A Comparison of Volatile Organic Compound Response When Using Nitrogen as a Purge Gas

Abstract

For many years Helium has been the gas of choice for purging Volatile Organic Compounds (VOCs). However, in the past few years, the price and demand for helium gas has increased substantially, thus making the use of Helium for the purge gas in Purge and Trap (P&T) very expensive. The expense of Helium has provoked interest in finding a viable alternative purge gas. This application note investigates VOC compound responses when purged using Helium and Nitrogen in order to validate Nitrogen as a possible alternative to Helium for P&T applications.

Introduction

Teledyne Tekmar developed a combination P&T Concentrator/ Vial Autosampler, the Atomx. The Atomx was developed to fully automate water, soil, and methanol extraction in accordance with the USEPA methods for volatile analyses. One of the beneficial features of the Atomx highlighted in this study is the use of an electronic mass flow controller that is calibrated for either Nitrogen or Helium. The controller is employed for both fritted glass sparging used for aqueous samples and in vial sparging used in soil applications. Since the mass flow controller is electronic, flow rates can be programmed via the software interface for various modes of operation. This patent pending ability allows for the end user to simplify the potential switch by simply changing the configuration rather than manually adjusting pressures and flows as seen in traditional regulator/needle flow controller systems.

In this study, data was collected to evaluate compound response when using Nitrogen as a purge gas as opposed to the traditional Helium purge gas. Furthermore, as water samples are purged in the sparge vessel and soils are purged in the sample vial, an additional comparison was done to see if the analytes responded differently when purged in the vial with Nitrogen in contrast to a Helium purge.

Experimental-Instrument Conditions

The Atomx, an Agilent 7890A GC and a 5975C inert XL MSD were used for this analysis. The Atomx was equipped with a #9 adsorbent trap. Tables 1 and 2 display the GC, MSD conditions while Tables 3 and 4 display the P&T Concentrator/Autosampler conditions for water and soil matrices respectively.

GC Parameters					
GC:	Agilent 7890A				
Column:	J&W Scientific DB-VRX				
Column.	30m x 0.250mm x1.4um				
	35°C for 4 min; 16°C/min to				
Oven Program:	85°C for 0 min; 30°C /min to				
Oven Program:	210°C for 3 min, 14.29 min				
	runtime				
Inlet:	220°C				
Column Flow	1.2mL/min				
Gas:	Helium				
Split:	80:1				
Pressure:	9.3psi				
Inlet:	Split/Splitless				

MSD Parameters				
MSD:	5975C Inert XL			
Source:	230°C			
Quad:	150°C			
Solvent Delay:	0.5 min			
Scan Range:	m/z 35-300			
Scans:	4.51 scans/sec			
Threshold:	400			
MS Transfer	230°C			
Line Temp:	230 C			

Tables 1 & 2: GC and MSD Parameters

Calibration

A 50ppb working calibration stock standard was prepared in methanol. Calibration standards were prepared in a 50mL volumetric flask and filled to volume with de-ionized water. In this study, a linear calibration was performed for both the water and

the soil matrices for 95 analytes. The range for the water study was 0.5-200ppb and the soil range was 1.0-200ppb. The water standards were transferred to headspace free 40mL vials for analysis while the soil standards were transferred to 40mL vials in 5mL aliquots. A 5.0 milliliter (mL) purge volume was used for the water curve. For the soil curve, a 5g sample with 10mLs of reagent water was simulated. Conditions and specifications outlined in USEPA Method 8260 were utilized for both matrices.

The calibration data was analyzed using Agilent Chemstation software. The average compound response for the water and soil matrices with the Helium and Nitrogen purge gases is outlined in Table 5. The relative response factors of all of the analytes of interest were evaluated for linearity and response and the average %RSD of the respective curves are summarized in Table 6.

Atomx Water Parameters						
Variable	Value	Variable	Value			
Valve Oven Temp	140°C	Dry Purge Flow	100mL/ min			
Transfer Line Temp	140°C	Dry Purge Temp	20°C			
Sample Mount Temp	90°C	Methanol Needle Rinse	Off			
Water Heater Temp	90°C	Methanol Needle Rinse Volume	3.0mL			
Sample Vial Temp	20°C	Water Needle Rinse Volume	7.0mL			
Sample Equilibrate Time	0.00 min	Sweep Needle Time	0.50 min			
Soil Valve Temp	125°C	Desorb Preheat Temp	245°C			
Standby Flow	10mL/ min	GC Start Signal	Start of Desorb			
Purge Ready Temp	40°C	Desorb Time	2.00 min			
Condensate Trap Standby	45°C	Drain Flow	300mL/min			
Presweep Time	0.25 min	Desorb Temp	250°C			
Prime Sample Fill Volume	3.0mL	Methanol Glass Rinse	On			
Sample Volume	5.0mL	Number of Methanol Glass Rinses	1			
Sweep Sample Time 0.25		Methanol Glass Rinse Volume	3.0mL			
Sweep Sample Flow 100mL/min Numl		Number Of Bake Rinses	1			
Sparge Vessel Heater	Vessel Heater Off Water Bake Rinse Volume		7.0mL			
Sparge Vessel Temp	20°C	Bake Rinse Sweep Time	0.25 min			
Prepurge Time	0.00 min	Bake Rinse Sweep Flow	100mL/min			
Prepurge Flow	0mL/min	Bake Rinse Drain Time	0.40 min			
Purge Time	11.00 min	Bake Time	4.00 min			
Purge Flow	40mL/min	Bake Flow	250mL/min			
Purge Temp	20°C	Bake Temp	280°C			
Condensate Purge Temp	Condensate Purge Temp 20°C		200°C			
Dry Purge Time	0.50 min					

Table 3: Atomx Water Parameters (Parameters highlighted in yellow were not used.)

Atomx Soil Parameters						
Variable	Value	Variable	Value			
Valve Oven Temp	140°C	Purge Time	11.0 min			
Transfer Line Temp	140°C	Purge Flow	40mL/min			
Sample Mount Temp	90°C	Purge Temp	20°C			
Water Heater Temp	90°C	Condensate Purge Temp	20°C			
Sample Vial Temp	40°C	Dry Purge Time	1.00 min			
Prepurge Time	0.00 min	Dry Purge Flow	100mL/ min			
Prepurge Flow	0mL/min	Dry Purge Temp	20°C			
Preheat Mix Speed	Off	Methanol Needle Rinse	On			
Sample Preheat Time	0.00 min	Methanol Needle Rinse Volume	3.0mL			
Soil Valve Temp	125°C	Water Needle Rinse Volume	7.0mL			
Standby Flow	10mL/min	Sweep Needle Time	0.25 min			
Purge Ready Temp	40°C	Desorb Preheat Temp	245°C			
Condensate Temp Standby	45°C	GC Start Signal	Start of Desorb			
Presweep Time	0.25 min	Desorb Time	2.00 min			
Water Volume	10mL	Drain Flow	300mL/min			
Sweep Water Time	0.25 min Desorb Temp		250°C			
Sweep Water Flow	100mL/min	Bake Time	4.00 min			
Sparge Vessel Heater	Off	Bake Flow	250mL/min			
Sparge Vessel Temp	20°C	Bake Temp	280°C			
Purge Mix Speed	Medium	Condensate Bake Temp	200°C			

Table 4: Atomx Soil Parameters (Parameters highlighted in yellow were not used.)

Method Detection Limit (MDL)

A statistical determination of the MDL's was determined for all of the compounds by analyzing seven replicate standards of a low calibration standard. The average detection limits are provided in Table 6.

	Water		Soil		
Commonad	Ave. Response	Ave. Response	Ave. Response	Ave. Response	
Compound	N2 Purge	He Purge	N2 Purge	He Purge	
Pentafluorobenzene (IS)	N/A	N/A	N/A	N/A	
Dichlorodifluoromethane	0.337	0.517	0.807	0.507	
Chloromethane	0.551	0.655	0.993	0.692	
Vinyl Chloride	0.675	0.620	1.194	0.763	
Bromomethane	0.379	0.393	0.717	0.660	
Chloroethane (Ethyl Chloride)	0.461	0.415	0.693	0.501	
Trichlorofluoromethane	0.962	0.735	1.526	1.035	
Diethyl Ether	0.604	0.484	0.783	0.540	
1,1-Dichloroethene	0.839	0.686	1.416	0.528	
Carbon Disulfide	1.069	1,417	2,423	1.111	
1,1,2-Trichlorofluoroethane	0.202	0.240	2.225	0.255	
(Freon)	0.283	0.349	0.805	0.366	
Iodomethane	0.469	0.475	0.801	0.462	
Allyl Chloride	0.713	0.615	0.859	0.441	
Methylene Chloride	0.694	0.614	1.067	0.377	
Acetone	0.263	0.203	0.252	0.194	
trans-1,2-Dichloroethene	0.675	0.712	0.874	0.768	
Methyl Acetate	0.493	0.494	0.336	0.187	
MTBE	1.507	1.827	2.721	1.780	
TBA	0.088	0.078	0.098	0.046	
Diisopropyl Ether	1.394	1.668	1.711	1.565	
Chloroprene	0.671	0.851	0.945	0.878	
1,1-Dichloroethane	0.874	0.953	1.996	1.119	
Acrylonitrile	0.308	0.263	0.299	0.104	
Vinyl acetate	0.855	0.636	1.146	1.025	
ETBE	1.462	1.776	1.520	1.596	
cis-1,2-Dichloroethene	0.617	0.704	1.390	0.855	
2,2-Dichloropropane	0.682	0.485	0.928	0.915	
Bromochloromethane	0.397	0.392	0.476	0.422	
Chloroform	0.915	1.005	1.094	0.974	
Carbon Tetrachloride	0.571	0.727	0.710	0.715	
1,1,1-Trichloroethane	0.726	0.892	0.880	0.844	
THE	0.143	0.169	0.105	0.125	
Dibromofluoromethane					
(Surrogate)	0.464	0.502	0.502	0.510	
Methyl Acrylate	0.511	0.576	0.438	0.466	
1,1-Dichloropropene	0.614	0.706	0.740	0.807	
2-Butanone (MEK)	0.209	0.217	0.208	0.158	
Benzene	1.977	2.214	2.316	2.243	
Propionitrile	0.591	0.637	0.612	0.567	
tert Amyl Methyl Ether	1.449	1.787	1.216	1.524	
(TAME)					
1,2-Dichloroethane	0.729	0.815	0.777	0.728	
Isobutyl Alcohol	0.451	0.193	0.458	0.148 0.873	
Isopropyl Acetate	0.931		1.134 0.813		
Trichloroethene	0.482	0.617	0.588	0.619	
1,4-Difluorobenzene (IS)	N/A	N/A	N/A	N/A	
Dibromomethane	0.160	0.197	0.148	0.172	
1,2-Dichloropropane	0.253	0.300	0.275	0.270	
Dibromomethane	0.160	0.197	0.148	0.172	

		VV	itei	3011		
	Compound	Ave. Response	Ave. Response	Ave. Response	Ave. Response	
	· ·	N2 Purge	He Purge	N2 Purge	He Purge	
	1,2-Dichloropropane	0.253	0.300	0.275	0.270	
	Bromodichloromethane	0.330	0.466	0.391	0.393	
	Methyl Methacrylate	0.227	0.317	0.180	0.238	
	n-Propyl Acetate	0.347	0.411	0.270	0.323	
	2-Cleve	0.162	0.192	0.110	0.149	
2	cis-1,3-Dichloropropene	0.377	0.460	0.370	0.444	
	Toluene-d8 (surr)	0.830	1.092	0.790	1.089	
_	Toluene	0.999	1.249	1.034	1.276	
	2-Nitropropane	0.339	0.425	0.270	0.323	
	Tetrachloroethene	0.266	0.493	0.235	0.300	
	4-methyl2-pentanone	0.036	0.050	0.068	0.034	
	1,1,2-Trichloroethane	0.230	0.301	0.205	0.235	
	Ethyl Methacrylate	0.192	0.255	0.124	0.177	
	Dibromochloromethane	0.207	0.329	0.213	0.248	
	1,3-Dichloropropane	0.420	0.506	0.354	0.410	
	1,2-Dibromoethane	0.230	0.301	0.187	0.233	
	n-Butyl Acetate	0.361	0.463	0.272	0.339	
	2-Hexanone	0.174	0.213	0.128	0.149	
4	Chlorobenzene-d5 (IS)	N/A	N/A	N/A	N/A	
4	Chlorobenzene	0.739	0.908	0.803	0.949	
4	Ethylbenzene	1.207	1.550	1.321	1.573	
4	1,1,1,2-Tetrachloroethane	0.242	0.336	0.270	0.287	
4	M&P Xylene	0.961	1.264	1.042	1.300	
4	Ortho Xylene	1.014	1.314	1.115	1.290	
_	Styrene	0.675	0.920	0.747	0.913	
_	Bromoform	0.131	0.240	0.143	0.164	
_	Isopropylbenzene	1.200	1.502	1.218	1.541	
_	n-Amyl Acetate	0.471	0.533	0.399	0.401	
Ц	BFB (surr)	0.364	0.501	0.390	0.501	
Ц	n-Propylbenzene	1.335	1.720	1.452	1.924	
_	trans-1,4-Dichloro-2-Butene	0.104	0.116	0.085	0.091	
4	Nitrobenzene	0.016	0.041	0.017	0.020	
4	Bromobenzene	0.536	0.675	0.555	0.661	
4	1,1,2,2-Tetrachloroethane	0.413	0.429	0.381	0.366	
4	1,3,5-Trimethylbenzene	0.917	1.260	0.972	1.262	
4	2-Chlorotoluene	0.869	1.113	0.914	1.127	
4	cis-1,4-Dichloro-2-Butene	0.143	0.152	0.109	0.125	
4	4-Chlorotoluene	0.886	1.113	0.933	1.223	
4	Tertbutylbenzene	0.756	1.035	0.813	1.050	
Ц	1,2,4-Trimethylbenzene	0.930	1.259	0.961	1.260	
	sec-Butylbenzene	1.216	1.578	0.388	1.717	
	p-Isopropyltoluene	0.992	1.281	1.081	1.367	
\dashv	1,3-Dichlorobenzene	0.506	0.629	0.546	0.671	
\dashv	1,4-Dichlorobenzene-d4 (IS)	N/A	N/A	N/A	N/A	
\dashv	1,4-Dichlorobenzene	0.552	0.678	0.580	0.691	
\dashv	n-Butylbenzene	0.936	1.159	1.127	1.360	
\dashv	1,2-Dichlorobenzen	0.507	0.642	0.481	0.600	
	1,2-Dibromo-3-Chloropro-					
\dashv	pane	0.070	0.097	0.049	0.061	
┫	Hexachlorobutadiene	0.125	0.169	0.157	0.199	
٦	1,2,4-Trichlorobenzene	0.313	0.439	0.293	0.413	
\dashv	Naphthalene	1.098	1.461	0.685	1.026	

Table 5: Average Compound Response Summary

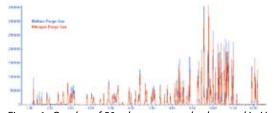


Figure 1: Overlay of 50ppb water standard purged in He and in N2

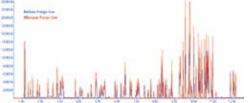


Figure 2: Overlay of 50ppb soil standard purged in He and in N2

Matrix	Average %RSD N2 Purge	Average %RSD He Purge	Average MDL N2 Purge	Average MDL He Purge	Average Compound Response N2 Purge	Average Compound Response He Purge
Water	10.08	8.30	0.32	0.33	0.602	0.708
Soil	10.30	8.10	0.48	0.53	0.718	0.689

0.442

0.264

0.318

Table 6: Experimental Results Summary

Conclusions

1,2,3-Trichlorobenzene

The Atomx Purge and Trap Concentrator Multimatrix Autosampler in conjunction with an Agilent GC/MS system performed very well for both the water and the soil calibration range, as seen in Figures 1 and 2. These findings support the option of moving to Nitrogen as an alternative to Helium. Considering Helium can cost as much as three times the price of Nitrogen, this switch can save companies performing typical USEPA methodologies considerable amounts of costs over the long term. In addition the use of Nitrogen generators capable of producing 99.999 or greater purity offer yet another solution to the cost associated with the analysis by removing the need for cylinders.

