A Presentation by OI Analytical

Oxygenate Analysis on the Eclipse Purge-and-Trap Sample Concentrator

Introduction

- Oxygen-containing compounds are frequently used as fuel additives
 - Boost octane rating
 - Fuel burns more cleanly
- Ethers (e.g., MTBE) and alcohols (e.g., TBA) are the most common oxygenate additives
- Soil and groundwater can become contaminated through leaking underground storage tanks
- UST program generated lots of oxygenate data, using multiple methods

Introduction

- Currently no validated performance-based method
- Two determinative methods are recognized as most appropriate by the USEPA
 - Method 8260 (GC/MS)
 - Method 8015 (GC/FID)
- Two preparative methods are most appropriate for low-level detection
 - Method 5030 (P&T)
 - Method 5035 (closed system P&T)

Project Objective

- Develop instrument operating conditions that produce the best performance for oxygenate compounds
 - TBA, MTBE, DIPE, ETBE, TAME
 - California list
- One change to the standard GC/MS operating conditions
 - Add oxygenate compounds to the calibration mix
- Minimal changes to P&T conditions so oxygenates can be included in standard Method 8260 analyses

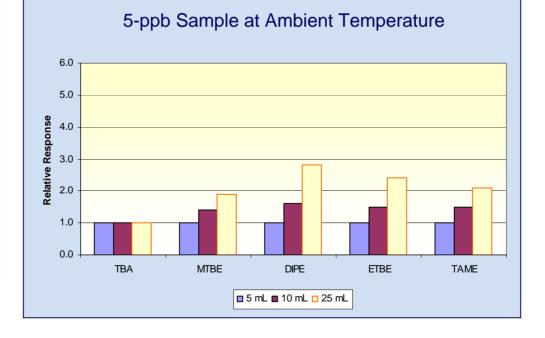
Project Variables

- Sample size
 - 5 mL, 10 mL, and 25 mL
- Sample temperature
 - Ambient, 35 °C, 45 °C, and 60 °C
- Trap selection
 - Tenax[®], silica gel, carbon molecular sieve (OI Analytical #10)
 - VOCARB® (OI Analytical #11)

Test of System Performance

- Calibration
- Limit of Quantitation (LOQ)
- Statistical MDLs
- Water management
- Analyze a real-world sample

Instrumentation



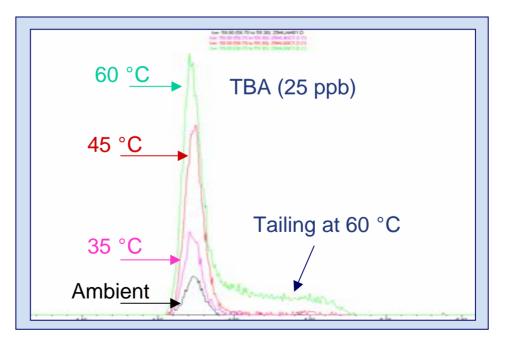
- OI Analytical Model 4660 Eclipse Purge-and-Trap Sample Concentrator
- OI Analytical Model 4552 Water/Soil Autosampler
- Agilent[®] 6890N GC with 5973 Inert MS

Sample Size Results

- Ether response increased with sample size
- TBA response remained steady
- Similar results at all temperatures and both traps

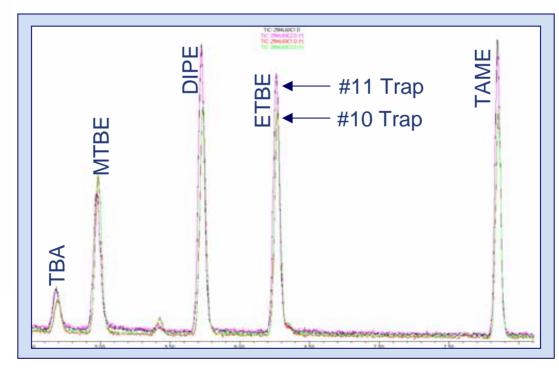
O·I·Analytical

Sample Temperature Results


- TBA response increased with temperature
- Ether response stayed approximately the same
- Similar results at all sample sizes and both traps

TBA MTBE	DIPE	ETBE	TAME			

TBA Tailing at 60 °C


- TBA may tail at high temperatures
- Extra H₂O purged onto the trap at higher temperatures
 - *H*₂*O*-soluble, difficult to focus
 - TBA moves with H₂O through the trap

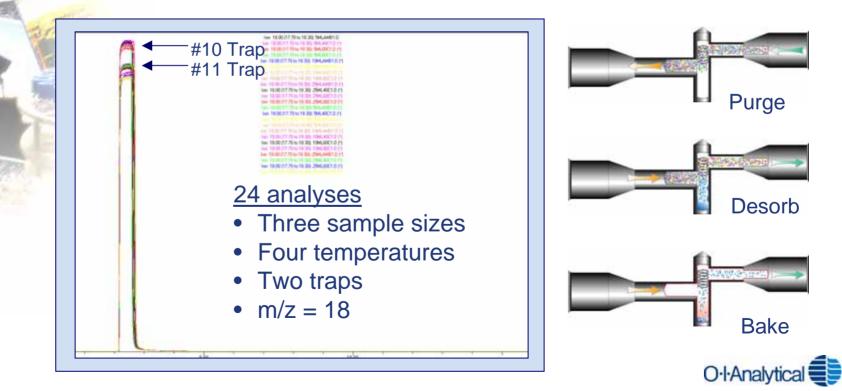
Trap Selection Results

- Slightly better sensitivity on the VOCARB (#11) trap, ~5%
 - VOCARB is a more hydrophobic material
- Both traps provide excellent chromatography

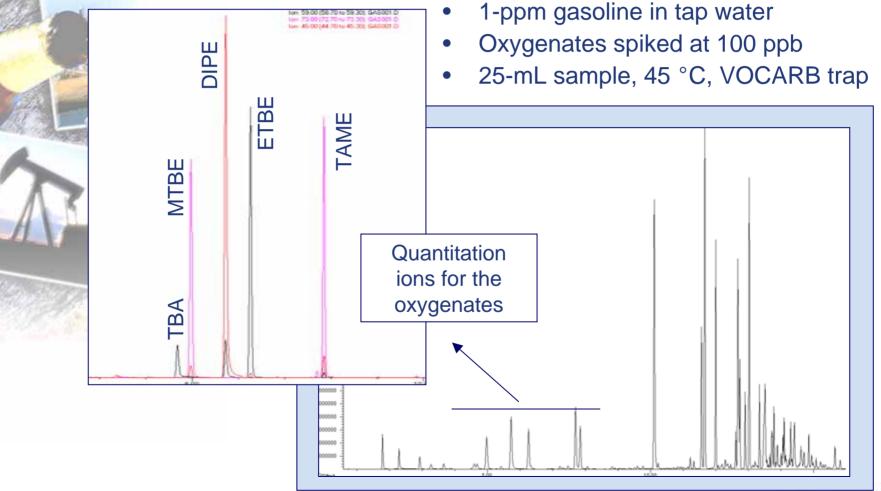
Calibration Results

- Passed all Method 8260 calibration criteria
- Not necessary to use less desirable linear calibration mode and correlation coefficient (R²)

Calibration							
Compound	Range	Avg. RRF	%RSD				
TBA	1.0–1,000	0.017	12.3				
MTBE	0.2–200	0.497	7.8				
DIPE	0.2–200	0.693	7.4				
ETBE	TBE 0.2–200		9.4				
TAME	0.2–200	0.516	9.2				

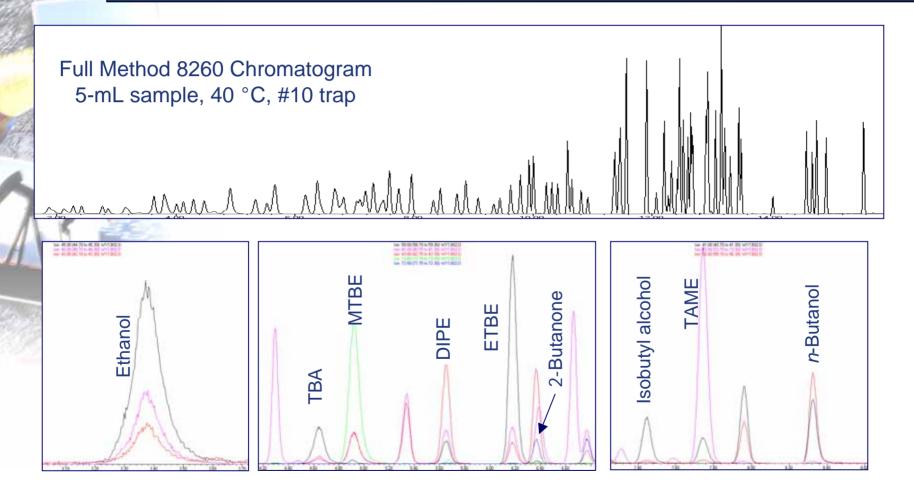


LOQ and MDL Results


and the second			Comp	ound	LOQ (ppb)	St.MDL
						(ppb)
A CAN			TB	A	1.0–2.0	1.40
		MTI	BE	<u><</u> 0.2	0.05	
TBE (0.2 ppb) DIPE (0.2 ppb) E (0.2 ppb)	q	TAME (0.2 ppb)	DIF	PE	<u><</u> 0.2	0.04
	2 pp		ETE	BE	<u><</u> 0.2	0.05
			TAN	ЛЕ	<u><</u> 0.2	0.03
TBA (1.0 ppb) MTBE ((DIPE	ETBE	TAN	Nireline Hefitikaan kan sije ki	•	25-mL sam 45 °C VOCARB tr	

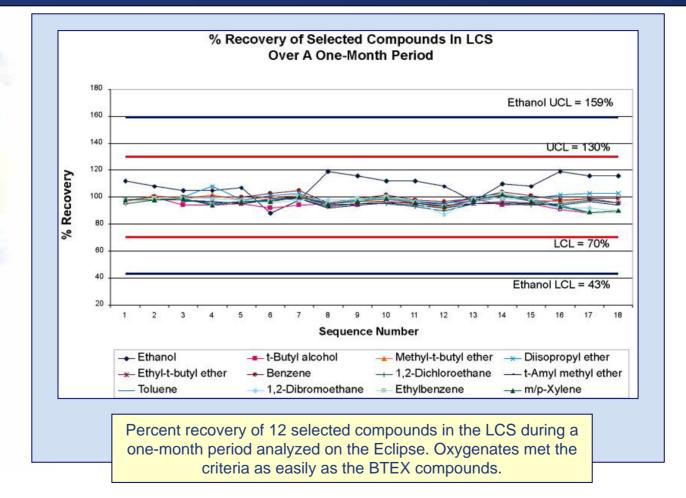
Water Management Results

- Efficient and consistent H₂O removal using the patented Water Management Fitting (WMF)
- Regardless of sample size, temperature, or trap



Analysis of Real-World Sample

O·I·Analytical


Included in Method 8260

Chromatogram courtesy of Lancaster Laboratories, Lancaster, PA

Recovery of BTEX and Oxygenates

Data courtesy of Lancaster Laboratories, Lancaster, PA

Conclusion

- Oxygenates can be included in Method 8260 analyses with only very minor changes
- Best conditions
 - Use largest sample size possible (25 mL)
 - Mild heating to 40–45 °C improves purge efficiency
 - Either trap gives excellent results
- Met all method calibration RF criteria
- LOQs <0.2 ppb for the ethers
 - TBA LOQ at 1.0–2.0 ppb
- No problems with H₂O when using the Eclipse patented Water Management Fitting

A Presentation by OI Analytical

Application Note 1996

For full details on this and other P&T applications, visit our website at:

