

Creating Linear and Serial Dilution Methods on an Agilent 7696A WorkBench

User's Guide

This user guide describes procedures for creating linear and serial dilutions for a four level calibration curve complete with internal standards. It can be used as a template for creating similar calibration curves with an Agilent 7696A WorkBench.

Linear dilutions: In this example, we start with a 2,000 ppb stock standard and make a series of four linear dilutions such that the resulting concentrations are: 1,000 ppb, 500 ppb, 250 ppb, and 125 ppb.

Figure 1. Linear dilutions.

Serial dilutions: In this example, we start with a 2,000 ppb stock standard and make a series of four serial dilutions such that the resulting concentrations are: 1,000 ppb, 500 ppb, 250 ppb, and 125 ppb.

Each of the four calibration standards have the same volume of internal standard added.

Figure 2. Serial dilutions.

Resource Layout Editor

Before building the method for WorkBench, the resources must be allocated using the Resource Layout (Figure 3).

Hesources Wash/W	Taste Vial Assignment		_		_
Resource Name:	1510		~	Default Syringe Parameters	
Resource Type:	Chemical Resource		~	For Syringe Size (µL)	50
				Wash Volume (µL):	10
				Pump Volume (JL):	40
Use Type:	 By Volume 			Disease Speed (ul. /min):	1500
	Usable Volum	e per Vial (µL): 1700	0	Draw Needle Denth Offset (mm)	0.0
	O By Use			Use Needle Depth Offset for Dispense	
		Uses per Viał 1		Viscosity Delay (s)	2
				Air Gap (% Syringe Size)	0
Display Color.	Bisque		~	Overfill (% Swinge Size):	0
Vial Range:					
Add	× Remove	2 Replace		2	Cancel
olor N	lame	Resource Type	0	Vial Range	Usage
empty vial		Empty Container		91-94	1
Methanol (CH30	H)	Chemical Resource		71-72	1700 µL
ISTD		Chemical Resource		61	1700 µL
2000ppb Stands	ed Stock	Chemical Resource		51	1500 µL.

Figure 3. Resource layout.

- Empty vials calibration standards are made in these
- Methanol diluent
- ISTD internal standard
- 2,000 ppb standard stock starting stock solution

Methanol, ISTD, and 2,000 ppb standard stock can be allocated by volume (the user selects the amount of volume available in the vial[s]) or by use (the user selects how many times the resource can be accessed). Most chemical resources are allocated as "by volume", however "by use" is helpful when the resource evaporates or degrades quickly after the vial has been pierced.

Agilent Technologies

Create Prep Method - Linear Dilution

Using the Resources allocated above the Agilent 7696A WorkBench method is created stepwise (shown below and in Figure 4).

- Add 400 μL of methanol to an empty vial, which is renamed '1,000 ppb std'.
- Add 100 μL of the resource 'ISTD' to the newly created vial '1,000 ppb std'.
- Add 500 μL of the resource '2,000 ppb Standard Stock' to '1,000 ppb std'.
- 4. Mix '1,000 ppb std' (1,000 ppb std is now complete).
- Add 650 µL of methanol to an 'empty vial' which is renamed '500 ppb std'.
- Add 100 μL of the resource 'ISTD' to the newly created vial '500 ppb std'.
- 7. Add 250 μL of the resource '2,000 ppb Standard Stock' to '500 ppb std'.

- 8. Mix '500 ppb std' (500 ppb std is now complete).
- Add 775 μL of methanol to an empty vial, which is renamed '250 ppb std'.
- 10. Add 100 μ L of the resource 'ISTD' to the newly created vial '250 ppb std'.
- 11. Add 125 μL of the resource '2,000 ppb Standard Stock' to '250 ppb std'.
- 12. Mix '250 ppb std' (250 ppb std is now complete).
- Add 830 μL of methanol to an empty vial, which is renamed '125 ppb std'.
- 14. Add 7.5 μ L of methanol to the newly created vial '125 ppb std'.
- 15. Add 100 μ L of the resource 'ISTD' to '125 ppb std'.
- 16. Add 62.5 μL of the resource '2,000 ppb Standard Stock' to '125 ppb std'.
- 17. Mix '125 ppb std' (125 ppb std is now complete).
- 18. Flag the vials created: 1,000 ppb std, 500 ppb std, 250 ppb std, and 125 ppb std as 'result vials'.

Figure 4. Create prep method, linear dilution.

Create Prep Method - Serial Dilution

Using the Resources allocated above the Agilent 7696A WorkBench method is again created stepwise (shown below and in Figure 5).

- Add 400 μL of methanol to an empty vial, which is renamed '1,000 ppb std'.
- Add 100 μL of the resource 'ISTD' to the newly created vial '1,000 ppb std'.
- Add 500 μL of the resource '2,000 ppb Standard Stock' to '1,000 ppb std'.
- 4. Mix '1,000 ppb std' (1,000 ppb std is now complete).
- 5. Add 400 μL of methanol to an empty vial, which is renamed '500 ppb std'.
- Add 100 μL of the resource 'ISTD' to the newly created vial '500 ppb std'.
- 7. Add 500 μL of the resource '1,000 ppb std' to '500 ppb std'.

- 8. Mix '500 ppb std' (500 ppb std is now complete).
- 9. Add 400 μL of methanol to an empty vial, which is renamed '250 ppb std'.
- 10. Add 100 μ L of the resource 'ISTD' to the newly created vial '250 ppb std'.
- 11. Add 500 μ L of the resource '500 ppb std' to '250 ppb std'.
- 12. Mix '250 ppb std' (250 ppb std is now complete).
- Add 400 μL of methanol to an empty vial, which is renamed '125 ppb std'.
- 14. Add 100 μ L of the resource 'ISTD' to the newly created vial '125 ppb std'.
- 15. Add 500 μL of the resource '250 ppb std' to '125 ppb std'.
- 16. Mix '125 ppb std' (125 ppb std is now complete).
- 17. Flag the vials created: 1,000 ppb std, 500 ppb std, 250 ppb std, and 125 ppb std as 'result vials'.

Figure 5. Create prep method, serial dilution.

Easy Sequence

To run the method created to generate the four calibration standards (Figure 6):

- Select Easy Sequence. 1.
- Select your saved method. 2.
- Under Starting Vial Location enter any vial position not 3. used in the Resource Layout (for this example we chose vial 1).
- 4. Under Number of Samples enter 1.

You must enter values here even though there are no 'samples' when running a method to create calibration standards is used.

- 5. Under **Sample Name** enter a name (optional).
- Select Fill Samples and start the sequence as you would 6. normally.

This sequence will be added to your sequence queue.

Method 🥞 Sequence		43 43 D 🕑 🚽 🞯
Method Information		Comments
Method:	4 LEVEL LINEAR.M	
Estimated Cycle Time:	nin	
Sample Information		
Starting Vial Location:	1	
Number of Samples:	1	
Sample Name:	4 level cal + ×	
Vial Sample Name Vial 4 level cal	Sample Info	
Vial Sample Name Vial 4 level cal	Sample Info	
Vial Sample Name 1 4 level cal	Sanple Info	
Vial Sample Name Vial Sample Name 1 4 level cal III	Sanple Info	
Vial Sample Name Vial 2 1 4 level cal 18	Sample Info	
Vial Sample Name > 1 4 level cal III	Sanple Info	
Vial Sample Name > 1 4 level cal III	Sanple Info	
Vial Sample Name > 1 4 level ca III	Sanplo Info	
Vial Sample Name > 1 4 level cd 11	Sanplo Info	

Figure 6. Easy sequence.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2012 Printed in the USA January 17, 2012 5990-9615EN

Agilent Technologies