

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

NEW PYROPROBE 6000

CDS RESISTIVELY HEATED FILAMENTS

Benefits of Resistively Heated Systems

- Highest pyrolysis temperature of 1400C
- Adjustable heating rates and pyrolysis times .01C/minute to 20C/millisecond
- Multi- step methods possible (up to 10) Allows auto purge solvent to vent Analyze for additives before the polymer
- CDS systems can perform TD studies and desorb large sample sizes
- Variety of probes allow fastest heating rates (ribbon), convenience (DISC) and larger sizes (350 mg)
- Heating elements can be changed by customer

6000 SERIES PYROPROBES

- 5000 series was introduced in 2004
 - Instrument manufacturers like to push a 7 year trade-in cycle but....true trade-in cycles are closer to every 10 years+.
- Has served us well but electronic components are becoming obsolete
- 5000 series will be supported for another 10 years
- Target price is 10-15% above 5000 series

6000 SERIES PYROPROBE

Pyrolysis Temp: 0-1400°C (1300C for AS) Heating Rate: 0.01°C/min. to 20°C/millisec Modular Design with individual models 6150, 6200 (trapping) and 6250 (Autosampler) and 6250T (AS w/ trap)

Incorporates a textured molded "Kydex T" top cover and new color scheme

Foot print slightly larger then 5000 series...several cm in depth

PC Software for programming but has LCD display for local control and readout

10 step programming vs 8

Purge & Trap Thermal Desorption Headspace

6000 SERIES PYROPROBE

Option for new DISC probe "*Drop-In-Sample-Chamber*" User can change between probes & DISC Increased temp's in heated zones:

400C- Interface 375C - Heated Line More consistent temp in heated valve box- *Allows heavier compounds to column- less long term carryover* Uses same filament and coil probes

Silcosteel interface and lines

DISC PROBE

- Designed as optional add on to all manual systems.
- Uses AS chamber
- User can switch between standard probes and DISC
- DISC uses longer AS quartz tubes
- Multi-step capabilities are not lost

DISC PROBE

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

Carrier gas comes into top of chamber

here.

Pyrolyzed gas flows Through the heated block to GC.

> ngeniería Analítica Chromatography & Spectrometry

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

Sample drops into this py chamber

6000 SERIES PYROPROBE

Electronics and fuses easily accessible from pull-out drawer

Build out for HPR version will slide under system- true modular design

6000 SERIES PYROPROBE

All pneumatics accessible from the top

CDS Analytical, Inc. Purge & Trap Thermal Desorption Headspace

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

ELECTRICAL CONNECTIONS

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

TRANSFERLINE CONNECTION

Pyroprobe 6200

- All features of 6150
- Has built in "sorbent" trap and Thermal Desorber
 - Allows pyrolysis in air analysis
 - Thermal desorption chamber- analyze sorbent tubes or thermal extraction of large sized samples
 - Slow rate pyrolysis with trapping
- Can interface to GC or to trap
- Trap Specifications-
 - Heating up to 400C
 - Heating rate > 900C/min
 - Supplied with 3 Bed-Trap
 - Other packing materials available

Thermal Sampling Theory

Pyroprobe 6200

PYROPROBE 6200

New Pre-Heat feature is added onto the trapping version, 6200.

This feature has long been used in our Dynatherm product line and helps sharpen up the early eluting peaks.

Cryo is no longer needed on the 6200, however it is available if your customer still desires it.

Only "click" software needed to change from py-trap to py-direct mode

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

Transfer from the focuser to the GC for chromatogram

LCD TOUCH SCREEN

OPERATING SOFTWARE

NEW LEAK CHECK FEATURE

- System pressure checks as a pre-run test (if selected) or with the press of a button for PM test.
- If it fails, you will be pointed to the failed device including the interface, trap, reactor or system.
- User adjustable pressure setting and leak decay time...

Purge & Trap Thermal Desorption

Headspace

LEAK CHECK TEST/ERROR

CDS 6200 P	yroprobe	- ReactantGas Method		-	x				
File Tools Configuration Communications View Help									
Overview				Interface Run Time: 7.500 Minutes					
Pyroprobe				[]					
Interface	REST ℃	CDS 6200 Pyroprobe X	RAMP °C/Min.	FINAL °C Time Min.					_ ×
Sequence	75 🚖	System Leak Check Failed!	50.00	250 🔹 4.00 🔹	CDS 6200 Py File Tools Configu	yroprobe ration Communi	- ReactantGas Method		
Iso Zones		Yes No			Overview			1	Interface Run Time: 7.500 Minutes
Trap				Actual °C	Pyroprobe		CDS 6200 Pyroprobe	×	
Cryofocuser			Heater Enable	75	Interface	°C 75 €	Leak Diagnostic Test Complete!	°C/Min.	FINAL °C Time Min. 250 ♦ 4.00 ♦
Stop	0.01 minutes	0%		-11.50 minutes	Sequence		Interface: Failed to Pressurize Trap: Passed Reactor: Test was Skipped		Lund Lund
Syster	m Leak Check Fa	ail He Trap Mode Reactant (Bas	Predesorb	Iso Zones		ОК		
					Trap				Actual °C
					Cryofocuser			Heater Enable	75
					Stop				
					Leak Diag	nostic Test Com	plete! He Trap Mode React	ant Gas	Predesorb

Chromatography & Spectrometry

OTHER NEW FEATURES

- Incorporates a USB and Ethernet (coming soon) communication port.
- New graphics plot out the temp vs time profile for your programmed run
- Includes a pyrolysis and thermal desorption library of 50 preprogrammed methods.
 - Saves user time and prevents miss-programming
 - Not offered by competitors

Thermal Desorption

Purge & Trap

Analytical, Inc.

Headspace

Pyrolysis Method Libraries

FILE NAME	METHOD	APPLICATION/DESCRIPTION
	SINGLE STEP METHODS	
SS-01	Heats sample to 200C	looks for volatiles from sample. Polymers not being analyzed
SS-02	Heats sample to 300C	looks for volatiles & semi-volatiles. Polymers not being analyzed
SS-03	Heats sample to 400C	looks for all volatiles & semi-volatiles.
SS-04	Fast Pyrolysis at 500C	
SS-05	Fast Pyrolysis at 600C	General polymer defomulation- best for natural polymers, cellulose etc
SS-06	Fast Pyrolysis at 700C	General industrial polymer defomulation
SS-07	Fast Pyrolysis at 750C	General industrial polymer defomulation
SS-08	Fast Pyrolysis at 900C	Generally used for coal analysis
SS-09	Fast Pyrolysis at 1000C	Typically used for the 1/2 inch probe and soil analysis
	SINGLE STEP METHODS WITH INITIAL PURGE TO VENT	These methods purge volatiles to vent BEFORE pyrolyzing the sample
SSPV-01	sample purged to vent at 150C then pyrolyzed at 700C	purges unwanted water & residual solvents from sample
SSPV-02	sample purged to vent at 250C then pyrolyzed at 700C	purges all volatiles before pyrolyzing polymer
SSPV-03	/-03 sample purged to vent at 300C then pyrolyzed at 700C purges all volatiles & most semi-volatiles before pyrolyzing pol	
	TWO STEP SEQUENCE METHODS	Allows you to run the same sample twice to better determine additives
		from polymer fragments. Auto starts GC on each run
2S-01	Sample heated to 200C then 700C	sends volatile additives to GC for analysis before pyrolyzing sample
2S-02	Sample heated to 300C then 700C	sends most additives to GC for analysis before pyrolyzing sample
2S-03	D3 Sample heated to 700C then 900C First run analyzes complete sample. Second run verifies	
		completely pyrolyzed
2S-04	Sample purged at 150C then heated to 300C & 700C	Purges unwanted water/solvents before starting 2 step method
2S-05	Sample heated to 350C then 700C	send all volatiles & semi-vol to GC for analysis before paralyzing sample

	MULTI STEP SEQUENCE METHODS	Sample will be run with 3 or more methods and a GC run on each
MS-01	Sample heated to 150C, 300C then 700C	Allows analysis of volatiles , semi-V and polymers w/ individual GC run
MS-02	Sample heated to 200C, 350C then 700C	Allows analysis of volatiles , semi-V and polymers w/ individual GC run
MS-03	Sample heated to 100C, 200C, 300C, 400C	4 step method showing thermal cutting of non-polymeric compounds
MS-04	Heated to 100C, 200C, 300C, 400C, 500C, 600C, 700C, 800C	8 step method showing thermal separation at 100C intervals
MS-05	Sample purged at 150C then heated to 250C, 350C & 700C	Purges unwanted water/solvents before starting 3 step method
	TRAPPING METHODS	Will demonstrate what compounds are evoled and formed with a slow
		temperature ramp
TM-01	Sample pyrolyzed at 50C/minute up to 700C	Allows for evolved gas studies
TM-02	Sample pyrolyzed at 100C/minute up to 700C	Allows for evolved gas studies
TM-03	Sample pyrolyzed at 500C/minute up to 700C	Allows for evolved gas studies
TM-04	Sample pyrolyzed at 100C/min up to 300C then to 700C	2 step method with a temp rise of 100C/min for each step
	REACTIVE GAS-TRAPPING METHODS	Sample is pyrolyzed in a reactant gas and then captured on to trap.
		Used for reactive studies of sample and background gas
RG-01	Sample pyrolyzed at 700C with ramp of 10C/second	allows maximum reaction time between py sample and reactant gas
RG-02	Sample pyrolyzed at 700C with ramp of 100C/second	allows less reaction time between py sample and reactant gas
RG-03	Sample pyrolyzed at 700C with ramp of 1000C/second	allows least reaction time between py sample and reactant gas
RG-04	same as RG-01 EXCEPT Trap rest temperature is at 100C	light volatiles will be purged and not analyzed
RG-05	same as RG-02 EXCEPT Trap rest temperature is at 100C	light volatiles will be purged and not analyzed
RG-06	same as RG-03 EXCEPT Trap rest temperature is at 100C	light volatiles will be purged and not analyzed

	SLOW TEMPERATURE RAMP METHODS -EGA	Normally used to send sample direct to MS for analysis. GC can be
		configured with empty fused-silica column to transport sample
		through GC oven into MS
ST-01	Sample heated to 700C at 50C/minute	For Evolved Gas Analysis
ST-02	Sample heated to 700C at 100C/minute	For Evolved Gas Analysis
ST-03	Sample heated to 800C at 100C/minute	For Evolved Gas Analysis
ST-04	Sample heated to 800C at 500C/minute	For Evolved Gas Analysis
	THERMAL DESORPTION PROBE METHODS	Uses the CDS thermal desorption probe in place of the pyrolysis
		probe.
TDP-01	Sample heated to 200C for 1 minute	Allows thermal desorption of volatiles to trap
TDP-02	Sample heated to 300C for 1 minute	Allows thermal desorption of most volatiles & semi Vol's to trap
TDP-03	Sample heated to 350C for 1 minute	Allows thermal desorption of all volatiles & semi Vol's to trap
	TOBACCO METHODS	Several methods have been published that try to best simulate the
		temperture of burning tobacco and to set an average heat increase
		while the cigarette is being smoked. These methods use a 9% O2 in
		N2 as the reactant gas and an average heat rate or 30C/sec.
TOB-01	300C for 5 sec then to 900C for 5 sec. Heat rate 30C/sec	Shows all compounds formed from the inside of the hot zone to the
		outside of hot zone
TOB-02	600C for 5 sec then to 900C for 5 sec. Heat rate 30C/sec	Shows compounds formed in burning "unpuffed cigaretter (600C)
		up to "puffed" cigarette temprature of 900C
Notes: U	nless otherwise stated, all sample lines and valve box temp	peratures are programmed isothermally at 325C
lf	using any of the trapping methods, please confirm that the	software has been set for trap mode. You can find this under the "configur

Purge & Trap Thermal Desorption Headspace

Mass Flow Control Option

- Program and read actual flow rates (purge & reactant gas) from software, providing the mass flow control option was purchased.
 - Will also allow programming of gas flow into reactor
 - Important for optimizing reactant gas flows for reaction studies

OTHER NEW FEATURES

- Monitor system with your smart phone or tablet
 - Alerts when finished or system error
 - Release date in 2017..free upgrades for earlier units sold.
- Easy to read diagnostic errors displayed in the software screen
- Easier upgrade path to Autosamplers

Thermal Desorption

Purge & Trap=

Analytical, Inc.

Headspace

SYSTEM DIAGNOSTICS

CDS 6200 Pyroprobe - K3step Sequence						
File Tools Configuration	Communications View H	Help				
Overview				Se K3step	equence: Sequence	
Pyroprobe		Run Use Is	sue			
CDS 6200 Pyroprobe Temperature Sensor Failure GC Transfer Line Sensor is Open Pressing OK will close this application. The temperature sensor fault must be repaired before attempting to operate this unit.						
Cryofocuser 10						
Run Sequence 0.00 minute	38	0	%		-3.00 minutes	
GC is Not	Ready	He Py Mode				

Pyroprobe Open Sensor Pyroprobe Over-Temperature

Interface Open Sensor Interface Shorted Sensor Interface Over-Temperature

Trap Open Sensor Trap Shorted Sensor Trap Over-Temperature

Valve Oven Open Sensor Valve Oven Shorted Sensor Valve Oven Over-Temperature

GC Transfer Line Open Sensor GC Transfer Shorted Sensor GC Transfer Over-Temperature

Reactor Open Sensor Reactor Shorted Sensor Reactor Over-Temperature

Reactor Oven Open Sensor Reactor Oven Shorted Sensor Reactor Oven Over-Temperature

Focuser Open Sensor/short/over temp

5200 & Test Tube Desorber

Thermal Sampling Theory

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

OPTIONAL DHS VESSEL

Optional Dynamic Headspace vessels will be capable of direct desorption to the trap in 6200

Sizes: 25 ml test tube desorber, 150 ml horizontal chamber and 800 ml chamber

5200 had ability only for test tube desorber

Thermally extract large machined parts, food, packaging etc..

AUTOSAMPLERS

- CDS was first company to market a pyrolyzer autosampler (1999), model 2500
- Market turned out to be bigger than imagined- now 30% of py sales
- Autosampler offers great upgrade opportunities on manual systems
- Will still offer 5250 upgrades for several years, maybe longer
- Autosamplers do not have the life of a manual system. Should be on a 7-10 year trade-in cycle

6250 AUTOSAMPLER

- Easy upgrade from any 6150 or 6200
- Manual and AS system can be interchanged by user
- Same operating specs as 5250:
 - 1300 C max temp
 - .01C/min- 20,000/sec heating rate
- 47 samples can be originally loaded, but samples can be added continuously to empty slots after analysis (Sequential analysis only)
- Tray temperature stays at (or near) Ambient

6250 AUTOSAMPLER

- No valves, No rotors
 - Increases reliability
- Easily exchangeable pyrolysis chamber
- Py chamber cools quickly so multi-step analysis can still be performed

OTHER ANALYTICAL CAPABILITIES FROM A "STATE OF THE ART" PYROLYZER

A REVIEW

- Pyrotomy; Fast pulsed pyrolysis for layered samples
- Simulated TGA (Evolved Gas Analysis)
- VOC's in Air by desorbing thermal desorption tubes (with optional trapping pyrolyzers)
- Thermally desorb large sample sizes for volatiles
- Combustion studies- pyrolysis in air
- Special programming features

ONLY FILAMENT TECHNOLOGY CAN DO ONES IN RED

PYROTOMY TECHNIQUE

A pyrolysis method that applies many short hightemperature runs on the same sample

- Technique used for analyzing composition of different polymer layers in a sample
- Works best on multi-layered paints; but also films, coated paper and laminated compounds
- Can also be applied to surface contamination
- Each pyrolysis run is typically programmed for 1 second or less. This allows analysis of only 1 layer at a time
- Use the CDS ribbon probe for best results

Thermal Sampling Theory

5 STEP ANALYSIS OF A LAYERED PAINT SAMPLE

Each pyrolysis step was for 1 second and then sent to GC

Run 1 shows monomers from the outside layer including styrene, methyl methacrylate and butyl acrylate. Also there is (peak 7) hexane diisocyanate

Run 2 & 3 produces most of the same so it is still the first layer

Run 4 produces another polyurethane (peak 9)

Run 5 produces aromatics including alpha-methyl styrene in addition to styrene and acrylics. These compounds are formed from the bottom base layer of paint

EGA SAMPLING DIRECTLY TO MSD

Because the CDS prolyzers can be programmed to heat slowly in degrees per minute, it may be used to introduce samples at controlled thermal rates for analysis by FT-IR and direct-MS, like a TGA system

The pyrolyzer is connected to an MSD using a 1 meter piece of fused silica instead of a

GC column

Thermal Desorption

Purge & Trap

Analytical, Inc.

Headspace

THERMAL SAMPLING OF PMMA AT 100°C/MINUTE, DIRECTLY TO MSD.

EIGHT RUNS WITH CDS

Many times, two runs are not enough to characterize a material or process. In this example, the production of benzene by heating poly vinyl chloride is studied by sequentially analyzing the same piece of polymer at seven temperatures, each with its own GC run. The 5000 can perform 8 steps per sample just by adding methods to sample tube number in the software.

Only CDS pyrolyzers allow up to 8 steps per sample with a GC start on each step.

PRODUCTION OF BENZENE FROM THE SAME PIECE OF PVC AT INCREASING TEMPERATURES

Purge & Trap

Headspace

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

OPTIONAL THERMAL DESORPTION PROBE

Analytical, Inc.

Thermal Sampling Theory

Purge & Trap

Headspace

PYREY TUBE

14T TUBE RETRINER

The World's Most Versatile Pyrolysis, Headspace & Thermal Desorption Systems

OPTIONAL THERMAL DESORPTION PROBE

Analytical, Inc.

Thermal Sampling Theory

DESORBER HANDLE

14" TEFLON BACK FERRULE , 14" TEFLON FRONT FERRULE

Can be used to thermally desorb "gram" sized solids

Or, used to desorb TD tubes for VOC's in air

Thermal Desorption

Purge & Trap=

Analytical, Inc.

Headspace

POLYMER ANALYSIS Residuals in Rubber Gasket - 60°C for 15 minutes

Purge & Trap Thermal Desorption Headspace

THERMAL EXTRACTION OF PAH's FROM SOIL

10 PPM each looks like this

Time-->

Thermal Sampling Theory

AIR SAMPLE ANALYSIS

Air sample collected on a tenax tube

Desorbed by pyrolyzer from the interface at 325C direct to the column.

Ingeniería Analítica

Thermal Sampling Theory

Programmable Sampling Features

- Automatic blanks
 - Add steps in sequence table
 - Blanks before and after runs
 - Can program to run overnight to save time
- Multiple temperatures per sample
- Purge solvents to vent before running sample

Automatic Blanks

📌 CDS 5150: Blank Run Method 📃 🗖 🔀						
File Edit Tools Configur	ation Communications View Help					
, July a	Sequ	ence Table				
Pyroprobe	# Method	Notes				
	1 Blank Run					
8	2 200 Desorb					
Accessory	3 750pyro					
	4 Blank Run					
Sequence	7					
12	8					
	•	F				
Isothermal Zones						
Trap	Run Sequence					
Run Method						
Off-Line Trap Mode						

Thermal Desorption

Purge & Trap

Analytical, Inc.

Headspace

Programmed Interface Temperature

CDS 5150: 750 For 1 File Edit Tools Configurat	5 Pyro Method [Modified]
	5150 Interface
Pyroprobe	REST INITIAL RATE FINAL °C °C Time Min. °C/Min. °C Time Min. 50 100 1.00 100.00 250 4.00
Sequence	Interface Run Time: 6.50 Minutes
Isothermal Zones	↓ Actual *C Heater ON
Run Method	
0	if-Line Trap Mode

This method is purging the sample to vent at 100C before pyrolyzing the sample

CDS LIBRARY OPTIONS

- Polymer library
 - Inexpensive library designed by CDS to help user identify polymers

 Polymer additive library & search software
– Powerful search tool using deconvolution software and CDS additive library

Thermal Sampling Theory

Polymer Library

- Currently contains 500+ polymers
- Designed to be used with any MS
- Library has averaged spectra from known polymer samples and compares with samples run for a match
- Customer can add additional compounds
- Can be added to any CDS pyrolyzer
- List price is \$1,750

Purge & Trap Thermal Desorption Headspace

Search for Polymer Match by Averaging

Thermal Desorption

Purge & Trap

Analytical, Inc.

Headspace

Search in CDS Pyrolysis library

100-							
1	N Library	v					Ì
	File Edit	/ Display Process	s Window H	telo			
			colemica				-
	🖉 Hits						
	2 at 60)0 only				+ 11.27.35	
%	294 (1	188) Cm (27)	1:508/0				
70	, 204 (1.	43	1.0004)			1.38e7	
	1007	i i					
	%-	39 55 60	69				
			7° 91 1C)7 124137 150 167 180 194 210 253			
	R:989		PY	R2010 330: WOOD		***	
	100	43				Hit 1	
	%-	39 55 60	69				
	∎ <u>∩</u> Ł		/ 91 10 Ամակնիստակություն)7 124137 150 167 180 194 210		m/z	
	17	67	7	117 167 217 267	317 367 417 467	517 🖌 🔽	
0	Hitli	ct					1 <mark></mark>
E 9	and a		.]				
	wood 2	2 at 600 of	цу	Opening and Name	MUM Formerela	<u> </u>	_ 8 × =
62		000	10r 0.91	WOOD	M.VV. Formula	0-00-0	
	2	893	794	CARBOXYMETHYL CELLULOSE	0	0-00-0	
W0	3	892	840	WOOD	0	0-00-0	6 + 11:27:35
WOC	4	889	772	XANTHAM GUM	0	0-00-0	Scan El+
	5	881	762		U	0-00-0	1.38e7
101	0	873	703		U	0-00-0	
	6	000	707		0	0-00-0	
	q	834	661	BAMBOO FIRER	0	0-00-0	
	10	827	690	BROWN PAPER	0	0-00-0	
9	11	815	726	CHEWING GUM MINT	ő	0-00-0	
	12	804	722	CHEWING GUM, PVA, ISOBUTYLENE, WITH SUGAR	ŏ	0-00-0	
	13	799	669	YEAST BAKING	ň	n-nn-n 💌	
	<					> ;	210.0
							214

Polymer Additive Library

- Customer need- Pyrolysis is being used more to identify unknown additives in polymers.
 - Many of these compounds are not in the Wiley or NIST libraries
 - Additives can be in trace levels, so hard to search for manually
 - User may not know the names of specific additives by category
- Currently contains 250+ additives & 250 + Biofuel Compounds
- Designed to be used with any MS
- You can use Agilent Chemstation or the free AMDIS program from NIST
- Customer can add additional compounds
- Can be added to any CDS pyrolyzer; but must have an MS
- Free upgrades for life!

Polymer Additive Library LIBRARY CATEGORIES

- Plasticizers
- Light Stabilizers
- Antioxidants
- Corrosion Inhibitors
- Lubricants
- Fragrances
- Flame Retardants
- Antistatic Agents
- Solvents

Purge & Trap Thermal Desorption

Analytical, Inc.

Headspace

Pyrolysis of Complex Sample Can you find the antioxidant?

Thermal Desorption

Purge & Trap=

Analytical, Inc.

Headspace

AMDIS searching the sample for any antioxidant matches from CDS Library

Purge & Trap

Analytical, Inc.

Headspace

Confirming BHT as the Anitioxidant

🞆 AMDIS-Ch	romatogram - Component Mode - GATES07.D	l e 🗙
File Anz	hromatogram - IGATES071	
🗖 C:\[ile Edit Display Process Window Help	
<u></u>		
Abund	mle 4 at 750 Conditions. 23-JAN-2008 + 11:14:00	TIC
GAT	ES07 Scan El+	
75 - 100		
50 -		
25.		
25	🛱 Library	
0	File Edit Display Process Window Help	
Time:		40.89 42.96
100		tylbenzene 🔨
	Sample 4 at 750 Conditions, 23-JAN-2008 + 11:14:00	rrene nzene, 1-ethyl-3-methyl-
75 -	GATES07 2981 (17.940) Cm (2981-2990)	Benzene, 1,2,4-trimethyl- ? Acetic acid, octyl ester
	100 ₁ 205 9.23e3	thalic anhydride tylated Hydroxytoluene
501	%	fexadecanol sthyl Phthalate
25	26 29 394143 55 ⁵ /59 676977798389.9193102105 115 119 129 142145 155 163 172 177 189 204	wanedioic acid_bist2-methulpror
	R:854 NIST 113171: BUTVATED HYDROXYTOLUENE	▲ Net = 85 ▲
0 ¹ - Time:	100 - 205 Hit 2	Simple = 53
Abundance		
100 28	27,29 39,41 55, ⁵⁷ 65,67,69 77,81 91,95 105 115 ¹¹⁹ 128 ¹ ,31 145 149 161 177 189 203 ²⁰⁶ 220	
100	$^{\circ}$	
75 -)5
50.	Sample 4 at 750	
- ³⁰	Hit REV for Compound Name M.W. Formula CAS	- 8 ×
25 - 🖻	1 988 520 2,4.6-TRIS(1,1-DIMETHYLETHYL)-4-METHYLCYCLOHEXA-2,5-DIEN-11-ONE 278 C19H320 19887-22-0	1
Sa Sa	2 854 075 BOTIVATED HIDROWTIOLOBIE 220 C15H240 128-37-0 3 794 640 PHENOL, 46-D(1,1-DIMETHYLE-HYL)-2-METHYL- 220 C15H240 618-56-7 8	+ 11:14:00
<u>m/z:</u> GA	4 782 548 PHENOL, 2,4,6-TRIS(1-METHYLETHYL)- 5 769 616 PHENOL, 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYL-, METHYLCARBAMATE 277 C17H27O2N 1918-11-2	Scan El+
10) 6 763 504 2,6-BIS(1,1-DIMETHYLETHYL)-4-METHYL-4-ISOPROPYLCYCLOHEXA-2,5-DIEN 262 C18H300 4278-82-4	3.2363
100 -	8 750 525 4,6-Di-TERT-BUTYL-M-CRESOL 220 C15H240 497-39-2 22	20.2
GA	9 / U8 479 ETHANONE, 1-(5,6,7,8-TETRAHYDRO-2,8,8-TRIMETHYL-4H-CYCLOHEPTA[B]F 220 C14H2002 71596-88-8	Scan El+
75 -	11 634 410 2,5-DI-TERT-BUTYL-1,4-BENZOQUINONE 220 C14H2002 2460-77-7	1.38e4
50 -	220 C12H10N28 730101-7 220 C12H10N28 730101-7 220 C12H10N28 730101-7 220 C12H10N28 730101-7 220 C12H10N28 7301001-7 220 C12H10N28 7301001-7	
		mmmmm m/z
25 -		224
0		I 4 9
m/z: 30	40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200	210 220
🦺 start	🌒 🏉 🞯 🥙 🧮 🕘 libraries.ppt 🛛 🦉 untitled - Paint 🛛 🚟 AMDIS-Chro 🛛 🔄 TurboMass 🛛 🔤 Chromatogr 🛛 🔤 Spectrum - [🔯 Library 🔹 🖉 🖉	😤 🛃 🚾 🧐 🗞 🐻 1:32 PM

57

Could you find BHT without the library??

