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Emerging technologies for chemical imaging provide high-resolution three-dimensional (3D) surveys with high-precision
mass spectrometry (MS), promising to open unprecedented vistas for understanding complex phenomena such as cellular
metabolism. However, there are critical challenges in transforming the large, complex, multidimensional, multispectral data
sets into useful chemical information for biological research and other applications. This paper describes new informatics
for advanced interactive spatio-spectral analysis of three-dimensional mass-spectral (3DxMS) chemical images. The technical
challenges for interactive informatics are rapid access to large datasets, visualization of 3D hyperspectral images, and pattern
recognition for spatio-spectral mapping. This paper describes an effective compression method for time-of-flight secondary
ion mass spectrometry (ToF-SIMS) data that provides rapid spatial-spectral access; a framework for 3DxMS visualization that
supports multiple views with multiple layers of information; and a suite of pattern recognition tools for spatio-spectral drawing,
clustering, and classification. Copyright c© 2010 John Wiley & Sons, Ltd.
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Introduction

Advanced informatics are required to support interactive spatio-
spectral analysis of three-dimensional mass-spectral (3DxMS)
chemical images generated by an emerging generation of time-of-
flight secondary ion mass spectrometry (ToF-SIMS) instruments.
These instruments provide high spatial resolution and fine mass-
spectral precision of biological samples and promise to provide
an informational basis for important scientific advances, but the
volume and complexity of data pose significant challenges for
interactive visualization and analysis.

A new generation of ToF-SIMS systems, exemplified by the
J105 3D Chemical Imager developed by the University of
Manchester[1,2] and the hybrid quadrupole orthogonal ToF-SIMS
system developed by Penn State University,[3] utilize polyatomic
primary ion beams with high duty-cycles to achieve faster analyses
and higher spatial resolution without sacrificing mass resolution
and with subsurface degradation that is small enough to allow
depth profiling for 3DxMS imaging of single biological cells.

Despite the promise of ToF-SIMS for biosciences, a lack of
information technologies to support advanced data analysis and
‘push-button’ methods for routine applications is a significant
impediment to its adoption.[4,5] Extracting the rich chemical
information offered by emerging chemical imaging technologies
from large, complex data is a substantial challenge. Currently,
there is an insufficient knowledge basis for fully automated
processing of 3DxMS data from biological samples, so this research
and development focuses on interactive and semiautomated
operations.

Three significant challenges for interactive informatics with
three-dimensional (3D) chemical imaging are:

• Rapid access to large datasets.

• Interactive visualization of complex multidimensional multi-
spectral data.

• Pattern recognition for spatio-spectral mapping.

This paper describes an effective compression method for ToF-
SIMS data that provides rapid spatial–spectral access; a framework
for 3DxMS visualization that supports multiple views with multiple
layers of information; and a suite of pattern recognition tools for
spatio-spectral drawing, clustering, and classification.

Data Compression for Rapid Access

A practical issue for informatics software is that the data size
exceeds the computer memory of typical desktop computers. For
example, a ToF-SIMS image acquired with the J105 with 256 × 256
pixels at each of ten layers and spectra with 105 channels defines
more than 65 billion data points.

ToF-SIMS data is hyperspectral, with intensities for tens of
thousands of ToF intervals. Tretter, Memon, and Bouman[6]

surveyed two principal approaches for lossless compression of
hyperspectral images: predictive coding and reversible transforms,
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Table 1. Compression and decompression times and sizes [7]

Dataset GZIP Adaptive unigram PPM(3) SIMS

Name Size (MB)
Encode
Time (s)

Decode
Time (s) Size (MB)

Encode
Time (s)

Decode
Time (s) Size (MB)

Encode
Time (s)

Decode
Time (s) Size (MB)

Encode
Time (s)

Decode
Time (s) Size (MB)

Grid Spot 3750 88 28 76 1621 1846 56 1743 2546 54 26 1 50
20071213z0 5520 134 40 98 2386 2739 74 2760 4172 73 38 1 68
20071213z1 5486 126 40 72 2380 2735 55 2501 3669 53 37 1 48
20071213z2 5440 123 41 52 2414 2788 41 2347 3345 38 37 1 33

each followed by context modeling and coding. Both approaches
can be applied either with respect to the spatial dimensions or to
the spectral dimension (or both). Predictive coding has been the
predominant approach for hyperspectral data. Lossless transform
coding methods for hyperspectral data are newer and typically
require greater computation than lossless predictive methods,
but may achieve greater compression. Given the motivation of
interactivity, low computational complexity is more important
than high compression rates, so predictive coding methods are
better suited. Given the primary need for spatial visualization
in ToF-SIMS analysis, rapid access should be provided to each
data-point spectrum.

Reichenbach et al.[7] recently described a method that codes
individual spectra, consistent with the predominant access
mode for ToF-SIMS analysis, based on statistical and structural
characteristics of ToF-SIMS spectra. Unlike hyperspectral data
generated by most remote sensing satellites, for which popular
hyperspectral compression methods were developed, ToF-SIMS
spectra have many zero values and the probability distribution of
the intensity values is skewed, decreasing rapidly with magnitude.
Also, many of the nonzero values are in adjacent ToF channels,
forming peaks in the mass spectra. These statistical characteristics
can be exploited to give highly compressed data that can be
accessed quickly.

The frequency of zero values and the adjacency of nonzero
values suggest that run-length encoding (RLE) may be used to
effectively code long runs of zeros. Commonly used sparse array
representations of mass spectra (i.e. recording the mass and value
for each nonzero value) similarly take advantage of the large
number of zeros to efficiently represent MS data. If, instead of the
ToF channel index, the differential of indexes of nonzero-valued
channels is used (i.e. the difference between the index of the next
channel with a nonzero value and one more than the index of the
current nonzero channel), the result is a run-length code.

The compressed data must be decoded quickly for interactive
visualization, so the approach represents the run lengths with
1, 2, and 4 byte integers which do not require computation
for decoding – just byte copies. Accordingly, the method uses
2-bit length codes to record the number of bytes for each ToF
differential, and zero bytes are used if the differential is zero. The
length codes (in binary) are: ‘00’ if the differential is zero, with no
separate representation of the differential; ‘01’ if the differential is
in the range 1–255, with the differential coded in 1 byte; ‘10’ if the
differential is in the range 256–65 535, with the differential coded
in two bytes; and ‘11’ if the differential is 65 536 or larger, with the
differential coded in 4 bytes. So, only two bits are required for the
ToF differentials that are equal to zero, 10 bits are required for the
ToF differentials in the range 1–255, etc. The differential codes can
be retrieved quickly using byte copies.

The nonzero intensity values, of which many are one and
many others are small, can be compressed similarly. The integer
byte-length scheme allows quick retrieval of the intensity for a
specific channel, with decoding of only the ToF differentials and
the intensity byte lengths to locate the byte(s) with the intensity
value. The nonzero intensity values are reduced by one (which
maps the ones to zeros) and then coded using the length-coding
scheme described above. Decoding restores the nonzero values
by adding one.

Table 1 compares compression rates and coding times for the
SIMS method and three popular general coding methods: GZIP (in
java.util.zip[8]), arithmetic coding with an adaptive unigram model
(in com.colloquial.arithcode[9]), and arithmetic coding with Predic-
tion by Partial Matching[10,11] (PPM(3) in com.colloquial.arithcode).
The input data, which has been segmented into single layers for
processing on desktop computers, is large. For example, in un-
compressed form, with 4-byte integers for all values, the Grid
Spot data requires 3.75 GB (for 16K pixels, 57K channels/pixel,
4 bytes/channel). Even in list format with time-and-intensity
pairs, a commonly used representation for sparse spectra, the
20 071 213z0 data requires 307 MB (for 38M nonzero intensities
with 4 bytes each for time and intensity). All of the methods
compared in Table 1 substantially compress this data. The SIMS
method achieves excellent compression (33 to 68 MB) and fast
decoding of ToF-SIMS data for interactive visualization (less than
1 s).

Interactive 3DxMS Visualization
Visualization is the process of converting scientific data into visual
information.[12 – 16] Conventional computer monitors offer two
dimensions for displaying the four dimensions of 3DxMS data.
Accordingly, a framework for visualization should support different
views of the same data, each showing different dimensions of the
data. In addition to the four dimensions of data, data processing
defines additional spatial and spectral features for visualization, for
example, the spatial region of a cell nucleus or the mass-spectral
channels indicative of cholesterol. So, the visualization framework
also should support mapping of multiple spatial and spectral
features generated during data analyses.

A software multi-view multi-layer (MVML) framework for
3DxMS data visualization with a model-view-controller (MVC)
architecture[14,17,18] supports various views of ToF-SIMS data with
multiple layers of feature information. The model components
maintain various data and metadata objects, such as data source,
a collection of data access components and a 3D array of mass-
spectral vectors; aspect function, a component for computing
features; and geometric aspect, a region map in the data space. The
controller components handle the interaction between users and
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Figure 1. Thresholded values show data points inside a 3D data-cube.

the program, accepting events from users and dispatching events
to appropriate receivers. The view components render various
visualizations, including 3D spatial projection, two-dimensional
(2D) spatial plus mass-spectral projection, 2D spatial slice, and one-
dimensional (1D) mass-spectral graph. Each view has configuration
parameters, e.g. color mapping, opacity, etc.

The 3D visualization in Fig. 1 shows a perspective projection
of the spatial data-cube, with pseudocolor mapping of the
mass spectrum at each point. A pseudocolor mapping function
generates a color for a given spectrum, e.g. using a linear,
logarithmic, or exponential function of the total intensity count
(TIC) to index into a cold-hot color scale or mapping the selected
intensity count (SIC) for user-defined m/Q interval(s) indicative of
chemically important ions. Thresholds can be used to make some
data points invisible, e.g. creating an isosurface that shows data
points with the same (or similar) intensities. Recomputation of
the value for each data point (when the m/Q selection changes)
is relatively fast if the compressed data can be held in memory.
Mouse-controlled rotation allows viewing the data from any 3D
angle and zoom moves the data-cube closer or more distant.
Radio buttons provide six standard orthogonal views (one of the
six data-cube faces shown fully in front) and eight isometric views
(one of the eight data-cube corners with the three intersecting
faces shown fully at equal angles). A control also is provided for
the aspect ratio.

The 2D visualization in Fig. 2 is convenient for viewing a planar
slice through the interior of the data-cube. The slice plane can be
positioned along any axis in the 3D view and repositioned with a
slider. As the slicing plane is repositioned, the selected image slice
is shown in real-time in the image viewer. This allows interactive 2D
animation of the 3D data along any spatial dimension. Displaying
a 2D slice as an image provides a convenient interface for precisely
indicating data points or drawing regions, e.g. the circle indicating
a point of interest. Other drawing interfaces are single-point,
polygon, free-hand, and scribble. The software allows users to
build composite regions using discard (new), addition (union),
subtraction, and replace (discard followed by addition). Composite
regions are maintained as geometric aspect functions that can be
saved, loaded, edited, and visualized in the 2D and 3D views.

Each data point in the 2D view is a pseudocolorized mass
spectrum, but the mass-spectral dimension also can be visualized
as a third dimension, as in Fig. 3. Because the mass-spectral array

Figure 2. A two-dimensional slice from a three-dimensional data-cube.

Figure 3. Mass to charge is presented as the third dimension for a slice.for ToF-SIMS typically is 1–2 orders of magnitude larger than the
screen resolution, resampling is required. Pseudocolorizing each
resampled interval independently can highlight spatio-spectral
structures (such as the grid in Fig. 3 that may be difficult to discern
in other views (e.g. the grid in Fig. 2).

1D visualization is convenient for showing the mass spectrum
of an indicated data point or the summed mass spectrum for
a spatial region. The spectrum viewer displays a spectrum in
graphical and tabular formats. The abscissa of the spectrum
can be set to ToF, m/Q, or integer mass to charge (rounded
to whole numbers). ToF-SIMS systems generate hyperspectral
data – intensity arrays with tens of thousands of values – so neither
display screen resolution nor visual acuity is sufficient to perceive
all spectral intensities simultaneously. Therefore, the graphical
view of the spectrum allows zooming to show sub-ranges of the
spectrum and the tabular view supports scrolling. The tabular
view can be sorted either by abscissa or intensity (the ordinal) with
either increasing or decreasing values. The graphical view allows
interactive delineation of a SIC range by mouse click-and-drag. The
SIC can then be visualized in the 3D and 2D spatial views with a
button click. Generating new SIC visualizations requires summing
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intensities for the indicated range and may take a few seconds
depending on the size of the data and SIC range. Specific SIC
features (e.g. that are indicative of various chemically important
ions) can be saved, loaded, and edited, as well as visualized.

Spatio-Spectral Pattern Recognition

Analyses of ToF-SIMS images may entail both spatial and spectral
features. For example, it may be useful to delineate a spatial feature
such as a cell or regions within a cell. Similarly, it may be useful to
identify spectral features, such as a spectral signature indicating
the presence of a drug. Pattern recognition can be used to find
and/or delineate such features. This section describes a Magic
Wand tool, spectral clustering, and spectral classification.

The Magic Wand tool selects data points based on spectral
similarity and spatial proximity. First, the user selects a data
point to provide both a reference spectrum and a seed for
the selected spatial region. Then, the software iterates a region-
growing process. In each cycle of the iteration, data points within
a specified spatial distance of any selected data point (initially just
the seed) are tested for similarity with the reference spectrum.
Every data point within the specified distance that meets the
similarity criterion is added to the selected region. This iterative
process repeats each time the region grows, then stops when
no more data points nearby any selected data points are similar
enough. Two sliders interactively parameterize the Magic Wand:
the jump parameter, which specifies the distance from a selected
data point at which that the region-growing process can include
additional data points, and the similarity threshold, which specifies
the level of similarity required for new data points to be added to
the selected region. Two types of similarity can be used: spectral
similarity, computed as the cosine between mass-spectral vectors,
and TIC similarity, the difference between TIC values divided by
the difference between the largest and smallest TIC values in the
data.

Figure 4 illustrates the use of Magic Wand on ToF-SIMS data
from two 200-µm polystyrene beads coated with different peptide
mimics with distinct mass-spectral features at m/Q 226 and 547
on a silicon substrate.[19] In each image, the region selected by the
Magic Wand is shown as a mauve-colored overlay on the colorized
TIC image. In Fig. 4(A), the seed point is in the background and
the Magic Wand successfully selects much of the background. In
Fig. 4(B) and 4(C), the seed point is respectively in the left and right
bead and the Magic Wand selects much of the indicated bead.

The spectral clustering tool provides a uniform interface for
various clustering algorithms, including k-means,[20] hierarchical
clustering,[21] and spectral clustering.[22] Clustering algorithms
perform unsupervised grouping of objects such that those in the
same group are more similar with one another than with objects
in other groups. First, the user selects a subset of data points to
be clustered. Then, the user selects the clustering algorithm and
provides its parameters, e.g. some algorithms require the user to
specify the number of clusters. Then, the algorithm separates the
data points into clusters based on their spectral similarity.

Figure 5 illustrates clustering of ToF-SIMS data from HeLa cells:
(A) a TIC image; (B) k-means clustering with two clusters separates
the cells and background; and (C) k-means clustering with three
clusters apparently separates the cell edges and interiors.

Spectral classification is based on supervised training: two
(or more) user-defined geometric aspect functions designate
data points in distinct classes, then the classification algorithm

(a)

(b)

(c)

Figure 4. The Magic Wand can be used to select proximal and spectrally similar 
data points for an indicated seed point. (A) Seed in the background.(B) Seed in the 
left bead. 
(C) Seed in the right bead. 
(Data from Winograd and Braun.[19]).



i n s p i r a t i o n m e e t s i n n o v a t i o n !


Your supplier of GCXGC and LCXLC software

Spatio-spectral analysis of 3DxMS chemical images

(a)

(b)

(c)

Figure 5. Clustering of ToF-SIMS data of HeLa cells. (Data from S. Rabbani
and J. Fletcher, Surface Analysis Research Centre, University of Manchester.)
(A) TIC. (B) Two clusters with k-means. (C) Three clusters with k-means.

Table 2. Classification results with four classification methods for two
datasets

Classifier
Dataset 1

accuracy (%)
Dataset 2

accuracy (%)

Decision trees 90.00 93.50
SIMCA 80.00 83.00
PCA with DFA 91.00 92.50
MSN-PSSM 89.00 90.00

assigns class membership to other data points based on
mass-spectral characteristics. Experiments with the bead data
compared four classification algorithms: C4.5 decision trees,[23]

soft independent modeling of class analogy (SIMCA),[24] principal
component analysis (PCA)[25] with discriminant function analysis
(DFA),[26] and the most similar neighbor with a probability-based
spectrum similarity measure (MSN-PSSM).[27] Two data sets were
constructed: the first with 100 data points from each bead and
the second with 50 data points from each bead. With these
data sets, leave-one-out cross-validation, which is commonly
used in chemometrics, was used for testing. Table 2 shows
the classification accuracy (the fraction correctly classified) for
each classification algorithm. Decision trees and PCA with DFA
performed best, followed by MSN-PSSM, then SIMCA, but only
the lower performance of SIMCA is statistically significant. In
experiments with SIMS data from bacterial samples related to
urinary tract infections, MSN-PSSM significantly outperformed the
other classification methods.[27]

Conclusion
This paper summarizes new software methods and tools for
computer-based visualization and analyses of high-resolution,
3D, hyperspectral ToF-SIMS data. The informatics suite includes a
coding scheme for efficient storage and fast access, interactive
interfaces for visualizing and operating on 3D hyperspectral
images, and spatio-spectral clustering and classification. The goal
of the work to-date is proof of concept and the development
of a prototype foundation for future work. Future work will
include continued evaluation of the coding effectiveness as ToF-
SIMS instruments evolve, interactive spatial operations for 3D
drawing such as rotation and extrusion, improved clustering and
supervised classification methods, and a general framework for
spectral aspects functions such as PCA, ion ratios, etc.
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