
Macro Programming Guide
for RC .NET Drivers

Macro Programming Guide

For RC .NET Drivers in OpenLAB CDS ChemStation Edition

2/9/2012
Agilent Technologies, Inc.

Macro Programming Guide
for RC .NET Drivers

Table of Contents

Scope ... 3

Getting Started .. 3

Introduction to RapidControl .NET ... 3

The Instrument Control Architecture with RC .NET drivers ... 3

Resource Items - the door to the driver's data .. 4

RC .NET vs. Classic Driver Model ... 5

Summary of changes ... 5

Macro programming with RC .NET drivers .. 6

How to determine the driver model .. 6

Module Variables ... 6

Module Identifier ... 7

Sending commands to a module ... 8

Retrieving the instrument configuration ... 9

Access to Method- Status & Configuration Info .. 10

Method Parameter Register .. 10

Status & Configuration Register .. 10

Download/ upload methods to a module ... 11

Waiting for module events .. 12

Not supported functionality .. 12

Background Method Editing with RC .NET drivers .. 13

Overview .. 13

Load method .. 13

Save method .. 13

Clean-up memory .. 14

Manipulating the method .. 14

Macro Programming Guide
for RC .NET Drivers

Scope

OpenLAB CDS ChemStation Edition supports the new RapidControl .NET driver architecture (RC .NET), which is the
architecture for all future Agilent chromatography devices.

This document describes how to programmatically access RC .NET drivers using the ChemStation macro
language.

Getting Started

Introduction to RapidControl .NET
Before RC .NET was introduced, every analytical software platform (e.g. ChemStation, EZChrom, etc.) had to
provide their own device drivers to control the same analytical devices (LC/GC or MS). The idea of RC .NET is to
have one driver for all analytical software platforms. Customers benefit from faster device support, uniform user
interface and higher driver quality across all software platforms.

In contrast to the classic drivers, which are deeply integrated into the ChemStation Data System, the new RC .NET
drivers are almost decoupled from the data system.

The Instrument Control Architecture with RC .NET drivers
RC .NET drivers (Module Driver layer) communicate with the data system (Application layer) through a
RapidControl Adapter (Application Adapter layer). The RapidControl Adapter is the link between the generic
drivers and a data system. It translates RC .Net commands, functions and data structures into things the data
systems can understand (e.g. in the ChemStation it is Macro, CP, DOP) and vice versa. The ChemStation CP
commands/functions/variables or DOP Registers which belongs to RapidControl drivers are typically prefixed with
"RC".

The following picture shows the instrument control architecture for RC .NET drivers.

Macro Programming Guide
for RC .NET Drivers

Resource Items - the door to the driver's data
RC .NET provides a functionality called Resource Items, which enables RapidControl .NET drivers to expose driver
specific data structures and functions to the data systems.

Resource items are accessible in the ChemStation via CP commands and functions. Furthermore resource items are
propagated to DOP Registers.

A resource item belongs to a logical element of a RC .Net driver (Config, Process, Control).

The type of a resource item can be a string, number or
collection. Resource items are logically grouped by
resource providers.

Resource items are accessible via identifiers. In order to access a resource item, the data source (Config, Process,
Control), the ID of the resource provider and the ID of the resource item must be specified.

Config
Resources

• Access to Config
Settings (e.g.
Connection-
Settings, Firmware
Version etc.)

Process
Resources

• Access to
Method- and
Pretreatment
Settings (e.g.
Stoptime, Flow,
etc.)

Control
Resources

• Access to
Device Settings
(e.g. Diagnostic
Items, Status
Values)

• Execution of
Operations (e.g.
Start a Run)

!
Resource items are optional and driver specific. Agilent developed drivers typically supports resource
items. But it is not guaranteed that every driver exposes resource items. Furthermore it is driver
specific which items are exposed. For a list of available resource items please see the manufacturer's
documentation.

Resource
Provider

Resources

Resource
Items

Resource
Items

...

Resources

Resource
Items

Resource
Items

...

...

Resource
Items

Resource
Items

...

Macro Programming Guide
for RC .NET Drivers

RC .NET vs. Classic Driver Model
RC .NET drivers are available for the most of the existing Agilent chromatography devices. For a small set of
devices, however, there only exist classic drivers. New devices will only be supported as RC .NET drivers.

A list of modules and their driver models (RC .NET and/or Classic) can be found on the Supported
Instruments and Firmware Guide at the OpenLAB CDS Installation Disk (Disk1:
\Docs\ENU\CDS_SupportedInstFirmware.pdf).

Please note that RC .NET drivers and Classic Drivers generally cannot run in the same ChemStation instrument.
Combinations of modules in one instrument stack need to have one common driver model.
However, a small set of Classic drivers, they are called Classic Plus drivers, work in combination with both driver
models (e.g. ADC, MS).

Summary of changes

A side effect to the independent and generic architecture is that some driver specific CP commands/functions and
ChemStation Registers which were available with classic drivers cannot be supported in the same way anymore.
But there is replacement of functionality available.

The new RC .NET drivers still provide a register interface to access e.g. method parameters or status information.
The major differences are:

 The register names are different from the one used by the classic drivers

 The content of the former module status register has been split into two registers, a status register and a
configuration register

 Most of the header items and table names inside a register are different (see description of module registers
at the end of this document)

 Some header items have been split into two parts. Example: the StopTime is now split into a StopTime_Time
and a StopTime_Mode, where StopTime_Mode is either Set or NoLimit

 The injector program of a sampler is no longer part of the method register but resides now in a new
Pretreatment register

For compatibility reasons, some of the commonly used commands like SendModule$ are also available for RC .NET
drivers, additionally new RC .NET specific commands can be used.

The diagnostic specific commands like DiagRead<ModuleID> are no longer available with RC .NET drivers.

!

Macro Programming Guide
for RC .NET Drivers

Macro programming with RC .NET drivers

How to determine the driver model

The CP variable DevRCnet can be used to determine whether RC .NET drivers are used or not.

DevRCnet >= 1 RC .NET drivers are used (the value indicates the number of modules)
 0 RC .NET not used (Classic drivers are used instead see: DevLeoAccess)

Note: Because classic drivers and RC .NET drivers cannot coexist, DevLeoAccess is zero in case of configured RC
.NET drivers and vice versa.

Module Variables
Similar to the module variables for the classic drivers (e.g. DevLeoPmp, DevNucDad), there are new CP variables
for each module type indicating the number of configured modules of a certain type. A module variable only exists
if at least one module of this type is configured.

The module variables are named as follows:
DevRC<Module-Identifier>

Examples:
DevRCDAD for Diode Array Detectors, DevRCPMP for Pumps, DevRCALS for Autosamplers...

The next chapter shows the list of possible module identifiers.

Macro Programming Guide
for RC .NET Drivers

Module Identifier
There are several places in the ChemStation where it is required to address a module uniquely. These are: CP
commands or function, CP variables or ChemStation registers (DOP). To identify a RC .NET module in the
ChemStation, a unique module identifier is used.

The format of a module identifier is: <ModuleIdentifier><optional:ModuleNumber>

Typically, a module identifier has a length of three characters, followed by an optional number which is required if
more than one module of the same type is configured. The number is consecutive and starts with 1. For example,
the identifiers "PMP" and "PMP1" have the same meaning and address both the first pump in the system. "PMP2"
addresses the second pump in the system, "PMP3"the third pump, etc...

The following table shows a list of known module identifiers and the related modules:

Module Identifier Related Modules

ALS Agilent Autosampler

WLS Agilent Wellplate Autosampler

AFC Agilent Fraction Collectors

DAD Agilent Diode Array Detectors

VWD Agilent Variable Wavelength Detectors

MWD Agilent Multiple Wavelength Detectors

FLD Agilent Fluorescence Detectors

RID Agilent Refractive Index Detectors

ELS Agilent Evaporative Light Scattering Detector

PMP Agilent Pumps (Binary, Quaternary, Isocratic, Low Flow, Prep)

VLV Agilent Valves

THM Agilent Column Thermostat

CCC Agilent Column Compartment Cluster

PVC Agilent Pump Valve Cluster

PPC Agilent Prep. Pump Cluster

FLX Agilent Flexible Cube

UIB Agilent Universal Interface Box

CE Agilent Capillary Electrophoresis Detector

GC Agilent Gas Chromatograph

CTC Agilent PAL Sampler

SFC Aurora SFC and Fusion A5

Due to the fact that RC .NET drivers are decoupled from the data system, the list above is only a subset of
all available module identifiers. For drivers which are not deployed with the OpenLAB ChemStation
Installation (e.g. 3rd party modules), please contact the manufacturer of the RC .NET driver or use the
RCListDevices$() CP function to get a list of configured RC .NET modules and their identifiers.

!

Macro Programming Guide
for RC .NET Drivers

Sending commands to a module

To send any command to a module and read the response, the SendModule$ command can also be used for RC
.NET drivers. In addition a new command RCSendDevice$ specific for RC .NET drivers is available.

Syntax
RCSendDevice$ (ModuleID$, Command$)

Description
Sends any command to the specified module, and reads the response. This command is
only valid for RC.NET drivers and cannot be used for classic drivers.

Parameter
ModuleID$ Identifies the module to which the command will be sent. For valid

module identifiers in case of RC.NET drivers see chapter
Module Identifier
Command$ Any valid command (see command set for each module)

Return value
Reply text from the module
Example
print RCSendDevice$(wls1,”IDN?”)

Syntax
SendModule$ (ModuleID$, Command$)

Description
Sends any command to the specified module, and reads the response. This
command can be used for RC.NET drivers as well as for classic drivers.

Parameter
ModuleID$ Identifies the module to which the command will be sent. For

valid module identifiers in case of RC.NET drivers see chapter
Module Identifier
 Note: To be backwards compatible, the SendModule$

command also accepts the module identifiers used for the
classic drivers.

Command$ Any valid command (see command set for each module)

Return value
Reply text from the module

Macro Programming Guide
for RC .NET Drivers

Retrieving the instrument configuration

All configured modules of a LC ChemStation are listed in the table ModuleInfo in the first object of the _Config
register. This table holds information about firmware revision and serial number of the configured modules plus a
reference to the Modules table where further information like product number, module type or a descriptive
module name can be found in case of classic drivers.
Modules controlled by a RC .NET driver are also listed in the ModuleInfo table with their serial number and
firmware revision. Further information, however, must be obtained using new RC .NET specific commands:

Command Parameter Description

RCGetDeviceProductID$ ModuleID$
Identifies the module in the context
of RC .NET drivers

Returns the product number of the
specified module (e.g. G1315C)

RCGetDeviceFullModuleName$ Returns a descriptive name for the
specified module (e.g. 1100/1200
Binary Pump)

RCGetDeviceSerialNumber$ Returns the serial number of the
specified module

RCGetDeviceFirmwareRevision$ Returns the firmware revision of the
specified module

The following macro example shows how to iterate through the <ModuleInfo> table and to list e.g. the product
number, serial number, etc. for all RC .NET devices.

Name IterateRCNetDevices

 Local Row, NumberOfRows, NameRef, Number

 Local Var$, RCDeviceID$, ProductName$, ModuleName$, SerialNumber$

 NumberOfRows = TabHdrVal(_config[1], "ModuleInfo", "NumberOfRows")

 For Row = 1 to NumberOfRows

 NameRef = TabVal(_config[1], "ModuleInfo", Row, "NameRef")

 Number = TabVal (_config[1], "ModuleInfo", Row, "Number")

 Var$ = TabText$ (_config[1], "Modules", NameRef, "Var")

 If (Var$ = "GCI") then

 RCDeviceID$ = RCDeviceIDByNumber$(Number)

 If (RCDeviceID$ <> "") Then

 ProductName$ = RCGetDeviceProductID$(RCDeviceID$)

 ModuleName$ = RCGetDeviceFullModuleName$(RCDeviceID$)

 SerialNumber$ = RCGetDeviceSerialNumber$(RCDeviceID$)

 FirmwareRev$ = RCGetDeviceFirmwareRevision$(RCDeviceID$)

 Endif

 Endif

 Next Row

Endmacro

Macro Programming Guide
for RC .NET Drivers

Access to Method- Status & Configuration Info

Like the existing classic LC module drivers, Method, Status and Configuration information of RC .NET drivers can
still be accessed through a register interface. However, the name of the registers and item names inside the
registers are different.

Method Parameter Register
The method parameters are stored in the first object as object header items of a register, which is related to the
appropriate module. The second object of this register contains internal information about formats, value ranges,
etc. Method registers are named as follows:

RC<Module-Identifier><Module-Number>Method

Valid module identifiers are e.g. PMP for pumps or VWD for a Variable Wavelength Detector.

Examples:

RCDAD1Method the method register of first Diode Array Detector
RCTHM2Method the method register of second Column Compartment

In opposite to the ChemStation classic LC drivers, the injector program of a sampler (ALS or WLS) is no longer part
of the method register. The Injector program is now located in a new register named RCALS<n>Pretreatment (for
all auto samplers) or RCWLS<n>Pretreatment (for all Wellplate samplers).

Status & Configuration Register

The content of the former Status register for classic drivers is now split in two registers.
The first object of the Status register actual values like actual pressure or flow, not ready conditions, run state,
error state, etc. The Configuration register contains information about module type, serial number, hardware
capabilities, installed hardware options and other configuration parameters, e.g. installed trays or plates
The second object is for internal use and contains format strings, value ranges, etc.

Status registers are named as follows: RC<Module-Identifier><Module-Number>Status
Config registers are named as follows: RC<Module-Identifier><Module-Number>Config

Macro Programming Guide
for RC .NET Drivers

Download/ upload methods to a module

After modifying a method register, you need to execute a Download command to send the register content to the
module.

The command UploadRCMethod can be used to read the method from a module and write it to the module’s
method register.

Syntax
UploadRCMethod <ModuleID$>

Description
Reads the method from a module and writes the parameters to the associated
method register

Parameter
ModuleID$ Identifies the module (see chapter
Module Identifier)

Return value
None

Syntax
DownloadRCMethod <ModuleID$>

Description
Sends the content of the method register to the module identified by
<ModuleID$>

Parameter
ModuleID$ Identifies the module (see chapter
Module Identifier)

Return value
None. The variable RCDownloadError$ holds an error text if the register content
could not be successfully transferred to the module. Otherwise the variable
contains an empty string.

Macro Programming Guide
for RC .NET Drivers

Waiting for module events

The commands ReadEvent<ModuleId> (e.g. ReadEventLAls) are fully compatible with RC .NET drivers. In addition
there is a new RC .NET specific command available

Not supported functionality

The following commands are no longer supported in the context of RC .NET drivers:

 LvlvSetPos (command to set the position of an external valve)

 ReadDiag<ModuleID> (read out diagnostic info from a LC module)

 ControlLAls

 DownloadPlates

Syntax
RCReadEvent ModuleID$, CpVar, Event, [EventParameter]

Description
Fills a cp variable with the time a specified instrument event occurs the next time

Parameter
ModuleID$ Identifies the module (see chapter
Module Identifier)
CpVar name of cp variable to get the time in seconds since 1970 when the

event occurs
Event Event string to wait for (e.g. EE 0815)
EventParameter optional parameter of the event. If a parameter is specified the CP

variable is not set if the event occurs but its parameter does not
match the specified one.

Return value
None

Macro Programming Guide
for RC .NET Drivers

Background Method Editing with RC .NET drivers

Overview
Background method editing is a feature to edit a method in the background without changing the running
modules.

The commands are Agilent ChemStation CP commands, which can be used in macro programming. They can be
used with the CP-Proxy interface in C# programming.

Load method
Use the following command to get access to a method in background:

DataSource$ = RCBGEditStart$(DeivceID$, Mode$, [ModeParam$], [Register$], [MethodConsistencyState$],

[MethodConsistencyReport$])

Parameter Description

DeviceID$ RapidControl Device ID, e. g. PMP1

Mode$ Interprets one of the following strings:
DEFAULT loads the default method of the device driver
UPLOAD loads the current method from the device
LOAD loads the device method from the method folder as specified

by ModeParam
LOADEX loads the method file or migrates an already existing method

ModeParam$ In case of Mode is LOAD, this specifies the method folder, e. g.
C:\Chem32\1\METHODS\TEST.M

Register$ Register name. If this parameter is specified, then the method will be
transferred into object 1 of this register. When saving the method later with
RCBGEdit, the method will be read from that register.

MethodConsistencyState$ CP string variable name, where the consistency state of the driver will be
written.
If the method is consistent, then the variable content will be “eConsistent”.

MethodConsistencyReport$ CP string variable name for the inconsistency report.

Result string:
DataSource$ -> Identifier of the method for use with RC .NET commands

Save method
Use the following command to save a (modified) method in background, which you have received by

RCBGEditStart:

RCBGEditCommit DeivceID$, DataSource$, Mode$, [ModeParam$], [Register$]

Parameters:
Parameter Description

DeviceID$ RapidControl Device ID, e. g. PMP1

DataSource$ Identifier of the method as retrieved from RCBGEditStart$

Mode$ Interprets one of the following strings:
ACT_APPLY transfers the device method to the device (device driver)
SAVE saves the device method into the method folder as specified by ModeParam

Macro Programming Guide
for RC .NET Drivers

DISCARD Undo the changes to the method

ModeParam$ In case of Mode = SAVE, this specifies the method folder, e. g.
C:\Chem32\1\METHODS\TEST.M

Register$ Register name. If this parameter is specified, then the method will be transferred into
object 1 of this register. When saving the method later with RCBGEdit, the method will be
read from that register.

Once you have saved a method, you should follow with a second call of RCBGEditCommit in $DISCARD mode for
reset.

Clean-up memory
An instance of ProcessIF has been created and will be maintained for each created background method. This holds
the logiocal link between method and DataSource.

You can manipulate, save and discard the method as often as you like. But if you are done with method changes
and you do not need the DataSource connection any longer than you must clean-up the connection and the
memory allocated with it. Therefore, you need to call:

RCBGEditEnd DeivceID$, DataSource$

Parameters:

Parameter Description

DeviceID$ RapidControl Device ID, e. g. PMP1

DataSource$ Identifier of the method as retrieved from RCBGEditStart$

Manipulating the method
A loaded method in a register can be edited with the usual DOP commands. This is how I have done it.

Alternatively, you can edit the method with the following RC .NET commands referring the method by its
DataSource$:

Parameters used for function / commands (see below):

Parameter Description

DeviceID$ RapidControl Device ID, e. g. PMP1

DataSource$ Identifier of the method as retrieved from RCBGEditStart$

Provider$ An RC .NET Provider (driver specific, e. g. METHOD)

ResourceID$ An RC .NET Resource Item (driver specific, e. g. FLOW)

Available Functions:

Function Parameters Result

RCListDevices$ () yields a list of configured RC .NET drivers.
The single drivers are separated by |

RCGetResourceProviderText$ (DeviceID$, DataSource$,
Provider$, ResourceID$)

reads a single Resource Item of type String

RCGetResourceProviderVal (DeviceID$, DataSource$,
Provider$, ResourceID$)

reads a single Resource Item of numeric
type

RCGetResourceProvider-
Collection

(DeviceID$, DataSource$,
Provider$, ResourceID$,
[RegisterName$])

Gets a Resource Item of type Collection
into a Register. Uses register
"RapidControlResources" if no register
name is specified.

Macro Programming Guide
for RC .NET Drivers

RCGetResourceProviderType$ (DeviceID$, DataSource$,
Provider$, ResourceID$)

retrieves the type of a resource item:
Bool, Double, Int, String or Collection

Available commands

Command Parameters Result

RCSetResourceProviderText DeviceID$, DataSource$,
Provider$, ResourceID$,
Value$

Sets a single Resource Item of type String

RCSetResourceProviderVal DeviceID$, DataSource$,
Provider$, ResourceID$,
Value, DataType

Sets a single Resource Item of numeric
type

RCSetResourceProvider-
Collection

DeviceID$, DataSource$,
Provider$, ResourceID$,
RegObj

Writes a Resource Item of type Collection
from a register back (e. g. the register had
been created by
RCGetResourceProviderCollection)

RCGetResourceProvider-
Content

DeviceID$, DataSource$,
Provider$, Register$,
[Detailed]

Retrieves the complete set of Resource
Items of one provider into a register. If
Detailed = 1, then extra information about
the resource item will be written into the
second object of the registers, e. g. Min,
Max, type, etc.
Detailed = 0 or 1

RCSetResourceProvider-
Content

DeviceID$, DataSource$,
Provider$, Register$

Writes the content of a register back to
the provider. For example, use
RCGetResourceProviderContent, then
change values und finally write the
changed content back with
RCSetResourceProviderContent

