40 ms</td>
<td>40 ms</td>
</tr>
<tr>
<td>Run time</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Detector sensitivity</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Peak 1</td>
<td>Composite Balance</td>
<td>Composite Balance</td>
</tr>
<tr>
<td>Peak 2</td>
<td>Ethane 8.1%</td>
<td>Ethane 8.1%</td>
</tr>
<tr>
<td>Peak 3</td>
<td>Propane 1.0%</td>
<td>Propane 1.0%</td>
</tr>
<tr>
<td>Peak 4</td>
<td>i-Butane 0.14%</td>
<td>i-Butane 0.14%</td>
</tr>
<tr>
<td>Peak 5</td>
<td>n-Butane 0.2%</td>
<td>n-Butane 0.2%</td>
</tr>
</tbody>
</table>

mV CP Sil 5 CB 4 m heated

mV CP Sil 5 CB 6 m unheated
CP-Sil CB columns

Table 10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CP-Sil 13 CB 12m Heated (TBM)</th>
<th>CP-Sil 19 CB 6m Heated (THT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column temperature</td>
<td>40°C</td>
<td>85 °C</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>50°C</td>
<td>85 °C</td>
</tr>
<tr>
<td>Column pressure</td>
<td>250 kPa (38 psi)</td>
<td>200 kPa (25 psi)</td>
</tr>
<tr>
<td>Sample time</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Injection time</td>
<td>255 ms</td>
<td>255 ms</td>
</tr>
<tr>
<td>Run time</td>
<td>80 s</td>
<td>35 s</td>
</tr>
<tr>
<td>Detector sensitivity</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Peak 1</td>
<td>Methane balance</td>
<td>Helium balance</td>
</tr>
<tr>
<td>Peak 2</td>
<td>TBM 6.5 ppm</td>
<td>THT 4.6 ppm</td>
</tr>
<tr>
<td>Peak 3</td>
<td>Noane 4.5 ppm</td>
<td></td>
</tr>
</tbody>
</table>

![Graph of CP-Sil CB 12m heated (TBM)](image1)

![Graph of CP-Sil CB 6m unheated (THT)](image2)
PoraPlot 10m column

Table 11 PoraPlot 10m instrument parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PoraPlot u 10m Heated</th>
<th>PoraPlot Q 10m Heated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column temperature</td>
<td>150°C</td>
<td>150 °C</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>110°C</td>
<td>110 °C</td>
</tr>
<tr>
<td>Column pressure</td>
<td>150 kPa (21 psi)</td>
<td>150 kPa (21 psi)</td>
</tr>
<tr>
<td>Sample time</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Injection time</td>
<td>40 ms</td>
<td>40 ms</td>
</tr>
<tr>
<td>Run time</td>
<td>100s</td>
<td>50 s</td>
</tr>
<tr>
<td>Detector sensitivity</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Peak 1</td>
<td>1</td>
<td>Composite Balance</td>
</tr>
<tr>
<td>Peak 2</td>
<td>2</td>
<td>Ethane 8.1%</td>
</tr>
<tr>
<td>Peak 3</td>
<td>3</td>
<td>Propane 1.0%</td>
</tr>
<tr>
<td>Peak 4</td>
<td>4</td>
<td>i-Butane 0.14%</td>
</tr>
<tr>
<td>Peak 5</td>
<td>5</td>
<td>n-Butane 0.2%</td>
</tr>
</tbody>
</table>
Hayesep A 40 cm heated column

The HayeSep A column separates oxygen, methane, carbon dioxide, ethane, acetylene, ethylene, and selected sulfur gases. Nitrogen coelutes with oxygen. Components with a higher molecular weight than propane have long retention times on this column.

WARNING

Maximum allowable column temperature is 160 °C.

Table 12 Hayesep instrument parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hayesep A 40 cm Heated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column temperature</td>
<td>50 °C</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>110 °C</td>
</tr>
<tr>
<td>Column pressure</td>
<td>150 kPa (21 psi)</td>
</tr>
<tr>
<td>Sample time</td>
<td>30 s</td>
</tr>
<tr>
<td>Injection time</td>
<td>40 ms</td>
</tr>
<tr>
<td>Run time</td>
<td>60 s</td>
</tr>
<tr>
<td>Detector sensitivity</td>
<td>Auto</td>
</tr>
<tr>
<td>Peak 1</td>
<td>Nitrogen 0.77%</td>
</tr>
<tr>
<td>Peak 2</td>
<td>Methane Balance</td>
</tr>
<tr>
<td>Peak 3</td>
<td>Ethane 8.1%</td>
</tr>
</tbody>
</table>

![Graph showing mV vs. Seconds for Hayesep A 40 cm heated column](image)
COX and AL2O3/KCl columns

Table 13 COX and AL2O3/KCl instrument parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>COX 1m Unheated</th>
<th>AL2O3/KCl 10m Heated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column temperature</td>
<td>80 °C</td>
<td>100 °C</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>NA</td>
<td>110 °C</td>
</tr>
<tr>
<td>Column pressure</td>
<td>200 kPa (28 psi)</td>
<td>150 kPa (21 psi)</td>
</tr>
<tr>
<td>Sample time</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Injection time</td>
<td>40 ms</td>
<td>40 ms</td>
</tr>
<tr>
<td>Run time</td>
<td>204 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Detector sensitivity</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Peak 1</td>
<td>Hydrogen 1.0%</td>
<td>Composite Balance</td>
</tr>
<tr>
<td>Peak 2</td>
<td>Nitrogen 1.0%</td>
<td>Ethane 8.1%</td>
</tr>
<tr>
<td>Peak 3</td>
<td>CO 1.0%</td>
<td>Propane 1.0%</td>
</tr>
<tr>
<td>Peak 4</td>
<td>Methane 1.0%</td>
<td>i-Butane 0.14%</td>
</tr>
<tr>
<td>Peak 5</td>
<td>CO2 1.0%</td>
<td>n-Butane 0.2%</td>
</tr>
</tbody>
</table>

Helium Balance
MES (NGA) and CP-WAX 52 CB columns

Table 14 MES (NGA) and CP-WAX 52 CB instrument parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MES 10m Heated (NGA)</th>
<th>CP-WAX 52 CB 4m Heated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column temperature</td>
<td>90 °C</td>
<td>60 °C</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>110 °C</td>
<td>110 °C</td>
</tr>
<tr>
<td>Column pressure</td>
<td>70 kPa (10 psi)</td>
<td>150 kPa (21 psi)</td>
</tr>
<tr>
<td>Sample time</td>
<td>30 s</td>
<td>30 s</td>
</tr>
<tr>
<td>Injection time</td>
<td>500 ms</td>
<td>40 ms</td>
</tr>
<tr>
<td>Run time</td>
<td>120 s</td>
<td>35 s</td>
</tr>
<tr>
<td>Detector sensitivity</td>
<td>Auto</td>
<td>Auto</td>
</tr>
<tr>
<td>Peak 1</td>
<td>Nitrogen Balance</td>
<td>Nitrogen 0.75%</td>
</tr>
<tr>
<td>Peak 2</td>
<td>Noane 11.2 ppm</td>
<td>Acetone 750 ppm</td>
</tr>
<tr>
<td>Peak 3</td>
<td>MES 14.2 ppm</td>
<td>Methanol 0.15%</td>
</tr>
<tr>
<td>Peak 4</td>
<td>Ethanol 0.30%</td>
<td>Helium Balance</td>
</tr>
</tbody>
</table>

Graphs

- ** MES 10 m heated (NGA):**
 - Peaks: 1, 2, 3
 - Integration: 80, 90, 100, 110, 120, 130
 - mV: -0.3, 0.1, 0.5, 0.9, 2
 - Seconds: 0, 20, 40, 60, 80, 100, 120, 140

- ** CP-WAX 52 CB 4 m heated:**
 - Peaks: 1, 2, 3, 4
 - Integration: 1, 6, 11, 16, 21, 26, 31, 36
 - mV: -2, 3, 8, 13
Column conditioning

Follow this procedure to make sure that any water that might be present inside the analytical column is removed before the TCD is switched on.

Also follow this procedure if the Micro GC module has been stored for a long period.

CAUTION
The detector filaments may be damaged by improper conditioning. Follow this procedure to avoid damaging the detector filaments.

Column conditioning procedure

1. Switch off the TCD filaments in the method.
2. Set the column temperature of the module to the maximum temperature (160 °C or 180 °C depending on the column limit). Leave the filaments off.
3. Download this method to the Micro GC.
4. Run the downloaded method to condition the column, preferably overnight.

This will assure you that all the water has been removed from the column and no damage will occur to the TCD filaments.

Nitrogen and oxygen merging in Molsieve columns

On a properly activated column, nitrogen and oxygen will be well separated. However, in time you will find that these two peaks begin to merge together. This is caused by water and carbon dioxide present in the sample or carrier gas, adsorbing to the stationary phase.

To restore the column efficiency, condition the column, Z described above, for about an hour. After reconditioning, you can test the column performance by injecting plain air. If you have a proper separation between nitrogen and oxygen again, the column separation power has been restored. If the Micro GC frequency of use is very high, you might consider routinely leaving the oven temperature at 180 °C overnight. The longer the reconditioning period, the better the column performance.
Backflush Option

Backflush to vent is an advanced technique used to prevent later-eluting compounds from reaching the analytical column and detector. The main reason for applying this technique is to keep the analytical column clean and reduce analysis time.

The Micro GC is optionally available with GC modules that incorporate backflush capabilities.

A backflush system always consists of a pre-column and an analytical column. The two columns are coupled at a *pressure point*, which makes it possible to invert the carrier gas flow direction through the pre-column at a preset time, called the *backflush time*. See Figure 21 on page 58.

The injector, two columns, and detector are in series.

The sample is injected onto the pre-column where a pre-separation takes place; injection takes place in normal mode. See Figure 20 on page 58.
When all compounds to be quantified are transferred to the analytical column, the backflush valve switches (at the backflush time). On the pre-column, the flow inverts and all compounds left on the pre-column now backflush to the vent. On the analytical column the separation continues because there the flow is not inverted. See Figure 21.

The standby mode is the backflush configuration (if the instrument is equipped with the optional backflush valve).

Backflushing saves the time required to elute high boiling components that are not of interest and ensures that the pre-column will be in good condition for the next run.
Tuning

Use trial and error to tune the backflush time. Reduce the backflush time to transfer fewer compounds to the analytical column.

1. Obtain a chromatogram in normal mode. Check out the retention times of the compounds you have to quantify.

2. Set the backflush time at the retention time of the last peak of interest.

3. Obtain a second chromatogram.

4. Adjust the backflush time (increments of 0.1 seconds are possible) until all components of interest are transferred to the analytical column and all unwanted peaks are backflushed.

 Because a small pre-column is used, it is not always possible to cut between two adjacent peaks.

The **Backflush Time** range is from 0.5 seconds until the maximum run time.

To disable backflush

To disable backflushing, set the **Backflush Time** to 0. This puts the system in normal mode during the entire run.
TCD Detector

Each GC channel is equipped with a thermal conductivity detector (TCD). This detector responds to the difference in thermal conductivity between a reference cell (carrier gas only) and a measurement cell (carrier gas containing sample components). The construction of a TCD is such that the changing thermal conductivity of the carrier gas stream, due to components present, is compared to the thermal conductivity of a constant reference gas stream.
5

Communications

Access the Connection Ports 62
490 Chromatography Data Systems 63
Ethernet Networks 64
External Digital I/O 74
External Analog I/O 75
Micro GC Cycle with Constant Pressure 76
Micro GC Cycle with Ramped Pressure 77

This chapter describes the input and output ports accessible inside the Micro GC for interfacing with external devices. Also included is an overview of the constant pressure cycle and the ramped (programmed) pressure cycle of the Micro GC.
Access the Connection Ports

1. Open the cover (Figure 22).

![Figure 22](image) Instrument cover

2. At the front of the instrument, the external device connectors are visible (Figure 23).

![Figure 23](image) External device connectors (Main board CP740010 shown)

3. Close the cover after connecting the cables.
490 Chromatography Data Systems

The 490 Micro GC requires an Agilent chromatography data system (CDS) for control, peak identification, integration, data analysis, reporting, and so forth. See Table 15. The CDS requires a LAN (Ethernet) connection. Multiple Micro GCs can be controlled using an Agilent data system such as EZChrom, OpenLAB EZChrom Edition, or OpenLAB Chemstation Edition. The maximum number of Micro GCs controlled is limited by your software license. For detailed information on setting method parameters, see the help files in the data system.

Table 15 Chromatography data system control for the Micro GC

<table>
<thead>
<tr>
<th></th>
<th>EZChrom Elite (version 3.3.2)</th>
<th>OpenLAB CDS EZChrom Edition</th>
<th>OpenLAB CDS Chemstation Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Ethernet</td>
<td>Ethernet</td>
<td>Ethernet</td>
</tr>
<tr>
<td>IP Setting via</td>
<td>BootP</td>
<td>BootP</td>
<td>BootP</td>
</tr>
<tr>
<td>COM 1</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>COM 2</td>
<td>For Valco stream selector valve (maximum 2)</td>
<td>For Valco stream selector valve (maximum 3)</td>
<td>For Valco stream selector valve (maximum 3)</td>
</tr>
<tr>
<td>COM 3</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>COM 4</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>Analog I/O</td>
<td>Capturing (UserDataStore)</td>
<td>Status only</td>
<td>Status only</td>
</tr>
<tr>
<td>Digital I/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External start in:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External ready in:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External start out:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External ready out:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timed Relay:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Alarm Relay:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Solenoids:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>USB</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
</tbody>
</table>

See “External Digital I/O” on page 74.
Communications

Ethernet Networks

About the internet protocol:

- Developed to allow cooperating computers to share resources across a network.
- TCP and IP are the two best-known protocols in the Internet Protocol Suite.
- Other protocols/services are FTP, Remote Login (Telnet), Mail, and SMTP.

The Agilent data systems require an Ethernet network for data communications with the Micro GC. This network can be a local area network (LAN) or wide area network (WAN).

General requirements:

- Micro GC with main board CP740010 installed (10 Mbps connection)
 - Cat5 or Cat3 UTP/STP cabling.
 - The network should comply with Standard Ethernet (IEEE 802.3).
The network must use 10BASE-T, 10/100BASE-TX or 10/100/100BASE-TX compatible hubs or switches.

- Micro GC with main board G3581-65000 installed (100 Mbps connection)
 - Cat 6, Cat5e, or Cat 5 UTP/STP cabling.
 - The network should comply with Standard Ethernet (IEEE 802.3).
 - The network must be 100BASE-T, 10/100BASE-TX, or 10/100/100BASE compatible hubs or switches.
- TCP/IP should be used on the network.

The Micro GC ships with an Ethernet crossover cable (RJ-45 connector, 2.8 meter) for direct connection between the Micro GC and a PC with a chromatography data system (CDS).

IP Addresses

- An IP address uniquely identifies a computer or device on the network or internet.
- IP addresses are made up of four 8-bit numbers, and each of these numbers is separated by a decimal point.
- Each of the 8-bit numbers can represent a decimal value of 0-255.
- Each part of an IP address can only be in that range (for example, 198.12.253.98).

A network can be *public* (addressable from the internet) or *private* (not addressable from the internet). A private network can also be *isolated*, that is, physically not connected to the internet or other networks. In many cases, you can set up an isolated LAN for instruments. For example, an isolated, private LAN may consist of a workstation computer, four Micro GCs, a printer, a LAN switch, and cabling. Isolated LANs must use IP addresses in the “private” ranges shown in Table 16.

Table 16 Private (isolated) LAN IP address ranges

<table>
<thead>
<tr>
<th>Starting IP</th>
<th>Ending IP</th>
<th>Subnet mask</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>N/A</td>
<td>Public</td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>10.255.255.255</td>
<td>255.0.0.0</td>
<td>Private</td>
</tr>
<tr>
<td>172.16.0.0</td>
<td>172.31.255.255</td>
<td>255.255.0.0</td>
<td>Private</td>
</tr>
<tr>
<td>192.168.0.0</td>
<td>192.168.255.255</td>
<td>255.255.0.0</td>
<td>Private</td>
</tr>
</tbody>
</table>
Example network configurations

Peer-to-peer

A peer-to-peer network (See Figure 25) is required to assign or change the IP address of a Micro GC. It can also be used when no network is required or available. The cable(s) used for peer-to-peer connections depend on the installed main board.

- For a Micro GC with main board CP740010 installed, a crossover cable (CP740292) is required.
- For a Micro GC with main board G3581-6500 installed, either a crossover cable (CP740292) or a regular (non-crossed) patch cable can be used.

Figure 25 Peer-to-peer (single instrument)
Peer-to-peer communication requires IP addresses in the same subnet range for the computer and the Micro GC.

After assigning or changing the IP address of a Micro GC, you can remove the connection cable and connect the computer and Micro GC to a local network using normal cabling.

See “Inside View” on page 18.

Local Area Network (LAN)

An example of a LAN configuration is shown in Figure 26.

![Local network (multiple instruments)](Figure 26)

OpenLAB CDS maximum connections are limited by the computer speed, license, and network performance.
Global network (WAN)

An example of a Global network is shown in Figure 27.

Figure 27 Global network with multiple instruments
To restore the factory default IP address

Upon arrival from the factory, the Micro GC with main board G3581-65000 has a default static IP address configured. (see Table 5). Sometimes it is necessary to restore this IP address if communication with the Micro GC is lost.

The 490 Micro GC with main board G3581-6500 has a reset button that can be accessed at the back of the instrument. See Figure 28. To perform a soft reset of the instrument, press the button briefly (less than 3 seconds). Holding the button down for a longer period of time while the instrument is powering up will restore the IP address of the Micro GC to its factory installed default settings. To restore the factory default IP address to the Micro GC:

1. Make sure the Micro GC is powered OFF.
2. Press and hold the reset button.
3. While holding down the reset button, power on the Micro GC.
4. Shortly (approximately 3 seconds) after powering on the GC, release the reset button.

Please note that releasing the reset button too quickly (less than 1 second) may result in not reverting the network configuration to factory defaults. Also note that holding down the reset button for too long (more than 10 seconds), can cause the Micro GC to reboot.

5. The default IP address is restored.
To change the Micro GC network settings

1. Start up your web browser.
2. Connect to the Micro GC’s website. Type the IP address of the Micro GC in the address field of the web browser.
3. On the web page, click Names.
4. Log in as administrator. Use the factory default login and password:
 - Login name: admin
 - Password: Agilent
5. Click the items you would like to change.
If you are changing the host or domain name, type the host name or domain name in the required field.

- The **host name** should only contain numeric or alphanumeric characters, minus sign ("-") or underscore ("_") and should not be longer than 19 characters.
- The **domain name** is not required for correct operation of the Micro GC.

If one or more DNS servers and/or search domain are required, type in the DNS IP addresses (space separated) and search domain. These settings are not required for correct operation of the Micro GC.

Click **Save** to save settings.

Power cycle the Micro GC.
Frequently Asked Questions (FAQ)

Q: Can I connect the Micro GC to my site network?
A: Yes, if the network is standard Ethernet and uses TCP/IP with UTP cabling.

Q: I'm using a DHCP server; can I use this to assign an IP address to the Micro GC?
A: If you have a Micro GC with main board G3581-65000 installed, yes. If you have a Micro GC with main board CP740010 installed, yes and no. The Micro GC and Agilent data systems work with static IP addresses only, so an IP address will have to be reserved on the DHCP server and marked as static.

Q: How do I assign an IP address to the Micro GC?
A: See “Step 6a: Assign an IP address - for a Micro GC with main board CP740010” on page 34 or “Step 6b: Assign an IP address - for a Micro GC with main board G3581-65000” on page 37.

Q: Are the network settings saved if the Micro GC is restarted, or after loss of power?
A: Yes, the network settings of the Micro GC are stored in flash memory, and will not be erased at loss of power.

Q: Can I control my Micro GC from anywhere in the world via the Internet?
A: Yes, if your network is designed for this, and has internet access or remote access facilities (the ports 4900, 4901 and 4902 must be open).

Glossary of network terms

Crossover cable A cable used to connect two, and only two, Ethernet devices directly without the use of a hub or switch.

Domain One of several settings within the TCP/IP configuration that identifies paths used to communicate with Ethernet devices. The Domain is an IP address.

Ethernet address (MAC address) This is a unique identifier that every Ethernet communication device has assigned to it.
Typically, the Ethernet address cannot be changed and is the permanent way of identifying a particular hardware device. The Ethernet address consists of 6 pairs of hexadecimal digits.

Gateway This is one of several settings within the TCP/IP configuration that identifies paths used to connect with Ethernet devices on a different subnet. The Gateway is assigned an IP Address.

Host name The host name is an alternate way of identifying a device that is friendlier to people. Frequently the host name and the IP address may be used interchangeable.

IP address This is a unique number for each Ethernet device within the set of connected devices. Two PCs may have identical IP addresses so long as they are not interconnected to each other through the Internet. The IP Address consists of a series of four sets of decimal numbers (between 1 and 255) that provide routing information used by the TCP/IP protocol to establish a reliable connection. Without the IP Address, communications would be bogged down trying to establish connections to Ethernet addresses at unknown locations.

Patch cable A cable that is used to connect Ethernet devices to hubs, switches, or your company network.

Protocol A set of rules that govern how computers send and receive information.

RJ45 connector A telephone jack style connector used for a Universal Twisted Pair (UTP) hardware connection for 10/100Base-T Ethernet connections. RJ45-style connectors are used by the Micro GC.

TCP/IP An international standard protocol used by the Internet. We use this protocol for communication to the Micro GC. You may find several network protocols, such as IPX/SPX and NetBEUI, installed on your computer.
External Digital I/O

Connections between Micro GCs and external devices are made with the appropriate cable to the External Digital I/O port.

Ready/Not Ready signal

![Diagram of External Digital I/O connections]

Figure 30 External digital connections
External Analog I/O

The external analog I/O port can handle six (6) analog inputs (input 0 to 10 Volt).

The user interface receives this analog information and translates it into actions to be taken by the local user interface, events, or data to be shown or stored in the remote user interface. In OpenLAB EZChrom and OpenLAB ChemStation only status is visible.

490 Micro GC

External analog I/O

Figure 31 External analog connections
Micro GC Cycle with Constant Pressure

The timing diagram below provides an overview of the constant pressure cycle of the Micro GC.

This description is only for one channel. In most cases a dual-channel system is used. When a dual-channel system is used, the sequence is the same, but the timing settings can differ. If the sample time on channel A and channel B are different, the longest time is used for both channels. Also the run time can be specified per channel; the data acquisition stops per channel as soon as the run time has elapsed. The total analysis time depends on the longest run time.

Before a run is started all used method parameters must be downloaded via the data system.

The run can be started when the Micro GC is ready (Ready LED is lit). The data system will wait until data is received from the Micro GC.

Fixed equilibration delay of 40 ms. This time allows the sample to settle in the sample loop.

The real analysis (run) and data acquisition starts.

After the specified run time has elapsed, the run is finished.
Micro GC Cycle with Ramped Pressure

The timing diagram below provides an overview of the ramped (programmed) pressure cycle of the Micro GC. The timing before the injection is identical to the constant pressure cycle.

The remaining final time depends on the total run time, the duration of the initial time and the pressure rise. This means that it is possible that the final time is zero. Another situation is that the final pressure is limited because of these settings. The software will check all parameter values and change them into realistic values.

Note: During the run time, there can be only one pressure ramp to a higher pressure.

During initial time the column head pressure remains the same. As soon as the final pressure is reached, the rise stops and the final time begins. The pressure remains the same. Relieve time, the time needed to decrease the column head pressure from the final pressure to the initial pressure. Fixed at 500 mS.

Stabilization time for the pressure after it has been returned to the initial pressure.
5 Communications
6

Errors

Error Handling 78
Error List 79
Error Handling

During operation a series of events and error messages are generated indicating start or finishing of certain actions and procedures as well as smaller and fatal errors somewhere in the instrument. This section describes how the Micro GC reacts to these events or messages.

The following error classes as well as the subsequent actions are available:

Class 0 Internal event. These are events indicating a certain procedure has started or finished. In no way do they influence the proper functioning of the instrument.

Class 1 Advisory fault; the instrument continues. These are the less critical advisory errors not requiring immediate action by the user. The ongoing run may be minimally effected by it and thus need not be stopped. Class 1 error messages indicate certain malfunctions of the instrument. Some errors of this type keep the instrument from becoming ready.

Class 2 Critical errors for logging; error LED ON. These are critical errors for which the user needs immediate warning (a popup or warning may appear in the data system and the Error LED lights). The run in progress is stopped since its results will definitely be wrong. Corrective action by the user or instrument service may be required.

Class 3 Fatal errors for logging; instrument shutdown, error LED and buzzer ON. These are fatal errors for which the user needs immediate warning. The Error LED lights. An instrument shutdown occurs. Corrective action by the user or service is required.

All errors, regardless of class, are available to the data system under instrument status (for troubleshooting). All Class 1 and higher errors are also logged in the instrument's flash memory.

Individual numbers identify all errors; these numbers are built using the error class and a number. Events are not numbered.
Error List

The General Error State as stored in UserDataStore (only valid for EZChrom 3.3.2) address 1219 is composed of the following items.

The error must be handled as CLNNN in which:

- **C** = error class (severity)
- **L** = location
- **NNN** = error number or event number.

The Error class can be one of the following values:

- 0 = diagnostic error.
- 1 = advisory error.
- 2 = critical error.
- 3 = fatal error.

There are five locations:

- 0 = main board.
- 1 = channel 1.
- 2 = channel 2.
- 3 = channel 3.
- 4 = channel 4.

Table 17 lists the possible errors.

<table>
<thead>
<tr>
<th>Error number</th>
<th>Error class</th>
<th>Event/error code</th>
<th>Description</th>
<th>Action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Init passed (event)</td>
<td>End of initialization phase</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Pressure restored</td>
<td>Pressure restored after Too Low Pressure</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Start flush cycle</td>
<td>Is a part of the initialization cycle</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Flush cycle passed</td>
<td>Is a part of the initialization cycle</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>TCD calibrating</td>
<td>Automatic generation after method activation or download.</td>
<td>TCD off and temp. control to default</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Too low pressure</td>
<td>Pressure drops below 35 kPa</td>
<td>Check gas supply</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Pressure fault</td>
<td>Pressure state not ready after 5 minutes</td>
<td>Check gas supply or replace manifold</td>
</tr>
<tr>
<td>Error number</td>
<td>Error class</td>
<td>Event/error code</td>
<td>Description</td>
<td>Action needed</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Low battery 1</td>
<td>Battery 1 low power (portable Micro GC only)</td>
<td>Recharge battery</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Low battery 2</td>
<td>Battery 2 low power (portable Micro GC only)</td>
<td>Recharge battery</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Sample line sensor fault</td>
<td>Sample line temperature sensor error</td>
<td>Heater turned off</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>Sample line temperature fault</td>
<td>Temperature not reached within 35 min (heater error)</td>
<td>Replace sample line heater</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>Injector temperature fault</td>
<td>Temperature not reached within 35 min (heater error)</td>
<td>Replace module</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>Column temperature fault</td>
<td>Temperature not reached within 35 min (heater error)</td>
<td>Replace module</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>TCD Temperature limit activated</td>
<td></td>
<td>Hardware protection activated</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>EDS logging error</td>
<td>Unable to update EDS log</td>
<td>Call service</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Low power supply</td>
<td>Voltage < 10 Volt</td>
<td>Recharge battery</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>Injector sensor fault</td>
<td>Injector temperature sensor error</td>
<td>Replace module</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>Column temperature sensor fault</td>
<td>Column temperature sensor error</td>
<td>Replace module</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>TCD control error</td>
<td>TCD voltage not or incorrectly set</td>
<td>Call service</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>TCD calibration failed</td>
<td>Any error during TCD calibration</td>
<td>Replace module or TCD controller board</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>Hardware reset</td>
<td>Instrument reset request from WS</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>Pressure too high</td>
<td>Pressure > 450 kPa for at least 2 minutes</td>
<td>Replace manifold</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>Initialization error</td>
<td>During initialize</td>
<td>Call service</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>Internal communication error</td>
<td>During/after initialization, between MPU and IOC/IOE</td>
<td>Call service</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>Instrument EDS incorrect</td>
<td>Instrument Electronic Data sheet incorrect</td>
<td>Call service</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>EDS incorrect</td>
<td>Electronic Data sheet incorrect</td>
<td>Call service</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>Internal power failure</td>
<td>During/after initialization, internal supplies</td>
<td>Call service</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>Flush cycle aborted</td>
<td>Flush cycle stopped before completion</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>GC module changed</td>
<td>Changing a channel (controller or module) and restarting the instrument</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>TCD Gain calibrated</td>
<td>End TCD Gain calibration</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>TCD Offset calibrated</td>
<td>End of Offset calibration</td>
<td></td>
</tr>
</tbody>
</table>

Table 17 Error list (continued)
<table>
<thead>
<tr>
<th>Error number</th>
<th>Error class</th>
<th>Event/error code</th>
<th>Description</th>
<th>Action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0</td>
<td>Null String</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>ADC reading out of range</td>
<td>Analog Digital Control out of range</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>EDS Analytical Module incorrect</td>
<td>Electronic Data Sheet Analytical Module incorrect</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>EDS Config checksum incorrect</td>
<td>Electronic Data Sheet Configuration checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>EDS Logbook checksum incorrect</td>
<td>Electronic Data Sheet Logbook checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0</td>
<td>EDS Protected checksum incorrect</td>
<td>Electronic Data Sheet Protected checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>EDS C.C. Config checksum incorrect</td>
<td>Electronic Data Sheet Channel Control checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0</td>
<td>EDS C.C. Logbook checksum incorrect</td>
<td>Electronic Data Sheet Channel Control Logbook checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>EDS C.C. Protected checksum incorrect</td>
<td>Electronic Data Sheet Channel Control Protected checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0</td>
<td>EDS A.M. Config. checksum incorrect</td>
<td>Electronic Data Sheet Analytical Module Configuration checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0</td>
<td>EDS A.M. Logbook checksum incorrect</td>
<td>Electronic Data Sheet Analytical Module Logbook checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>EDS A.M. Protected checksum incorrect</td>
<td>Electronic Data Sheet Analytical Module Protected checksum incorrect</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0</td>
<td>EDS Config SVER incorrect</td>
<td>Electronic Data Sheet Configuration Structure Version incorrect</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0</td>
<td>EDS Protected SVER incorrect</td>
<td>Electronic Data Sheet Protected Structure Version incorrect</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>0</td>
<td>EDS C.C. Config SVER incorrect</td>
<td>Electronic Data Sheet Channel Control Structure Version incorrect</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>0</td>
<td>EDS C.C. Protected SVER incorrect</td>
<td>Electronic Data Sheet Channel Control Protected Structure Version incorrect</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0</td>
<td>EDS A.M. Config SVER incorrect</td>
<td>Electronic Data Sheet Analytical Module Configuration incorrect</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>0</td>
<td>EDS A.M. Protected SVER incorrect</td>
<td>Electronic Data Sheet Analytical Module Protected Structure Version incorrect</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>Pressure Offset calibration</td>
<td>Notification Pressure Offset calibration is completed</td>
<td></td>
</tr>
<tr>
<td>Error number</td>
<td>Error class</td>
<td>Event/error code</td>
<td>Description</td>
<td>Action needed</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>51</td>
<td>0</td>
<td>Pressure Offset calibration Failed</td>
<td>Calibration offset out of range</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0</td>
<td>Unable to store pressure offset</td>
<td>Pressure off set is out of valid range</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>Temperature sensor disconnected</td>
<td>Temperature sensor not connect to instrument</td>
<td>Call Service</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>Not ready to start run</td>
<td>Issued by Safety Control Object in Hardware domain. Bridge Call to GC domain (Reporting Not Ready To Start Run Error)</td>
<td>Check method</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>Stream selection failed</td>
<td>Stream selector (VICI) failed switching</td>
<td>Check valve</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>Ambient pressure or temperature alarm</td>
<td>Issued by Safety Control Object in Hardware domain whenever ambient temperature has passed a certain value.</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>Column cleaning</td>
<td>Instrument in column cleaning state</td>
<td>NA</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>Equilibrating temperature zones</td>
<td>Instrument stabilizing after column cleaning</td>
<td>Wait until Ready</td>
</tr>
<tr>
<td>76</td>
<td>3</td>
<td>IOC Communication error</td>
<td>MPU is not able to communicate with IOC</td>
<td>Call service</td>
</tr>
<tr>
<td>77</td>
<td>3</td>
<td>Read main board EDS error</td>
<td>Not able to read Main board EDS</td>
<td>Call service</td>
</tr>
<tr>
<td>78</td>
<td>3</td>
<td>Read channel controller EDS error</td>
<td>Unable to read EDS controller</td>
<td>Call service</td>
</tr>
<tr>
<td>79</td>
<td>3</td>
<td>Read channel analytical module EDS error</td>
<td>Not able to read analytical module EDS</td>
<td>Call service</td>
</tr>
<tr>
<td>990</td>
<td>3</td>
<td>Watchdog Error: Store Application report on flash error</td>
<td>Internal Software Error, can’t store application report on flash memory.</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>991</td>
<td>3</td>
<td>Watchdog Error: Store ErrorLog report on flash error</td>
<td>Internal Software Error, can’t store ErrorLog report on flash memory.</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>992</td>
<td>3</td>
<td>Watchdog Error: Instrument frozen (hazardous error)</td>
<td>Internal Software Error, software hanging</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>993</td>
<td>3</td>
<td>Watchdog Error: OOA Timer error</td>
<td>Internal Software Error, OOA Timer could not be created.</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>994</td>
<td>3</td>
<td>Watchdog Error: ACE reactor stopped</td>
<td>Internal Software Error, ACE reactor stopped</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>995</td>
<td>3</td>
<td>Watchdog Error: Event pump stopped for 20 s</td>
<td>Internal Software Error, Event pump stopped.</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>996</td>
<td>3</td>
<td>Watchdog Error: IOC Fatal error 0</td>
<td>Internal Software Error, IOC fatal error 0</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>Error number</td>
<td>Error class</td>
<td>Event/error code</td>
<td>Description</td>
<td>Action needed</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>997</td>
<td>3</td>
<td>Watchdog Error: IOC Fatal error 1</td>
<td>Internal Software Error, IOC fatal error 1</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>998</td>
<td>3</td>
<td>Watchdog Error: IOC Fatal error 2</td>
<td>Internal Software Error, IOC fatal error 2</td>
<td>Auto reboot</td>
</tr>
<tr>
<td>999</td>
<td>3</td>
<td>Watchdog Error: IOC Fatal error 3</td>
<td>Internal Software Error, IOC fatal error 3</td>
<td>Auto reboot</td>
</tr>
</tbody>
</table>
6 Errors