Strategies and Tools for the Environmental Laboratory

Improving Operational Efficiency and Return on Invested Capital

Agilent Technologies, Inc.

Craig Marvin GPD Solutions Business Manager

June 11, 2013

Today's Challenges Expecting More from Less

Business Challenges

- Increasing cost of ownership
- Trace analysis in complex matrices

Resource Allocation

- Less time for method development
- Limited technical experience

Optimizing Efficiency

- Demands for higher throughput
- Quicker return on capital investment

Presentation Overview

Market Situation The most common carrier gas for GC is in short supply!

Unreliable supply of helium worldwide and increasing prices have laboratories seeking alternative carrier gas solutions

Carrier Gas Decision Tree Method Translation or Helium Conservation

Helium Savings Calculator

Extend supply and lower cost using conservation techniques

Carrier Gas Savings Calculator

Change values in gray boxes to calculate savings for your operating parameters

Method:Typical Split GC methodColumn: $30m \times 0.25mm \times 0.25um$

Gas Flow Conditions

He Carrier Flow (mL/min):	1.5
He Split flow (mL/min):	190
Gas Saver Flow (mL/min):	20
Gas Saver On (min):	3
Run Time(min.):	15
Gas Volume in Cylinder (L):	8000
Runs per Day:	30
He Cylinder Cost (\$):	300
N2 Cylinder Cost (\$):	60

Parameter	No Conservation	With Conservation
Daily He Usage (L)	276	25
He Cylinder Life (days)	29	320
Daily N2 Usage (L)	0	21
N2 Cylinder Life (days)	0	376
Yearly He Cost (\$)	3,774	342
Yearly N2 Cost (\$)	0	58
Yearly Total Gas Cost (\$)	3,774	400
Savings vs. No Gas Saver (\$)	0	3,374

Helium Conservation

- Helium cylinder life extended to ~12 months
- Greatly reduces annual gas costs

Additional Benefit

- Reduces dependence on Helium deliveries
- Ensures business continuity

www.agilent.com/helium/update

System Maintenance

Greatest disruption to workflow and productivity

Self-Cleaning Ion Source Using H₂ to Clean to MS Source

Cleaning Restores Analyte (OFN) Detection Comparable to manual cleaning?

Pre-Configured Analyzers Increasing the Value Proposition

Focus your team on analyses; not method development!

The Value of Analyzers and Application Kits Reduce the time required for system deployment

... Faster Application Startup with a Quality Method

Agilent Technologies

Analyzers of Interest Environmental Laboratory Focus

GC/MS/MS Solutions

- Polycyclic Aromatic Hydrocarbons (PAHs)
- Pesticides & Environmental Pollutants

GC/MS Solutions

- Pesticides
- Volatiles and Semi Volatiles
- Polycyclic Aromatic Hydrocarbons (PAHs)

GC Solutions

Greenhouse Gases

Analyzer Value to Customers

Helping you enhance your competitive advantage

Thank you Let's Continue the Conversation

www.agilent.com

Access Agilent

Question 1.

- Should end users, or the scientists in the lab, be looking to validate the results that they have obtained using a certain instrument?
- And do you think that, if they have used another instrument, they would be likely to get different results? Because we are sometimes talking about very trace amounts of material, or very low volumes of samples. So what is your recommendation when it comes to validating results?

Question 2.

 The next point I wanted to bring up was around sample prep. What are some of the trends that you're seeing in sample prep now, and how can it help with minimizing some of the current problems.

 Can you elaborate a little bit more on how you clean the ion source using hydrogen?

• What is Agilent's approach to field testing?

Contact

Craig Marvin

craig_marvin@agilent.com

