



# **DVLS<sup>3</sup> Simply, Smart, Sensor**



## ensures safety when using Hydrogen as a carrier gas in GC systems

# **Reasons for using H<sub>2</sub> as a Carrier Gas**



- **Fast Analysis:**Viscosity of H2
  - Low oven temp programming
- 2. High Efficiency:
  - H2 Flattest Van Deemter curve









## **Reasons for using H<sub>2</sub> as a Carrier Gas**

### 3. Prolonged Column Life:

Due to lower oven temperature

#### 4. Cost effective:

3x less expensive than its helium equivalent

Bottle or generator supply





## **Reluctant to use H<sub>2</sub> as a Carrier Gas?**

 Hydrogen is an Explosive Gas: Undetected gas leaks can lead to an explosion in the GC oven



LEL of hydrogen in Air is at 4%





# **Safety measures**

- Monitor hydrogen usage
- Existing measures in most GC models
  - Safety Shutdown in case of pressure loss
  - Flow Limiting Frit EPC
  - Explosion Test: GC designed to contain parts in case of explosion <u>6890exp.avi.MPG</u>
  - Valve box or column compartment need additional measures





# Sensor principle of operation (1)

- Catalytic reaction on the surface of a pellet
- Exothermal oxidation of combustable gas  $(2H_2 + O_2 \rightarrow 2H_2O(g) + heat)$
- A platinum coil inside the pellet
- The Platinum coil resistance is affected by temperature change







# **Sensor principle of operation (2)**

 A second pellet, without catalyst, is used to compensate in a Wheatstone Bridge



 Current change between resistances is translated into an electronic signal









#### **Gas Sensitivity** Hydrogen Sensor







## **Drift specs vs sensor temperature**







# **Typical long term zero offset drift**



Elapsed time (days)





## Hardware overview of a Hydrogen Sensor for GC applications







### **Four Sensors - One Controller**







### **Multiple Sensor Setup**







## **Automatic Carrier Gas Switch**

After 1% Hydrogen detection, the carrier gas supply is switched to Nitrogen, ensuring continuous gas flow through the analytical columns







#### **Automatic Stop Signal to GC**

After 1% Hydrogen detection, a running sequence will stop, preventing waste of subsequent samples and analysis time







## **Software Control**

New optional DVLS<sup>3</sup> Sensor software controls:

- System configuration
- User management and creation of an audit trail
- Definition of alarm settings:
  - show a red status on dashboard
  - send an alarm message by:
    - 1. e-mail
    - 2. text (SMS)
    - 3. Growl
    - 4. Prowl

| <sup>3</sup> Sensor | Software - [Dash | nboard]             |                   |             |                                  |               |           |       |   |
|---------------------|------------------|---------------------|-------------------|-------------|----------------------------------|---------------|-----------|-------|---|
| Dashboa             | ard Org          | anization Configura | tion User N       | Management  | ¦   ⊨<br>∏ ≓  <br>System Configu | iration       | About     | Exit  | F |
| ard Deta            | ils Audit        |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
| _                   |                  |                     |                   |             |                                  |               |           |       |   |
| _                   | Sensor Status    | Sensor Name         | Sensor Type       | Location    | Min Value                        | Current Value | Max Value | Unit  |   |
|                     | -                | Sensor6             | H2 H2             | Application | 0                                | 53230         | 5000      | unit2 |   |
| •                   |                  | Sensor5             | H <sub>2</sub> H2 | GC          | 0                                | 0             | 150       | unit1 |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |
|                     |                  |                     |                   |             |                                  |               |           |       |   |





## **Alarm Messages**

After 1%  $H_2$  detection the sensor alerts the staff by:

- Acoustic alarm
- **Optical** alarm (blinking display)
- Red Status of software dashboard
- Text (SMS) messages
- Growl
- Prowl







17

## **Calibration & Maintenance**

- Zero Point Calibration Using Air
- Alarm level Calibrated using Hydrogen in Air Mixture
- Yearly frequency (or according to lab practices)
- Special Silicon-free calibration hose comes with the sensor









#### **Features**

- Safe technique to constantly monitor hydrogen leaks
- Automatic alarm transmission through:
  - 1. Optical and acoustic alarms
  - 2. Red status of Dashboard
  - 3. E-mail messages
  - 4. Text (SMS) messages
  - 5. Growl
  - 6. Prowl
- Dedicated optional software controls the alarm settings per sensor & user

| 1.0          |              |                     |              |             | 11.4             | 1             |           |       |   |
|--------------|--------------|---------------------|--------------|-------------|------------------|---------------|-----------|-------|---|
|              |              |                     |              | <b>.</b>    | 1 <del>-</del> 1 |               | (i)       | 2     | 1 |
| Dashboard    | Org          | ganization Configur | ation User N | Management  | System Configu   | ration        | About     | Exit  | H |
| oard Details | Audt         |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
| Se           | ensor Status | Sensor Name         | Sensor Type  | Location    | Min Value        | Current Value | Max Value | Unit  |   |
|              |              | Sensor6             | H, H2        | Application | 0                | 53230         | 5000      | unit2 |   |
| •            |              | Sensor5             | H, H2        | GC          | 0                | 0             | 150       | unit1 |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |
|              |              |                     |              |             |                  |               |           |       |   |





#### **Features**

- Automatic carrier gas switching from Hydrogen to Nitrogen
- Leak detection indicates analysis is compromised
- Automatic stop signal sent to the GC
- Easy calibration and installation
- Compatible with all GC brands
- Versatile design supports up to 4 sensors:
  - 1. Hydrogen
  - 2. Hydrogen as Leak Detector
  - 3. Temperature
  - 4. Barometric Pressure
  - 5. Level (liquid) weight









#### **Questions?**



www.davinci-ls.com